JPH0215630A - Formation of protective film for semiconductor device - Google Patents

Formation of protective film for semiconductor device

Info

Publication number
JPH0215630A
JPH0215630A JP16570588A JP16570588A JPH0215630A JP H0215630 A JPH0215630 A JP H0215630A JP 16570588 A JP16570588 A JP 16570588A JP 16570588 A JP16570588 A JP 16570588A JP H0215630 A JPH0215630 A JP H0215630A
Authority
JP
Japan
Prior art keywords
film
plasma
formation
discharge
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16570588A
Other languages
Japanese (ja)
Inventor
Hideki Gomi
五味 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16570588A priority Critical patent/JPH0215630A/en
Publication of JPH0215630A publication Critical patent/JPH0215630A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the improvement of characteristics to display as a protective film by a method wherein a first plasma film formation process using a high discharge frequency and a second plasma film formation process using a low discharge frequency are provided in the formation method of the protective film for a semiconductor device. CONSTITUTION:A first plasma Si nitride film 104 is formed on the condition that monosilane gas (SiH4), ammonia gas (NH3) and nitrogen gas (N2) for dilution use are respectively flowed by 170 (SCCM), 300 (SCCM) and 1780 (SCCM) and after a total gas pressure is set at 0.35Torr, a discharge power of 900W is applied at a frequency of 13.56MHz and a substrate temperature is 300 deg.C. Then, after the discharge is stopped, a discharge power of 900W is applied at a discharge frequency of 50KHz using another power supply and a second plasma Si nitride film 105 is formed in a thickness of 5000Angstrom . A gas flow rate, a pressure and a substrate temperature at the time of formation of the film 105 are quite identical with those at the time of formation of the film 104. The refractive index of the film 105 formed on these conditions is 1.99, the density of the film 105 is larger than that of the film 104 and a dense film is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の保護膜形成に関し、特に高信頼性
を有する半導体装置に必要な保護膜の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the formation of a protective film for a semiconductor device, and particularly to a method for forming a protective film necessary for a highly reliable semiconductor device.

〔従来の技術〕[Conventional technology]

従来、アルミニウム配線等を含む半導体装置の保護膜と
して、プラズマ化学気相成長法を用いたプラズマシリコ
ン窒化膜が一般に用いられている。
2. Description of the Related Art Conventionally, a plasma silicon nitride film produced by plasma chemical vapor deposition has generally been used as a protective film for semiconductor devices including aluminum wiring and the like.

プラズマシリコン窒化膜は保護膜としての機械的強度、
耐湿性、アルカリイオンバリア性を有している。
Plasma silicon nitride film has mechanical strength as a protective film,
It has moisture resistance and alkaline ion barrier properties.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した優れた保護膜特性を有するプラズマシリコン窒
化膜を得るためには膜を緻密にする必要がある。緻密な
膜を得るためには、50KHz。
In order to obtain a plasma silicon nitride film having the above-mentioned excellent protective film properties, it is necessary to make the film dense. 50KHz to obtain a dense film.

400KHzなどの比較的低周波数で膜形成を行なう必
要がある。
It is necessary to perform film formation at a relatively low frequency, such as 400 KHz.

しかしながら50KHzや400KHzの低周波数で膜
形成を行なった場合には、プラズマ中で発生したイオン
に下地表面がたたかれ、膜が緻密になる反面、下層の絶
縁膜、アルミニウム配線およびシリコン窒化膜自身がチ
ャージアップして、下層のデバイスの特性が変動すると
いう問題がある。特にMOSデバイスにおいては素子分
離領域のリーク電流の発生、バイポーラデバイスではベ
ース抵抗の変動等、大きな問題となっている。
However, when film formation is performed at a low frequency of 50KHz or 400KHz, the underlying surface is struck by ions generated in the plasma, making the film denser, but at the same time, the underlying insulation film, aluminum wiring, and silicon nitride film themselves are There is a problem in that the characteristics of the underlying device change due to the charge-up. Particularly in MOS devices, leakage current occurs in the element isolation region, and in bipolar devices, variations in base resistance are serious problems.

また上述の様な、緻密なプラズマシリコン窒化膜は非常
に大きな圧縮応力を有しているため、アルミニウム配線
のストレスマイグレーションの原因となっている。
Furthermore, the dense plasma silicon nitride film as described above has a very large compressive stress, which causes stress migration in the aluminum wiring.

逆に13.56MHzの様な高周波数でプラズマシリコ
ン窒化膜を形成した場合には、イオンの発生量及びイオ
ンのエネルギーが低いために、緻密な膜が得られず、保
護膜としての特性は劣る。
On the other hand, when a plasma silicon nitride film is formed at a high frequency such as 13.56 MHz, the amount of ions generated and the energy of the ions are low, so a dense film cannot be obtained and its properties as a protective film are poor. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の保護膜形成方法は、高い放電周波
数を用いた第1のプラズマ成膜工程と、低い放電周波数
を用いた第2のプラズマ成膜工程とを有している。
The method of forming a protective film for a semiconductor device according to the present invention includes a first plasma film forming step using a high discharge frequency and a second plasma film forming step using a low discharge frequency.

