JPH01304735A - Method of forming protective film of semiconductor device - Google Patents
Method of forming protective film of semiconductor deviceInfo
- Publication number
- JPH01304735A JPH01304735A JP13588688A JP13588688A JPH01304735A JP H01304735 A JPH01304735 A JP H01304735A JP 13588688 A JP13588688 A JP 13588688A JP 13588688 A JP13588688 A JP 13588688A JP H01304735 A JPH01304735 A JP H01304735A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon nitride
- pressure
- nitride film
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001681 protective effect Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000004065 semiconductor Substances 0.000 title claims description 12
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 35
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 35
- 239000007789 gas Substances 0.000 abstract description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract description 3
- 238000007865 diluting Methods 0.000 abstract description 3
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 3
- 239000003513 alkali Substances 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229960002050 hydrofluoric acid Drugs 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の保護膜形成に関し、特に高信頼性
を有する半導体装置に必要な保護膜の形成法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the formation of a protective film for a semiconductor device, and particularly to a method for forming a protective film necessary for a highly reliable semiconductor device.
従来、アルミニウム配線等を含む半導体装置の保護膜と
してプラズマ化学気相成長法を用いたプラズマシリコン
窒化膜が一般に用いられている。2. Description of the Related Art Conventionally, a plasma silicon nitride film produced by plasma chemical vapor deposition has generally been used as a protective film for semiconductor devices including aluminum wiring and the like.
プラズマシリコン窒化膜は保護膜としての機械的強度、
耐湿性、アルカリイオンバリア性を有している。Plasma silicon nitride film has mechanical strength as a protective film,
It has moisture resistance and alkaline ion barrier properties.
上述した優れた保護膜特性を有するプラズマシリコン窒
化膜を得るためには膜を緻密にする必要がある。緻密な
膜を得るためには0.5Torr以下の比較的高真空な
圧力の下で膜形成を行なう必要がある。In order to obtain a plasma silicon nitride film having the above-mentioned excellent protective film properties, it is necessary to make the film dense. In order to obtain a dense film, it is necessary to form the film under a relatively high vacuum pressure of 0.5 Torr or less.
しかしながら0.5Torr以下の真空中で膜形成を行
なった場合にはプラズマ中で発生したイオンに下地表面
がたたかれ膜が緻密になる反面、下層の絶縁膜、アルミ
ニウム配線およびシリコン窒化膜自身がチャージアップ
して下層のデバイスの特性が変動するという問題がある
。特にMOSデバイスにおいては素子分離領域のリーク
電流の発生、バイポーラデバイスではベース抵抗の変動
等大きな問題となっている。また上述のような緻密なプ
ラズマシリコン窒化膜は非常に大きな圧縮応力を有して
いるため、アルミニウム配線のストレスマイグレーショ
ンの原因となっている。逆に低真空でプラズマシリコン
窒化膜を形成した場合にはイオンの発生量及びイオンの
エネルギーが低いために緻密な膜が得られず、保護膜と
しての特性を有しない。However, when film formation is performed in a vacuum of 0.5 Torr or less, the underlying surface is struck by ions generated in the plasma and the film becomes dense, but on the other hand, the underlying insulation film, aluminum wiring, and silicon nitride film themselves are There is a problem in that the characteristics of the underlying device change due to charge-up. Particularly in MOS devices, leakage current occurs in the element isolation region, and in bipolar devices, variations in base resistance are serious problems. Further, the dense plasma silicon nitride film as described above has a very large compressive stress, which causes stress migration in the aluminum wiring. Conversely, when a plasma silicon nitride film is formed in a low vacuum, the amount of ions generated and the energy of the ions are low, so a dense film cannot be obtained and does not have the characteristics as a protective film.
