JPH0296336A - Formation of silicon nitride film - Google Patents

Formation of silicon nitride film

Info

Publication number
JPH0296336A
JPH0296336A JP24738688A JP24738688A JPH0296336A JP H0296336 A JPH0296336 A JP H0296336A JP 24738688 A JP24738688 A JP 24738688A JP 24738688 A JP24738688 A JP 24738688A JP H0296336 A JPH0296336 A JP H0296336A
Authority
JP
Japan
Prior art keywords
gas
film
substrate
sin film
si2f6
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24738688A
Other languages
Japanese (ja)
Inventor
Masaki Yoshimaru
正樹 吉丸
Masaaki Shimokawa
下川 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP24738688A priority Critical patent/JPH0296336A/en
Publication of JPH0296336A publication Critical patent/JPH0296336A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an SiN film with high reliability and excellent wet-resistance by performing plasma chemical vapor phase growth by introducing into a reaction container silane gas, disilicon hexafluoride gas, hydrogen gas, and nitrogen gas as main reaction gases and subjecting them to glow discharge. CONSTITUTION:A substrate 11 is introduced into a reaction container, and SiH4 gas or Si2F6 gas, H2 gas, and N2 gas are introduced into the reaction container as main reaction gases and subjected to plasma CVD to form an SiN film 113 on the substrate 11. Accordingly, the SiN film 113 excellent in thermal resistance can be obtained at a high speed of film formation. Hereby, this is applicable as the final protective film for a semiconductor device to improve the reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体装置の最終保護膜として用いられる
シリコン窒化膜を、プラズマ化学気相成長(以下CVD
という)法により形成する方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a silicon nitride film that is used as a final protective film for semiconductor devices by plasma chemical vapor deposition (hereinafter referred to as CVD).
It is related to the method of forming by the method called ).

(従来の技術) 一般に、半導体装置の最終保護膜としてはシリコン窒化
膜(以下SiN膜という)が用いられている。このSi
N膜は、文献アイ・イー・デイ−・エム(IEDM) 
、1984年12月9〜12日、第630〜633頁に
開示されているように、SiH4(シラン)ガスとNH
3(アンモニア)ガス又はSiH4ガスとN2(窒素)
ガスを用いてプラズマCVD法で形成されている。しか
しこれらのガスを用いて得られたSiN膜は、膜中に多
量の水素を含んでいる。この水素は下地である半導体装
置のゲート酸化膜中にトラップを発生させる原因となる
。そのため半導体装置の電気特性が電気的ストレスによ
り変動してしまう。さらに、この文献には、この電気特
性の変動を防ぐためにS’IF4(4フッ化ケイ素)ガ
スとN2ガスと82(水素)ガス、又は5t2F6(6
フッ化2ケイ素)ガスとN2ガスとN2ガスとを用いた
プラズマCVD法で形成されたSiN膜が使われている
。このSiN膜は、膜中にフッ素を含んでおり、このフ
ッ素が膜中の水素を固定化するためと考えられている。
(Prior Art) Generally, a silicon nitride film (hereinafter referred to as SiN film) is used as the final protective film of a semiconductor device. This Si
The N film is described in the literature IEDM (IEDM)
, December 9-12, 1984, pages 630-633, SiH4 (silane) gas and NH
3 (ammonia) gas or SiH4 gas and N2 (nitrogen)
It is formed by plasma CVD using gas. However, SiN films obtained using these gases contain a large amount of hydrogen in the film. This hydrogen causes traps to be generated in the underlying gate oxide film of the semiconductor device. Therefore, the electrical characteristics of the semiconductor device vary due to electrical stress. Furthermore, this document describes the use of S'IF4 (silicon tetrafluoride) gas, N2 gas, and 82 (hydrogen) gas, or 5t2F6 (6
An SiN film formed by a plasma CVD method using a disilicone fluoride gas, N2 gas, and N2 gas is used. This SiN film contains fluorine, and it is thought that this fluorine fixes hydrogen in the film.

