JPH02110930A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02110930A
JPH02110930A JP26377788A JP26377788A JPH02110930A JP H02110930 A JPH02110930 A JP H02110930A JP 26377788 A JP26377788 A JP 26377788A JP 26377788 A JP26377788 A JP 26377788A JP H02110930 A JPH02110930 A JP H02110930A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
semiconductor device
nitride film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26377788A
Other languages
Japanese (ja)
Inventor
Yasunori Miyamoto
宮本 靖典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP26377788A priority Critical patent/JPH02110930A/en
Publication of JPH02110930A publication Critical patent/JPH02110930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a semiconductor device provided with passivation films hardly cracked during heat treatment process as well as discharging sufficient protective functions by a method wherein the passivation films are composed of a three layered structure comprising a silicon oxide film, a silicon oxide nitride film and a silicon nitride film. CONSTITUTION:Within the title semiconductor device wherein a substrate formed of semiconductor elements is covered with passivation films 2, the said passivation films 2 are composed of a three layered structure comprising a silicon oxide film 2a, a silicon oxide nitride film 2b and a silicon nitride film 2c. For example, the internal stresses of the said silicon oxide film 2a, silicon oxide nitride film 2b and silicon nitride film 2c are specified respectively to be around 0.8-1X10<9>dyne/cm<2>, around 1-2X10<9>dyne/cm<2> and around 2-4X10<9>dyne/ cm<2>. Furthermore, all of the said three films 2a-2c are formed by plasma vapor reaction process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置、特にパッシベーション膜を備
えた半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device provided with a passivation film.

〔従来の技術〕[Conventional technology]

半導体装置、例えば、微細加工を施した高耐圧半導体装
置ではパッシベーション膜に十分な機能をもたせること
が重要である。
In a semiconductor device, for example, a high breakdown voltage semiconductor device subjected to microfabrication, it is important to provide a passivation film with a sufficient function.

従来、パッシベーション膜としては、シリコン酸化膜が
使われている。しかし、シリコン酸化膜は耐水性、耐ア
ルカリ汚染の点で十分ではない。
Conventionally, a silicon oxide film has been used as a passivation film. However, the silicon oxide film is not sufficient in terms of water resistance and alkali contamination resistance.

最近、シリコン窒化膜が、シリコン酸化膜の前記欠点を
補う膜としてよく使われている。シリコン窒化膜は、シ
リコン酸化膜に比べ、耐水性やNa“イオンに対する障
壁効果に優れ、かつ機械的強度に優れるからである。特
に、プラズマ気相成長法(Plasma−CVD)によ
るシリコン窒化膜は、上記の長所が顕著であって、しか
も、膜形成が比較的低い温度で行えるという利点がある
(特公昭62−10017号公報、特公昭62−341
39号公報)。
Recently, a silicon nitride film is often used as a film that compensates for the above-mentioned drawbacks of a silicon oxide film. This is because, compared to silicon oxide films, silicon nitride films have superior water resistance and barrier effects against Na" ions, as well as superior mechanical strength. In particular, silicon nitride films produced by plasma-chemical vapor deposition (Plasma-CVD) In addition to the above-mentioned advantages, there is also the advantage that film formation can be performed at a relatively low temperature (Japanese Patent Publication No. 62-10017, Japanese Patent Publication No. 62-341).
Publication No. 39).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このようなシリコン窒化膜は、封止工程
でのボンディングや樹脂封止に伴う熱処理でクランクが
入りやすい。パッシベーション膜に十分な機能を発揮さ
せるために11通常、膜にある程度の厚みをもたせるの
であるが、シリコン窒化膜は、膜の内部応力が大きく、
1μm前後の膜厚になるとクラックが入りやすいのであ
る。クランクの入ったパッシベーション膜は、保護機能
が著しく低下する。そのため、半導体装置は実用に耐え
なくなる。
However, such a silicon nitride film is likely to be cranked during bonding in the sealing process or during heat treatment associated with resin sealing. In order for a passivation film to exhibit sufficient functionality, the film is usually made to have a certain thickness, but silicon nitride films have a large internal stress.
When the film thickness is around 1 μm, cracks are likely to occur. A passivation film containing a crank will have a significantly reduced protective function. Therefore, the semiconductor device becomes unusable.