本発明の半導体装置の保護膜形成方法は、圧力の高い第
1の圧力条件下でのプラズマ成膜工程と続いての圧力の
低い第2の圧力条件下でのプラズマ成膜工程とを有して
いる。The method for forming a protective film for a semiconductor device of the present invention includes a plasma film forming step under a first high pressure condition and a subsequent plasma film forming step under a second low pressure condition. ing.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図(a)〜(c)は本発明の半導体装置の保護膜形
成方法の第1の実施例(保護膜がプラズマシリコン窒化
膜である。)を説明したものであり、保護膜の製造工程
順の配線部断面図である。半導体素子を形成した単結晶
シリコン基板101上に絶縁膜102を形成し、更にア
ルミニウム配線103をエツチングを用いて形成する(
第1図(a))。次に、第1図(b)に示すように第1
プラズマシリコン窒化膜104をプラズマ気相成長法で
5000人程度形成する。第1プラズマシリコン窒化膜
はモノシランガス(SiH4)を170(SCCM)、
アンモニアガス(NH3)を300(SCCM)、希釈
用窒素ガス(N2)を1780(SCCM)を流し全ガ
ス圧力を1.5Torrに設定後、放電電力50KHz
900Wを印加し、基板温度300℃の条件下で形成し
た。この条件下で形成したシリコン窒化膜の屈折率は1
.96であり、バッフアート弗酸に対するエッチレート
は約80人/分、組成はESCA分析値でSi:N=5
4:46である。また膜堆積速度は約400人/分であ
った。FIGS. 1(a) to 1(c) illustrate a first embodiment of the method for forming a protective film for a semiconductor device according to the present invention (the protective film is a plasma silicon nitride film). FIG. 3 is a cross-sectional view of the wiring portion in the order of steps. An insulating film 102 is formed on a single crystal silicon substrate 101 on which a semiconductor element is formed, and an aluminum wiring 103 is further formed using etching (
Figure 1(a)). Next, as shown in Fig. 1(b), the first
A plasma silicon nitride film 104 is formed by about 5,000 people by plasma vapor phase epitaxy. The first plasma silicon nitride film contains monosilane gas (SiH4) at 170 (SCCM),
After flowing ammonia gas (NH3) at 300 (SCCM) and diluting nitrogen gas (N2) at 1780 (SCCM) and setting the total gas pressure to 1.5 Torr, the discharge power was 50 KHz.
It was formed under the conditions that 900 W was applied and the substrate temperature was 300°C. The refractive index of the silicon nitride film formed under these conditions is 1
.. 96, the etch rate for buffered hydrofluoric acid is about 80 people/min, and the composition is Si:N=5 according to ESCA analysis value.
It was 4:46. The film deposition rate was about 400 people/min.
次に、第1図(C)に示すように、第1プラズマシリコ
ン窒化膜形成放電停止後、すみやかに全ガス圧力のみを
0.35Torrに設定し、放電電力50KHz900
Wを印加して第2プラズマシリコン窒化膜(105)を
5000人形成した。ガス流量、基板温度は第1プラズ
マシリコン窒化膜形成時と全く同じである。この条件下
で形成した第2プラズマシリコン窒化膜の屈折率は1.
99でありバッフアート弗酸に対するエッチレートは約
50人/分、組成はESCA分析値でSi:N=54:
46であり、第1プラズマシリコン窒化膜よりも密度が
大きく緻密な膜が形成されている。Next, as shown in FIG. 1(C), after the first plasma silicon nitride film forming discharge is stopped, only the total gas pressure is set to 0.35 Torr, and the discharge power is 50 KHz, 900 Torr.
A second plasma silicon nitride film (105) was formed by applying W to 5,000 people. The gas flow rate and substrate temperature are exactly the same as in the first plasma silicon nitride film formation. The refractive index of the second plasma silicon nitride film formed under these conditions is 1.
99, the etch rate for buffered hydrofluoric acid is about 50 people/min, and the composition is ESCA analysis value: Si:N=54:
46, and a denser and denser film is formed than the first plasma silicon nitride film.
この時の膜堆積速度は約350人/分である。以上の様
に保護膜を形成した半導体装置においては、102の絶
縁膜に発生する正電荷を1017個/dに抑えることが
でき、素子の特性変動が非常に小さくなる。102の絶
縁膜上に直接第2プラズマシリコン窒化膜の条件で膜形
成を行った場合は102の絶縁膜中には10 ” 〜1
0 +s個/cniの正電荷が発生し、素子の特性変動
が大きい。また、第1プラズマシリコン窒化膜の膜応力
は3X10’d y n 1cra (圧縮)で、第2
プラズマシリコン窒化膜(8x 10 ’d y n/
cni(圧縮))に比べて小さいため、本発明の形成方
法ではアルミニウム配線103に加わる応力も小さくな
りストレスマイグレーションの抑制効果がある。The film deposition rate at this time was approximately 350 people/min. In the semiconductor device in which the protective film is formed as described above, the number of positive charges generated in the 102 insulating films can be suppressed to 1017/d, and variations in the characteristics of the device are extremely small. When a film is formed directly on the insulating film 102 under the conditions of the second plasma silicon nitride film, the insulating film 102 contains 10" to 1
0+s/cni positive charges are generated, and the characteristics of the device vary greatly. Further, the film stress of the first plasma silicon nitride film is 3×10'd yn 1cra (compression), and the film stress of the second plasma silicon nitride film is 3
Plasma silicon nitride film (8x 10'd yn/
cni (compression)), the formation method of the present invention also reduces the stress applied to the aluminum wiring 103, which has the effect of suppressing stress migration.