(発明が解決しようとする課題) しかし、この5LNII!のフッ素の含有量が多いと膜
の耐湿性が悪化し最終保護膜としての機能を果たさなく
なる。膜の耐湿性を示す指標として(緩衝フッ酸)のエ
ツチングレートがある。、5tF4又はSi2F6を使
用した膜はSiH4を使用した膜に比べ10倍以上速い
エツチングレートを示す。
(Problem to be solved by the invention) However, this 5LNII! If the fluorine content is high, the moisture resistance of the film will deteriorate and it will no longer function as a final protective film. Etching rate (buffered hydrofluoric acid) is an indicator of the moisture resistance of a film. , 5tF4 or Si2F6 exhibits an etching rate that is more than 10 times faster than a film using SiH4.

エツチングレートが速いということは耐湿的に弱いとい
える。またSi2F6とN2とH2とを使用し形成した
SiN膜に加湿試験を施すと水分とSiN膜が反応して
しまい短時間のうちにSi02膜となってしまう、この
ことから、もSi2FとN2とH2とを用いて形成した
膜が耐湿的に弱いことがわかる。
A high etching rate means that the material has poor moisture resistance. Furthermore, when a humidification test is performed on a SiN film formed using Si2F6, N2, and H2, the water reacts with the SiN film and it becomes a Si02 film within a short time. It can be seen that the film formed using H2 is weak in moisture resistance.

以上のようにSiF4及びSi2F6を使用しプラズマ
CVDで形成したフッ素を含むSiN膜は耐湿性に乏し
く水分が侵入しやすいという課題があった。
As described above, the fluorine-containing SiN film formed by plasma CVD using SiF4 and Si2F6 has a problem of poor moisture resistance and easy penetration of moisture.

この発明の目的は、耐湿性に優れた信頼性の高いSiN
膜の形成方法を提供することにある。
The purpose of this invention is to produce highly reliable SiN with excellent moisture resistance.
An object of the present invention is to provide a method for forming a film.

(課題を解決するための手段) この発明は前記課題を解決するために、SiN膜を形成
するに際し、基体を反応容器内に導入し、SiH4ガス
又はSi2H6ガスとSi2F6ガスとN2ガスとN2
ガスとを主反応ガスとして前記反応容器内に導入し、グ
ロー放電させてプラズマCVDを行うことにより、前記
基体上にSiN膜を形成するものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention, when forming a SiN film, introduces a substrate into a reaction vessel, and mixes SiH4 gas or Si2H6 gas, Si2F6 gas, N2 gas, and N2 gas.
A SiN film is formed on the substrate by introducing a gas as a main reaction gas into the reaction vessel and performing plasma CVD by causing glow discharge.

(作用) 本発明によれば、以上のように主反応ガスとしてSi2
F6ガスとN2ガスとN2ガスとに加えSi−H4また
はSi2H6ガスを用いてプラズマCVD法により、基
体上にSiN膜を形成しているので、大きい膜形成速度
で、耐湿性に優れなSiN膜を得ることができる。
(Function) According to the present invention, as described above, Si2 is used as the main reaction gas.
Since the SiN film is formed on the substrate by the plasma CVD method using F6 gas, N2 gas, N2 gas, and Si-H4 or Si2H6 gas, the SiN film can be formed at a high film formation rate and has excellent moisture resistance. can be obtained.

(実施例) 第1図(a)〜(c)は本発明の詳細な説明するための
半導体素子の断面図、第2図(a)及び(b)はSiN
膜の赤外線吸収ピークの変化を示す図であり、以下図面
を用いて説明する。
(Example) FIGS. 1(a) to (c) are cross-sectional views of a semiconductor element for explaining the present invention in detail, and FIGS. 2(a) and (b) are SiN
It is a diagram showing changes in the infrared absorption peak of a film, and will be explained below using the drawings.

まず、第1図(a)は、シリコン基板(P型、4〜6Ω
・cm)11上に酸化膜による素子分離領域12、素子
能動領域13、トランジスタ部14、容量部15、配線
16、N十拡散領戚17及びシリコン酸化膜18等を形
成し、次にBPSG (ボロンリンシリケイトガラス)
等を使用した眉間絶縁!19の表面平滑化を行ったあと
の素子断面図である。ここで、トランジスタ部14、容
量部15及び配線16は、この場合多結晶SiとW −
S i等の2Mm造であることを示している。
First, Fig. 1(a) shows a silicon substrate (P type, 4-6Ω
・On the oxide film 11, an element isolation region 12, an element active region 13, a transistor section 14, a capacitor section 15, a wiring 16, an N diffusion region 17, a silicon oxide film 18, etc. are formed, and then BPSG ( Boron phosphorus silicate glass)
Insulation between the eyebrows using etc.! 19 is a cross-sectional view of the element after surface smoothing. Here, the transistor section 14, the capacitor section 15, and the wiring 16 are made of polycrystalline Si and W-
It shows that it is made of 2Mm such as Si.