この発明は、熱処理の際にクランクが入りにくく、しか
も、十分な保護機能をもつパッシベーション膜を備えた
半導体装置を提供することを課題とする。
An object of the present invention is to provide a semiconductor device that is difficult to be cranked during heat treatment and is equipped with a passivation film that has a sufficient protective function.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、請求項1記載の半導体装置は
、パッシベーション膜を、シリコン酸化膜、シリコン酸
化窒化膜、および、シリコン窒化膜の3層からなるもの
にしている。
In order to solve the above problem, in a semiconductor device according to a first aspect of the present invention, the passivation film is made up of three layers: a silicon oxide film, a silicon oxynitride film, and a silicon nitride film.

請求項2記載の半導体装置は、加えて、パッシベーショ
ン膜において、シリコン酸化膜の内部応力が約0.8〜
I X 10”dyn/ cれシリコン酸化窒化膜の内
部応力が約1〜2 X 10 ’dyn/ cd、シリ
コン窒化膜の内部応力が約2〜4 X 10 ’dyn
/ catとなるようにしている。
In addition, in the semiconductor device according to claim 2, in the passivation film, the internal stress of the silicon oxide film is about 0.8 to about 0.8.
The internal stress of the silicon oxynitride film is approximately 1 to 2 X 10' dyn/cd, and the internal stress of the silicon nitride film is approximately 2 to 4 X 10' dyn/cd.
/cat.

〔作   用〕[For production]

この発明の半導体装置のパッシベーション膜は、シリコ
ン酸化膜、シリコン酸化窒化膜、および、シリコン窒化
膜の3層からなる構成であるため、膜に厚みをもたせて
も、熱処理によるクラックの発生は抑えられ、半導体装
置が十分な機能のパッシベーション膜を備えることにな
る。半導体装置は、THB、BT等の試験にかけても特
性の劣化が極めて少ない信頼性の高いものとなるのであ
る。
Since the passivation film of the semiconductor device of the present invention is composed of three layers: a silicon oxide film, a silicon oxynitride film, and a silicon nitride film, even if the film is made thick, the occurrence of cracks due to heat treatment can be suppressed. , the semiconductor device will be provided with a passivation film with sufficient functionality. The semiconductor device becomes highly reliable with extremely little deterioration in characteristics even when subjected to tests such as THB and BT.

パッシベーション膜において、シリコン酸化膜の内部応
力が0.8〜I X 10 ’dyn/ cnl、シリ
コン酸化窒化膜の内部応力が1〜2 X 10 ’dy
n/ crA、シリコン窒化膜の内部応力が2〜4×1
0°dyn/cjとなっていると、クランクは、−層、
入り難くなる(この数値は、圧縮モードでのものである
)〔実 施 例〕 以下、この発明にかかる半導体装置を、その−例をあら
れす図面を参照しながら詳しく説明する第1図は、この
発明の半導体装置のパッシベーション膜まわりの構成を
あられす。
In the passivation film, the internal stress of the silicon oxide film is 0.8 to I X 10' dyn/cnl, and the internal stress of the silicon oxynitride film is 1 to 2 X 10' dy.
n/crA, internal stress of silicon nitride film is 2 to 4×1
When it is 0°dyn/cj, the crank is -layer,
(This value is for the compressed mode) [Example] Hereinafter, an example of the semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. The structure around the passivation film of the semiconductor device of this invention will be described below.

半導体装置は、半導体素子として1000 V耐圧のバ
イポーラトランジスタ(図示省略)が形成された半導体
基板lを備えるとともに、この基板lを覆うパッシベー
ション膜2を備えている。このパッシベーション膜2は
3種類の模からなる。すなわち、最下層にシリコン酸化
膜(SiO□が主構成要素)2a、中間層にシリコン酸
化窒化膜2b、最上層にシリコン窒化膜(SisN4が
主構成要素)2Cが積層形成されているである。これら
3つの膜は、いずれも、プラズマ気相反応法(Plas
ma−CVD)により形成されたものである。なお、5
は半導体素子の電極(、+1電極)であり、6は絶縁層
(熱酸化層)である。
The semiconductor device includes a semiconductor substrate l on which a 1000 V bipolar transistor (not shown) is formed as a semiconductor element, and a passivation film 2 covering the substrate l. This passivation film 2 consists of three types of patterns. That is, a silicon oxide film (mainly composed of SiO□) 2a is formed in the bottom layer, a silicon oxynitride film 2b is formed in the middle layer, and a silicon nitride film (mainly composed of SisN4) 2C is formed in the uppermost layer. These three films are all produced using plasma gas phase reaction method (Plasma gas phase reaction method).
It was formed by ma-CVD). In addition, 5
is an electrode (+1 electrode) of the semiconductor element, and 6 is an insulating layer (thermal oxidation layer).