更に、第1プラズマシリコン窒化膜の堆積速度は第2プ
ラズマシリコン窒化膜の堆積速度よりも大きいので、第
2プラズマシリコン窒化膜の条件で単相保護膜を形成す
るよりもスループットが向上する。もちろん緻密な第2
プラズマシリコン窒化膜を最終膜として用いているため
、保護膜特性上もまったく問題ない。Furthermore, since the deposition rate of the first plasma silicon nitride film is higher than the deposition rate of the second plasma silicon nitride film, the throughput is improved compared to forming a single-phase protective film under the conditions of the second plasma silicon nitride film. Of course the detailed second
Since a plasma silicon nitride film is used as the final film, there are no problems with the protective film properties.
第2図(a)〜(c)は本発明の第2の実施例であるM
OSデバイス上の保護膜製造工程順の断面図である。本
実施例では保護膜として酸素を含有したプラズマシリコ
ン窒化膜を用いている。FIGS. 2(a) to 2(c) show M which is a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the steps of manufacturing a protective film on an OS device. In this embodiment, a plasma silicon nitride film containing oxygen is used as the protective film.
第2図(a)はアルミニウム配線まで形成したMO8構
造の縦断面図である。201は単結晶シリコン基板、2
02はシリコン酸化膜、203はゲート電極となる多結
晶シリコン、204は層間絶縁膜、205はアルミニウ
ム配線である。FIG. 2(a) is a longitudinal cross-sectional view of an MO8 structure in which aluminum wiring is formed. 201 is a single crystal silicon substrate, 2
02 is a silicon oxide film, 203 is polycrystalline silicon serving as a gate electrode, 204 is an interlayer insulating film, and 205 is an aluminum wiring.
次に、第2図(b)に示すように第1プラズマシリコン
酸化窒化膜206をプラズマ気相成長法で5000人程
度形成する。第1プラズマシリコン酸化窒化膜はモノシ
ランガス(S i H4) ヲ170(SCCM)、ア
ンモニアガス(NH3)を300(SCCM)、亜酸化
窒素ガス(N20)を250(SCCM)、希釈用窒素
ガス(N2)を1530(SCCM)を流し、全ガス圧
力を1.2Torrに設定径放電電力50KHz 90
0Wを印加し、基板温度300℃の条件下で形成した。Next, as shown in FIG. 2(b), a first plasma silicon oxynitride film 206 is formed by about 5,000 people by plasma vapor deposition. The first plasma silicon oxynitride film was prepared by using monosilane gas (S i H4) at 170 (SCCM), ammonia gas (NH3) at 300 (SCCM), nitrous oxide gas (N20) at 250 (SCCM), and diluting nitrogen gas (N2). ) at 1530 (SCCM), total gas pressure set to 1.2 Torr, diameter discharge power 50KHz 90
It was formed under the conditions of applying 0 W and keeping the substrate temperature at 300°C.
この条件下で設計したシリコン酸化窒化膜は酸素を含有
し、屈折率1.79バツフアート弗酸に対するエッチレ
ートは約250人/分、組成はESCA分析値でSi
:N:0=45:32:23であり、その膜応力はsX
i O’dyn/ant (圧縮)と非常に小さい。次
に、第2図(c)に示すように第1プラズマシリコン酸
化窒化膜形成放電を停止せずにすみやかに全ガス圧力の
みを0.35Torrに設定し、放電電力を900Wに
保ち、第2プラズマシリコン窒化膜を5000人形成し
た。第2プラズマシリコン酸化窒化膜の屈折率は1.8
1バツフアート弗酸に対するエッチレートは約200人
/分、組成はESCA分析値でSi:N:0=45:3
2:23であり、第1シリコン酸化窒化膜よりも密度の
大きな酸素を含有した緻密なシリコン酸化窒化膜が形成
されている。The silicon oxynitride film designed under these conditions contains oxygen, has a refractive index of 1.79, an etch rate of about 250 people/min for buffered hydrofluoric acid, and a composition of Si based on ESCA analysis values.
:N:0=45:32:23, and the film stress is sX
i O'dyn/ant (compression) is very small. Next, as shown in FIG. 2(c), without stopping the first plasma silicon oxynitride film forming discharge, only the total gas pressure was set to 0.35 Torr, the discharge power was kept at 900 W, and the second 5,000 people formed plasma silicon nitride films. The refractive index of the second plasma silicon oxynitride film is 1.8
The etch rate for 1 buffer fluoric acid is approximately 200 people/min, and the composition is Si:N:0 = 45:3 according to ESCA analysis values.