次に第1図(b)に示すように、ホトリソ及びエツチン
グ工程によりシリコン酸化膜18及び層間絶縁膜19を
選択的に除去し、配線16やN+拡散領域17と上層配
線との電気的接続を得るためのコンタクトホール110
を形成する0次に全面に上層配線材、たとえばシリコン
を含有したアルミニウムをスパッタ法により厚さ600
0〜8000人で形成し、その後ホトリソ及びエツチン
グ工程によりこのアルミニウムを選択的にエツチング除
去し、上層配線111を形成する。
Next, as shown in FIG. 1(b), the silicon oxide film 18 and the interlayer insulating film 19 are selectively removed by photolithography and etching steps, and the electrical connection between the wiring 16 and the N+ diffusion region 17 and the upper layer wiring is established. contact hole 110 for obtaining
Next, an upper layer wiring material such as aluminum containing silicon is applied to the entire surface by sputtering to a thickness of 600 mm.
The aluminum layer is formed by 0 to 8,000 people, and then the aluminum is selectively etched away by a photolithography and etching process to form the upper layer wiring 111.

次に第1図(c)に示すように全面にCVD法によりP
SG(リンシリケイトガラス)膜112を形成する。こ
のときPSG膜112中のリン濃度はH3−12wt%
くP2O5)であり膜厚は1000人〜5000人であ
る。次に全面に最終保護膜としてプラズマCVDによる
SiN膜113を厚さ2000人〜10000人で形成
する。このときSiN膜の形成温度は200″C〜45
0’C1好ましくは300″Cとする。またプラズマ発
生用の高周波としては、この場合400 KHzを使用
したが13.56M■2等の他の周波数でも問題はない
0反応ガスとしてはSi2F6ガスとSiH4ガスとH
2とN2とを内圧0.2〜L 5Torr、好ましくは
Q、 3Torrとなるように反応容器内に導入した。
Next, as shown in Fig. 1(c), the entire surface is coated with P by CVD method.
An SG (phosphosilicate glass) film 112 is formed. At this time, the phosphorus concentration in the PSG film 112 is H3-12wt%
(P2O5) and the film thickness is 1000 to 5000. Next, an SiN film 113 is formed as a final protective film over the entire surface by plasma CVD to a thickness of 2,000 to 10,000 layers. At this time, the temperature for forming the SiN film is 200″C to 45°C.
0'C1 is preferably 300''C. In this case, 400 KHz was used as the high frequency for plasma generation, but there is no problem with other frequencies such as 13.56M2.0 As the reaction gas, Si2F6 gas and SiH4 gas and H
2 and N2 were introduced into the reaction vessel so that the internal pressure was 0.2 to 5 Torr, preferably 3 Torr.

このときSi2F6流量とSiH4流量の比率はSi2
F6/SiH4比を10〜90%とする。またH2の流
量はSi2F6の10〜30倍程度、またN2の流量ハ
S i Ha )ニー S i2 F a流量の和の3
0〜50倍である。
At this time, the ratio of Si2F6 flow rate to SiH4 flow rate is Si2
The F6/SiH4 ratio is set to 10 to 90%. In addition, the flow rate of H2 is about 10 to 30 times that of Si2F6, and the flow rate of N2 is 3 times the sum of the flow rates of Si2F6
0 to 50 times.

以上示しなSiNMの形成方法によれば、素子の電気特
性に悪影響を与えず、耐湿性の強い最終保護膜を速い膜
形成速度で得ることができる。以下その膜特性について
述べる。第2図(a)及び(b)にそれぞれ、従来技術
によるSi2F6とN2とN2とを使用して形成したS
iN膜と、本発明によるSi2F6とSiH4とN2と
N2とを使用して形成したSiN膜との加湿試験(12
0°C,100%R,H,)での赤外吸収ピークの変化
を示す。
According to the SiNM formation method described above, a final protective film with strong moisture resistance can be obtained at a high film formation rate without adversely affecting the electrical characteristics of the device. The film properties will be described below. FIGS. 2(a) and (b) show S formed using Si2F6, N2, and N2 according to the prior art, respectively.
Humidification test (12
It shows the change in infrared absorption peak at 0°C, 100% R, H,).