パッシベーション膜における各膜2 a、2b、2Cは
、第2図に示すプラズマ気相反応法による膜形成装置に
よって製膜されている。
Each of the films 2a, 2b, and 2C in the passivation film is formed by a film forming apparatus using a plasma vapor phase reaction method shown in FIG.

この第2図の装置は、反応室IO内に対向する一対の上
電極11、下電極12を備えており、上電極11面から
反応ガスを供給できるようになっている。一方、RF電
源13から画電極11.12間に高周波電力を供給でき
るようになっている。そして、この装置は、下電極12
上に素子が形成された半導体基板1を置いて、反応ガス
および高周波電力の供給を行いプラズマを発生させて半
導体基板の表面に膜を被着させるようになっている。な
お、14は基板1加熱用ヒータ、15.15′は皐色縁
物、16はシャターリングである。
The apparatus shown in FIG. 2 includes a pair of upper electrodes 11 and lower electrodes 12 facing each other in a reaction chamber IO, and a reaction gas can be supplied from the surface of the upper electrodes 11. On the other hand, high frequency power can be supplied from the RF power source 13 between the picture electrodes 11 and 12. In this device, the lower electrode 12
A semiconductor substrate 1 on which elements are formed is placed, and reactive gas and high frequency power are supplied to generate plasma to deposit a film on the surface of the semiconductor substrate. Note that 14 is a heater for heating the substrate 1, 15 and 15' are brown edges, and 16 is a shutter ring.

各1ff2a〜2C形成条件、および、形成された膜の
内部応力はつぎのとおりであった。
The conditions for forming each of 1ff2a to 2C and the internal stress of the formed films were as follows.

■ シリコン酸化膜(Plasma−3iO膜)2af
a+  膜厚み      ・・・5000人(b)R
F電源の周波数  = 50 k Hz(CIRF電源
の出力   ・・・150 W(d)  反応室圧力 
    −0,40Torr(Q)  反応ガス N2
ガス    ・100 SCCMNz + 5ill+
 (20χ)・・・100 SCCMN、0     
  ・・・500 SCCMウェハ加熱温度     
 ・・・300℃膜の内部応力(圧縮モード) −0,8〜I X 10 ’dyn/ cJシリコン酸
化窒化膜(Plasms−SiON膜)2b膜厚み  
    ・・・5000人 RF電源の周波数  ・・・50 k HzRF電源の
出力   ・・・115 W反応室圧力     ・・
・0.45Torr反応ガス NZガス    ・・・
150 SCCMN2 +5il14(20χ)・・・
 905CC1’lNz0       ・・・ 43
 SCCMウェハ加熱温度      ・・・300℃
膜の内部応力(圧縮モード) ”’ 1〜2 X 10 ’dyn/ cnlシリコン
窒化膜(Plasma−5iNlpJ)  2 c膜厚
み      ・・・5000人 RF電源の周波数  ・・・50kHzRF電源の出力
   ・・・115W 反応室圧力     ・・・Q、5QTorr反応ガス
 N2ガス    ・・・400 SCCMN!  +
5iH4(20χ) ・・・ 42 SCCM(fl 
 ウェハ加熱温度      ・・・300℃(gl 
 膜の内部応力(圧縮モード)・・・ 2〜4  X 
 1 0  ”dyn/  cd二の°ように上記パッ
シベーション膜2を形成した半導体装置を熱処理し、パ
ッシベーション膜におけるクランク発生の有無を調べた
。なお、比較のために、パッシベーション膜が、シリコ
ン酸化膜、シリコン窒化膜、シリコン酸化窒化膜の単独
膜からなる(第1表参照)他は実施例と同じ半導体装置
(比較例1〜9)をそれぞれ作製し、やはり同様に熱処
理し、パッシベーション膜におけるクランクの発生の有
無を調べた。なお、単独膜の場合、厚みが、5000人
、10000人、15000人と異なる3種類のものを
作製した。
■ Silicon oxide film (Plasma-3iO film) 2af
a+ Film thickness...5000 people (b)R
Frequency of F power supply = 50 kHz (output of CIRF power supply...150 W (d) Reaction chamber pressure
-0,40Torr(Q) Reaction gas N2
Gas ・100 SCCMNz + 5ill+
(20χ)...100 SCCMN, 0
...500 SCCM wafer heating temperature
...Internal stress of 300℃ film (compression mode) -0,8~I
...5000 people Frequency of RF power supply ...50 kHz RF power supply output ...115 W Reaction chamber pressure ...
・0.45Torr reaction gas NZ gas...
150 SCCMN2 +5il14(20χ)...
905CC1'lNz0...43
SCCM wafer heating temperature...300℃
Internal stress of the film (compression mode) 1~2 x 10' dyn/ cnl silicon nitride film (Plasma-5iNlpJ) 2c film thickness...5000 people Frequency of RF power supply...Output of 50kHz RF power supply... 115W Reaction chamber pressure...Q, 5QTorr Reaction gas N2 gas...400 SCCMN! +
5iH4 (20χ) ... 42 SCCM (fl
Wafer heating temperature...300℃ (gl
Internal stress of membrane (compression mode)... 2 to 4 X
The semiconductor device on which the passivation film 2 was formed was heat-treated to a temperature of 10" dyn/cd 2°, and the presence or absence of cranking in the passivation film was examined. For comparison, the passivation film was a silicon oxide film, a silicon oxide film, Semiconductor devices (Comparative Examples 1 to 9) consisting of single films of silicon nitride film and silicon oxynitride film (see Table 1), which were otherwise the same as those of the examples, were fabricated and heat-treated in the same manner to improve the crankshaft in the passivation film. The presence or absence of occurrence was investigated. In the case of single films, three types with different thicknesses were prepared: 5,000, 10,000, and 15,000.