2:23, and a dense silicon oxynitride film containing oxygen with a higher density than the first silicon oxynitride film is formed.
以上の様に保護膜を形成した半導体装置においては、ア
ルミニウム配線も大きなチャージアップをせずに、多結
晶シリコンを介したゲート酸化膜への影巴も非常に小さ
く、VTの変動も抑制される。また第2の実施例では酸
素を含有したシリコン酸化窒化膜を用いているために膜
応力が非常に小さく、第1の実施例よりもストレスマイ
グレーションの抑制効果が大きい。In the semiconductor device in which the protective film is formed as described above, the aluminum wiring does not have a large charge-up, the influence on the gate oxide film through the polycrystalline silicon is very small, and VT fluctuations are suppressed. . Further, in the second embodiment, since a silicon oxynitride film containing oxygen is used, the film stress is very small, and the effect of suppressing stress migration is greater than that of the first embodiment.
また、この他に弗素(F)を含有したシリコン窒化膜を
2層に用いた場合は半導体素子への水素の影唇の少ない
保護膜を形成することができる。In addition, when a silicon nitride film containing fluorine (F) is used as two layers, it is possible to form a protective film with less hydrogen shadow on the semiconductor element.
なお以上説明した本発明の圧力範囲として第1層目形成
の圧力を0.5Torr以上、第2層目形成の圧力を0
.ITorr以上0.5Torr以下にするのが有効で
ある。The pressure range of the present invention explained above is such that the pressure for forming the first layer is 0.5 Torr or more, and the pressure for forming the second layer is 0 Torr.
.. It is effective to set the temperature to ITorr or more and 0.5Torr or less.
以上説明したように、本発明はプラズマ気相成長法を用
いて、圧力の高い第1の圧力条件下で1層目の絶縁膜を
形成し、続いて圧力の低い第2の圧力条件下で2層目の
絶縁膜を形成することによって、下層の絶縁膜やアルミ
ニウム配線がチャージアップすることなく機械的強度、
耐湿性、アルカリイオンバリア性を有した保護膜を形成
できる効果がある。As explained above, the present invention uses plasma vapor phase epitaxy to form a first layer of insulating film under a first high pressure condition, and then under a second low pressure condition. By forming the second layer of insulating film, the mechanical strength is increased without charging up the underlying insulating film or aluminum wiring.
It has the effect of forming a protective film with moisture resistance and alkali ion barrier properties.
更には1層目に膜応力の小さな保護絶縁膜が形成される
ためアルミニウム配線のストレスマイグレーション抑制
効果がある。Furthermore, since a protective insulating film with low film stress is formed in the first layer, there is an effect of suppressing stress migration of aluminum wiring.
【図面の簡単な説明】
第1図(a)〜(c)は本発明の第1の実施例の製造工
程を示す断面図、第2図(a)〜(c)は本発明の第2
の実施例の製造工程を示す断面図である。
101・・・・・・シリコン基板、102・・・・・・
絶縁膜、103・・・・・・アルミニウム配線、104
・・・・・・第1プラズマシリコン窒化膜、105・・
・・・・第2プラズマシリコン窒化膜、201・・・・
・・シリコン基板、202・・・・・・シリコン酸化膜
、203・・・・・・多結晶シリコン、204・・・・
・・層間絶縁膜、205・・・・・・アルミニウム配線
、206・・・・・・第1プラズマシリコン窒化膜、2
07・・・・・・第2プラズマシリコン窒化膜代理人
弁理士 内 原 晋
万1121I
第2回[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to (c) are sectional views showing the manufacturing process of the first embodiment of the present invention, and FIGS. 2(a) to (c) are sectional views showing the manufacturing process of the first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of the example. 101...Silicon substrate, 102...
Insulating film, 103... Aluminum wiring, 104
...First plasma silicon nitride film, 105...
...Second plasma silicon nitride film, 201...
...Silicon substrate, 202...Silicon oxide film, 203...Polycrystalline silicon, 204...