横軸は波数を示し、縦軸は吸光度(非定量的)を示して
いる0点線は加湿前の特性であり、実線は加湿後のもの
である。第2図(a)に示すようにシリコンソースガス
としてSi2F6のみを使用したものは16時間の加湿
試験でS i−0ビークが急増し、水分の侵入により膜
がSiNからSiOに変化してしまう。一方、シリコン
ソースガスとして本発明のようにSi2F6とSiH4
を使用したものは第2図に示すように加湿試験256時
間後でも赤外吸収ピークはほとんど変化せず膜の耐湿性
が十分に強いことがわかる。
The horizontal axis shows the wave number, and the vertical axis shows the absorbance (non-quantitative). The 0-dot line is the characteristic before humidification, and the solid line is the characteristic after humidification. As shown in Figure 2 (a), in the case where only Si2F6 was used as the silicon source gas, the Si-0 peak increased rapidly during the 16-hour humidification test, and the film changed from SiN to SiO due to moisture intrusion. . On the other hand, as the silicon source gas, Si2F6 and SiH4 are used as the present invention.
As shown in FIG. 2, the infrared absorption peak of the film using the above film hardly changed even after 256 hours of humidification test, indicating that the film had sufficiently strong moisture resistance.

また、本発明はSi2F6ガスを用いているのでSiF
4ガスに比べて解離度が大きく、膜形成速度が大きいと
いう利点がある。更に、本発明によるSiN膜を使用し
た素子のストレスによる電気特性の変動がほとんどない
ことを確認している。
Furthermore, since the present invention uses Si2F6 gas, SiF
It has the advantage of having a higher degree of dissociation and a faster film formation rate than the four gases. Furthermore, it has been confirmed that there is almost no change in electrical characteristics due to stress in the device using the SiN film according to the present invention.

(発明の効果) 以上詳細に説明したように、本発明によれば主反応ガス
としてSi2F6ガスとN2ガスとN2ガスとに加えS
iH4またはSi2H6ガスを用いてプラズマCVD法
により、基体上にSiN膜を形成しているので、耐湿性
に優れたSiN膜を大きい膜形成速度で得ることができ
る。従って、半導体素子の最終保護膜として適用し、半
導体素子の信頼性の向上が期待できる。
(Effects of the Invention) As explained in detail above, according to the present invention, in addition to Si2F6 gas, N2 gas, and N2 gas, S
Since the SiN film is formed on the substrate by plasma CVD using iH4 or Si2H6 gas, a SiN film with excellent moisture resistance can be obtained at a high film formation rate. Therefore, it can be applied as a final protective film for semiconductor devices, and can be expected to improve the reliability of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の詳細な説明するための
半導体素子の断面図であり、第2図(a)及び(b)は
赤外吸収ピークの変化を示す図である。 11・・・基板、12・・・素子分離領域、13・・・
素子能動領域、14・・・1−ランジスタ部、15・・
・容量部、16・・・配線、17・・・N十拡散領域、
18・・・シリコン酸化膜、1つ・・・層間絶縁膜、1
10・・・コンタクトホール、111・・・上層配線、
112・・・PSG膜、113・・・SiNJF! !7°層間r>P!、t&JIL  1to:コンタク
ト/L−L  fN::tノvat4  tt2:ps
伺又1f3;ふN践 ¥)邑うンリ ”t?LEjAij八σ)の力(ジへジ
V手ンテ 釣 訪迂カ し」fi圀 手続補正書(方式) 平成元年 1月19日
FIGS. 1(a) to (c) are cross-sectional views of a semiconductor element for explaining the present invention in detail, and FIGS. 2(a) and (b) are diagrams showing changes in infrared absorption peaks. . 11... Substrate, 12... Element isolation region, 13...
Element active area, 14...1-transistor section, 15...
・Capacitive part, 16... Wiring, 17... N+ diffusion region,
18...Silicon oxide film, 1...Interlayer insulating film, 1
10... Contact hole, 111... Upper layer wiring,
112...PSG film, 113...SiNJF! ! 7° interlayer r>P! ,t&JIL 1to:Contact/L-L fN::tnovat4 tt2:ps
Ikimata 1f3;fuN practice¥) Eununri "t?LEjAij8σ)'s power (Jiheji V handte fishing visit round ka shi" fi area procedural amendment (method) January 19, 1989