なお、熱処理は、半導体装置を、GGガス(N。Note that the heat treatment is performed on the semiconductor device using GG gas (N.

ガスをベースにH1ガスを5〜15%混合したガス)中
、450℃の温度下、30分間放置するというものであ
る。結果、すなわちクランク発生の有無を、第1表に記
す。
The sample is left for 30 minutes at a temperature of 450° C. in a gas mixture of 5 to 15% H1 gas based on a gas mixture. The results, ie, whether or not cranking occurred, are shown in Table 1.

第1 表 一方、上記実施例および比較例の半導体装置のパッシベ
ーション膜の機能を調べるために、各半導体装置をTH
B試験にかけた。
Table 1 On the other hand, in order to investigate the function of the passivation film of the semiconductor devices of the above example and comparative example, each semiconductor device was subjected to TH
I took the B test.

試験条件は、温度:85℃、湿度:85%、バイアス電
圧:800V (100OVの80%)である。バイポ
ーラトランジスタのベース・コレクタ間の漏れ電流が、
100μA以上となったものを不合格と判定するように
した。結果を第2表に示す、なお、第2表において、○
印は、10個の同じ供試半導体装置が全て合格であるこ
とを示し、Δ印は8個以上が合格であることを示し、×
は合格個数が7個以下であることを示している。
The test conditions were: temperature: 85°C, humidity: 85%, bias voltage: 800V (80% of 100OV). The leakage current between the base and collector of a bipolar transistor is
Those with a value of 100 μA or more were determined to be rejected. The results are shown in Table 2. In Table 2, ○
The mark indicates that all 10 of the same test semiconductor devices passed, the Δ mark indicates that 8 or more passed, and ×
indicates that the number of passed items is 7 or less.

第2表 実施例のパッシベーション膜は、膜の厚みが厚くても、
第1表にみるように、比較例のそれに比べ、熱処理によ
るクランクが発生しにくい。しかも、実施例のパッシベ
ーション膜は、第2表にみるように、膜の厚みが十分で
あるため十分な機能をもっている。比較例1.4.7の
半導体装置のパッシベーション膜は、厚みが薄い分、第
1表にみるように、クランクは入り難いが、第2表にみ
るように、機能が十分でない。
Even if the passivation film of the example in Table 2 is thick,
As shown in Table 1, cranking due to heat treatment is less likely to occur compared to that of the comparative example. Moreover, as shown in Table 2, the passivation film of the example has sufficient thickness and therefore has a sufficient function. Since the passivation film of the semiconductor device of Comparative Example 1.4.7 is thin, as shown in Table 1, it is difficult to insert a crank, but as shown in Table 2, the function is not sufficient.