...Interlayer insulating film, 205... Aluminum wiring, 206... First plasma silicon nitride film, 2
07...Second plasma silicon nitride film agent
Patent Attorney Shinman Uchihara 1121I 2nd session
Claims (1)
を形成する工程において、該絶縁膜の形成が第1の圧力
条件下および続いて第2の圧力条件下で形成される2層
膜であることを特徴とする半導体装置の保護膜形成方法
。In the step of forming a protective insulating film of a semiconductor device using a plasma vapor deposition method, the insulating film is a two-layer film formed under a first pressure condition and subsequently under a second pressure condition. A method for forming a protective film for a semiconductor device, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13588688A JPH01304735A (en) | 1988-06-01 | 1988-06-01 | Method of forming protective film of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13588688A JPH01304735A (en) | 1988-06-01 | 1988-06-01 | Method of forming protective film of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01304735A true JPH01304735A (en) | 1989-12-08 |
Family
ID=15162087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13588688A Pending JPH01304735A (en) | 1988-06-01 | 1988-06-01 | Method of forming protective film of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01304735A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930022542A (en) * | 1992-04-08 | 1993-11-24 | 사또오 후미오 | Semiconductor devices |
US5714408A (en) * | 1995-12-14 | 1998-02-03 | Denso Corporation | Method of forming silicon nitride with varied hydrogen concentration |
KR100976279B1 (en) * | 2007-01-22 | 2010-08-16 | 가부시끼가이샤 도시바 | Semiconductor device and manufacturing method thereof |
JP2012186375A (en) * | 2011-03-07 | 2012-09-27 | Tokyo Electron Ltd | Plasma processing method, film formation method, manufacturing method of semiconductor device, plasma processing device |
JP2015012021A (en) * | 2013-06-26 | 2015-01-19 | 東京エレクトロン株式会社 | Deposition method, storage medium and deposition device |
-
1988
- 1988-06-01 JP JP13588688A patent/JPH01304735A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930022542A (en) * | 1992-04-08 | 1993-11-24 | 사또오 후미오 | Semiconductor devices |
US5714408A (en) * | 1995-12-14 | 1998-02-03 | Denso Corporation | Method of forming silicon nitride with varied hydrogen concentration |
US6137156A (en) * | 1995-12-14 | 2000-10-24 | Denso Corporation | Semiconductor device employing silicon nitride layers with varied hydrogen concentration |
KR100271222B1 (en) * | 1995-12-14 | 2000-12-01 | 오카베 히로무 | Semiconductor device and method for manufacturing same |
KR100976279B1 (en) * | 2007-01-22 | 2010-08-16 | 가부시끼가이샤 도시바 | Semiconductor device and manufacturing method thereof |
JP2012186375A (en) * | 2011-03-07 | 2012-09-27 | Tokyo Electron Ltd | Plasma processing method, film formation method, manufacturing method of semiconductor device, plasma processing device |
JP2015012021A (en) * | 2013-06-26 | 2015-01-19 | 東京エレクトロン株式会社 | Deposition method, storage medium and deposition device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4901133A (en) | Multilayer semi-insulating film for hermetic wafer passivation and method for making same | |
US5851603A (en) | Method for making a plasma-enhanced chemical vapor deposited SiO2 Si3 N4 multilayer passivation layer for semiconductor applications | |
US6541370B1 (en) | Composite microelectronic dielectric layer with inhibited crack susceptibility | |
JP2755348B2 (en) | Passivated double dielectric system and method of making same | |
JPH03173130A (en) | Adhesion of high quality silicon dioxide by means of plasma reinforced chemical vapor adhesion method | |
JPH07130731A (en) | Semiconductor device and its manufacturing method and apparatus | |
US5168343A (en) | Semiconductor integrated circuit device having improved trench isolation | |
US7037808B2 (en) | Method of forming semiconductor constructions | |
JPH01304735A (en) | Method of forming protective film of semiconductor device | |
JPH0215630A (en) | Formation of protective film for semiconductor device | |
US20030181067A1 (en) | Method of fabricating semiconductor device having low dielectric constant insulator film | |
JPH0745610A (en) | Manufacture of semiconductor device | |
JPH01293624A (en) | Manufacture of integrated circuit | |
JPH0428231A (en) | Manufacture of semiconductor device | |
JP2976442B2 (en) | Method of forming insulating film | |
WO2022017108A1 (en) | Method for manufacturing semiconductor structure, and semiconductor structure | |
US20220020637A1 (en) | Method for preparing semiconductor structure and semiconductor structure | |
JPS58135645A (en) | Manufacture of semiconductor device | |
KR100380270B1 (en) | Method for manufacturing gate in semiconductor device | |
CN101383328A (en) | Passivation film of composite semiconductor silicon device and passivation generating process | |
JPH0273622A (en) | Manufacture of amorphous superlattice structure | |
JPS5984570A (en) | Manufacture of capacitor for semiconductor device | |
JPH06291253A (en) | Formation of dielectric film of electric charge storage section of semiconductor element | |
JPH02138738A (en) | Manufacture of semiconductor device | |
JPH0296336A (en) | Formation of silicon nitride film |