Claims (1)

【特許請求の範囲】[Claims]  基体を反応容器内に導入し、シランガス(SiH_4
又はSi_2H_6)と6フッ化2ケイ素ガス(Si_
2F_6)と水素ガス(H_2)と窒素ガス(N_2)
とを主反応ガスとして前記反応容器内に導入し、グロー
放電させてプラズマ化学気相成長を行うことにより、前
記基体上にシリコン窒化膜を形成することを特徴とする
シリコン窒化膜の形成方法。
The substrate was introduced into the reaction vessel, and silane gas (SiH_4
or Si_2H_6) and disilicon hexafluoride gas (Si_
2F_6), hydrogen gas (H_2) and nitrogen gas (N_2)
A method for forming a silicon nitride film, characterized in that a silicon nitride film is formed on the substrate by introducing into the reaction vessel as a main reaction gas and performing glow discharge to perform plasma chemical vapor deposition.
JP24738688A 1988-10-03 1988-10-03 Formation of silicon nitride film Pending JPH0296336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24738688A JPH0296336A (en) 1988-10-03 1988-10-03 Formation of silicon nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24738688A JPH0296336A (en) 1988-10-03 1988-10-03 Formation of silicon nitride film

Publications (1)

Publication Number Publication Date
JPH0296336A true JPH0296336A (en) 1990-04-09

Family

ID=17162658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24738688A Pending JPH0296336A (en) 1988-10-03 1988-10-03 Formation of silicon nitride film

Country Status (1)

Country Link
JP (1) JPH0296336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204138A (en) * 1991-12-24 1993-04-20 International Business Machines Corporation Plasma enhanced CVD process for fluorinated silicon nitride films
US6929831B2 (en) 2001-09-15 2005-08-16 Trikon Holdings Limited Methods of forming nitride films
JP2009046036A (en) * 2007-08-21 2009-03-05 Daikyo Nishikawa Kk Scuff plate mounting structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204138A (en) * 1991-12-24 1993-04-20 International Business Machines Corporation Plasma enhanced CVD process for fluorinated silicon nitride films
US6929831B2 (en) 2001-09-15 2005-08-16 Trikon Holdings Limited Methods of forming nitride films
JP2009046036A (en) * 2007-08-21 2009-03-05 Daikyo Nishikawa Kk Scuff plate mounting structure

Similar Documents

Publication Publication Date Title
US6225228B1 (en) Silicon oxide co-deposition/etching process
US5217567A (en) Selective etching process for boron nitride films
JP3148183B2 (en) Method for manufacturing semiconductor device
JPH05259297A (en) Manufacture of semiconductor device
US5578530A (en) Manufacturing method of semiconductor device which includes forming a silicon nitride layer using a Si, N, and F containing compound
JPH0296336A (en) Formation of silicon nitride film
TW200416937A (en) Semiconductor manufacturing device and the manufacturing method for the same
JP2737478B2 (en) Method for forming surface protection film of semiconductor device
JP2000307004A (en) Silicon nitride composite hdp/cvd process
JPH01304735A (en) Method of forming protective film of semiconductor device
JPS6313343B2 (en)
JPH04294532A (en) Method for forming tungsten silicide film
JP2830604B2 (en) Method for manufacturing semiconductor device
JPH0215630A (en) Formation of protective film for semiconductor device
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JPH05335299A (en) Fabrication of semiconductor device
JPH08167650A (en) Insulation film structure and its manufacture
JPS6210017B2 (en)
JPH09115901A (en) Forming method for sinx/psg laminated construction
JPS60244057A (en) Semiconductor device
JPS6352419A (en) Manufacture of insulating film
JP2000353740A (en) Formation of interlayer insulating film and semiconductor device
JPH03159124A (en) Manufacture of semiconductor device
JPH08335579A (en) Silicon-based oxide film containing fluorine and its preparation
JPS5994830A (en) Formation of surface protection film of semiconductor element