この発明は上記実施例に限らない。半導体基板に形成さ
れる素子は、前記例示のバイポーラトランジスタの他、
DMO5FET 、 C−MOS 、あるいは、多種頬
の素子からなるIC等であってもよい。シリコン酸化膜
、シリコン酸化窒化膜、あるいは、シリコン窒化膜は、
プラズマ気相反応性以外の方法で形成された膜であって
もよい。ただ、プラズマ気相反応法によれば、緻密な膜
が形成でき、しかも、低温で形成可能である等の利点が
ある。各膜の厚みは上記実施例の5000人に躍らず、
2000人程度0薄いものから例えば、6000人程度
0厚いもの等、適宜に選択すればよいことはいうまでも
ない。
This invention is not limited to the above embodiments. Elements formed on the semiconductor substrate include the above-mentioned bipolar transistor,
It may be a DMO5FET, C-MOS, or an IC made of various types of elements. Silicon oxide film, silicon oxynitride film, or silicon nitride film is
The film may be formed by a method other than plasma gas phase reactivity. However, the plasma vapor phase reaction method has advantages such as being able to form a dense film and also at a low temperature. The thickness of each membrane is not as high as 5000 in the above example,
Needless to say, the thickness may be selected as appropriate, such as from a thickness of about 2,000 thick to a thickness of about 6,000.

各3つの膜の積層順序も実施例に限定されない。The stacking order of each of the three films is also not limited to the example.

例えば、中間層にシリコン窒化膜、最上層にシリコン酸
化窒化膜を形成したり、最下層にシリコン酸化窒化膜、
中間層にシリコン酸化膜、最上層にシリコン窒化膜を形
成するようにしてもよい。
For example, a silicon nitride film may be formed in the middle layer, a silicon oxynitride film may be formed in the top layer, or a silicon oxynitride film may be formed in the bottom layer.
A silicon oxide film may be formed as an intermediate layer, and a silicon nitride film may be formed as an uppermost layer.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、請求項1.2記載の半導体装置の
パッシベーション膜は、シリコン酸化膜、シリコン酸化
窒化膜、シリコン窒化膜の3層からなるため、厚くても
熱処理の際にクラックが入り難く、しかも、膜自体に十
分な機能をもたせられる。請求項2記載の半導体装置で
は、パッシベーション膜を構成する3層の股が、それぞ
れ、パッシベーション膜がより優れたものとなるような
内部応力をもっている。そのため、請求項1.2記載の
半導体装置は信頼性が極めて高い。
As described above, the passivation film of the semiconductor device according to claim 1.2 is composed of three layers: a silicon oxide film, a silicon oxynitride film, and a silicon nitride film, so even if it is thick, cracks may occur during heat treatment. However, it is possible to provide the membrane itself with sufficient functionality. In the semiconductor device according to the second aspect of the present invention, each of the three layers constituting the passivation film has an internal stress that makes the passivation film more excellent. Therefore, the semiconductor device according to claim 1.2 has extremely high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる半導体装置におけるパッシ
ベーション膜まわりの構成をあられす概略断面図、第2
図は、このパッシベーション膜の形成に使われる膜形成
装置をあられす模式的説明図である。 l・・・半導体Mt&    2・・・バノシヘーシミ
Iン恢2a・・・シリコン酸化膜  2b・・・シリコ
ン酸化窒化膜  2C・・・シリコン窒化膜 代理人 弁理士  松 本 武 彦
FIG. 1 is a schematic cross-sectional view showing the structure around the passivation film in a semiconductor device according to the present invention, and FIG.
The figure is a schematic explanatory diagram showing a film forming apparatus used for forming this passivation film. l...Semiconductor Mt& 2...Silicon oxide film 2b...Silicon oxynitride film 2C...Silicon nitride film Agent Patent attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】 1 半導体素子が形成された基板を覆うパッシベーショ
ン膜を備えた半導体装置において、前記パッシベーショ
ン膜が、シリコン酸化膜、シリコン酸化窒化膜、および
、シリコン窒化膜の3層からなることを特徴とする半導
体装置。 2 パッシベーション膜において、シリコン酸化膜の内
部応力が約0.8〜1×10^9dyn/cm^2、シ
リコン酸化窒化膜の内部応力が約1〜2×10^9dy
n/cm^2、シリコン窒化膜の内部応力が約2〜4×
10^9dyn/cm^2である請求項1記載の半導体
装置。
[Scope of Claims] 1. In a semiconductor device including a passivation film covering a substrate on which a semiconductor element is formed, the passivation film is composed of three layers: a silicon oxide film, a silicon oxynitride film, and a silicon nitride film. A semiconductor device characterized by: 2 In the passivation film, the internal stress of the silicon oxide film is approximately 0.8 to 1 x 10^9 dyn/cm^2, and the internal stress of the silicon oxynitride film is approximately 1 to 2 x 10^9 dyn/cm^2.
n/cm^2, the internal stress of the silicon nitride film is approximately 2 to 4×
2. The semiconductor device according to claim 1, wherein the density is 10^9 dyn/cm^2.
JP26377788A 1988-10-19 1988-10-19 Semiconductor device Pending JPH02110930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26377788A JPH02110930A (en) 1988-10-19 1988-10-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26377788A JPH02110930A (en) 1988-10-19 1988-10-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02110930A true JPH02110930A (en) 1990-04-24

Family

ID=17394136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26377788A Pending JPH02110930A (en) 1988-10-19 1988-10-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02110930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643493B1 (en) * 2004-09-23 2006-11-10 삼성전자주식회사 Method for forming silicon oxynitride layer in semiconductor device and fabricating equipment thereof
KR100716904B1 (en) * 2005-12-28 2007-05-10 동부일렉트로닉스 주식회사 Passivation layer for semiconductor device and manufacturging method thereof
JP2010166081A (en) * 2010-03-25 2010-07-29 Renesas Electronics Corp Mis transistor
CN111512440A (en) * 2017-12-27 2020-08-07 美光科技公司 Transistors and arrays of elevationally extended memory cell strings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643493B1 (en) * 2004-09-23 2006-11-10 삼성전자주식회사 Method for forming silicon oxynitride layer in semiconductor device and fabricating equipment thereof
KR100716904B1 (en) * 2005-12-28 2007-05-10 동부일렉트로닉스 주식회사 Passivation layer for semiconductor device and manufacturging method thereof
JP2010166081A (en) * 2010-03-25 2010-07-29 Renesas Electronics Corp Mis transistor
CN111512440A (en) * 2017-12-27 2020-08-07 美光科技公司 Transistors and arrays of elevationally extended memory cell strings
JP2021509226A (en) * 2017-12-27 2021-03-18 マイクロン テクノロジー,インク. An array of transistors and strings extending in the height direction of the memory cells
CN111512440B (en) * 2017-12-27 2023-11-03 美光科技公司 Array of vertical, horizontal transistors, and vertically extending strings of memory cells

Similar Documents

Publication Publication Date Title
US3909332A (en) Bonding process for dielectric isolation of single crystal semiconductor structures
US6150258A (en) Plasma deposited fluorinated amorphous carbon films
US6153512A (en) Process to improve adhesion of HSQ to underlying materials
US6716702B2 (en) Method of forming flash memory having pre-interpoly dielectric treatment layer
JPH09307074A (en) Memory using dielectric capacitor element and its manufacture
JPH03173130A (en) Adhesion of high quality silicon dioxide by means of plasma reinforced chemical vapor adhesion method
JP2004165628A (en) Interface structure of oxide thin film and forming method therefor, and thin-film transistor
JPH02110930A (en) Semiconductor device
JPH0922884A (en) Manufacture of semiconductor element
US5788767A (en) Method for forming single sin layer as passivation film
JPH0297015A (en) Heat treatment method
JPH05129286A (en) Silicon nitride film
JPH01283872A (en) Manufacture of mis type semiconductor device
JPH01304735A (en) Method of forming protective film of semiconductor device
JPH06216118A (en) Manufacture of semiconductor device
JPS6210017B2 (en)
JPH0429319A (en) Semiconductor element and its manufacture
JPS62154643A (en) Manufacture of semiconductor device
JPS5821827A (en) Semiconductor device and manufacture thereof
JPS6234139B2 (en)
US6699796B2 (en) Single chip pad oxide layer growth process
JPH08130215A (en) Forming method of insulating film on polycrystalline semiconductor and manufacture of semiconductor device using the same
JPH02192402A (en) Formation of protective film for oxide superconducting material
JPH03125461A (en) Annealing method
JPS63275118A (en) Manufacture of semiconductor device