この保護膜としては、ケイ素(Si)、窒素(N)。This protective film includes silicon (Si) and nitrogen (N).

水素(H)によって形成されている絶縁膜や、ケイ素(
Si)、窒素(N)、酸素(0)、水素(H)によって
形成されている絶縁膜、そしてケイ素(Si)、窒素(
N)、弗素(F)、水素(H)によって形成されている
絶縁膜を用いることができる。
Insulating films formed of hydrogen (H) and silicon (
An insulating film formed of silicon (Si), nitrogen (N), oxygen (0), and hydrogen (H), and an insulating film formed of silicon (Si), nitrogen (
An insulating film formed of N), fluorine (F), or hydrogen (H) can be used.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の半導体装置の保護膜形成方法の第1の
実施例(保護膜がプラズマシリコン窒化膜である)を説
明するためのものであり、保護膜の製造工程順の配線部
断面図である。
FIG. 1 is for explaining a first embodiment of the method for forming a protective film for a semiconductor device according to the present invention (the protective film is a plasma silicon nitride film), and shows a cross section of a wiring part in the order of the manufacturing process of the protective film. It is a diagram.

まず、半導体素子を形成した単結晶シリコン基板101
上に絶縁膜102を形成し、更にアルミニウム配線10
3をエツチングを用いて形成する(第1図(a))。
First, a single crystal silicon substrate 101 on which a semiconductor element is formed
An insulating film 102 is formed thereon, and an aluminum wiring 10 is further formed on the insulating film 102.
3 is formed using etching (FIG. 1(a)).

次に第1プラズマシリコン窒化膜104をプラズマ気相
成長法で500o人程度形成する(第1図(b))。第
1プラズマシリコン窒化膜104はモノシランガフ、 
(S i H4)を170 (SCCM) 77モ:、
7ガス(NH3)を300 (SCCM)、希釈用窒素
ガス(N2)を1780 (SCCM)を流し、全ガス
圧力を0.35Torrに設定後、周波数13.56M
Hzで放電電力900wを印加し、基板温度300℃の
条件下で形成した。この条件下で形成したシリコン窒化
膜の屈折率は1.98であり、バッフアート弗酸に対す
るエツチングレートは約100人/分、組成はE S 
CA(ElectronSpectroscopy f
or Chemical Analysis)を用いた
分析値でSi:N=54:46である。また堆積速度は
約200人/分であった。
Next, a first plasma silicon nitride film 104 of about 500 layers is formed by plasma vapor deposition (FIG. 1(b)). The first plasma silicon nitride film 104 is a monosilane guff,
(S i H4) 170 (SCCM) 77Mo:,
After flowing 7 gas (NH3) at 300 (SCCM) and diluting nitrogen gas (N2) at 1780 (SCCM) and setting the total gas pressure to 0.35 Torr, the frequency was 13.56 M.
A discharge power of 900 W was applied at Hz and a substrate temperature of 300° C. was formed. The refractive index of the silicon nitride film formed under these conditions is 1.98, the etching rate for buffered hydrofluoric acid is approximately 100 people/min, and the composition is E S
CA (Electron Spectroscopy f
Si:N=54:46 according to an analysis value using a method (or Chemical Analysis). The deposition rate was about 200 people/min.

次に第1のプラズマシリコン窒化膜104を形成し、放
電停止後、別電源を用いて放電周波数50KHz、放電
電力900wを印加し、第2プラズマシリコン窒化膜1
05を5000人形成した(第1図(C))。第2プラ
ズマシリコン窒化膜105の形成のためのガス流量、圧
力、基板温度は第1プラズマシリコン窒化膜104の形
成時と全く同じである。この条件下で形成した第2プラ
ズマシリコン窒化膜105の屈折率は1.99であり、
バッフアート弗酸に対するエツチングレートは約50人
/分、組成はESCA分析値でSi:N=54:46で
あり、第1プラズマシリコン窒化膜104よりも密度が
大きく緻密な膜が形成されている。
Next, a first plasma silicon nitride film 104 is formed, and after stopping the discharge, a discharge frequency of 50 KHz and a discharge power of 900 W are applied using a separate power source, and a second plasma silicon nitride film 1 is formed.
05 was formed for 5,000 people (Figure 1 (C)). The gas flow rate, pressure, and substrate temperature for forming the second plasma silicon nitride film 105 are exactly the same as those for forming the first plasma silicon nitride film 104. The refractive index of the second plasma silicon nitride film 105 formed under these conditions is 1.99.
The etching rate for buffered hydrofluoric acid is about 50 people/min, the composition is Si:N=54:46 according to ESCA analysis values, and a denser and more dense film is formed than the first plasma silicon nitride film 104. .

この時の膜堆積速度は約350人/分である。The film deposition rate at this time was about 350 people/min.

以上の様に保護膜を形成した半導体装置においては、絶
縁膜102に発生する正電荷を1016〜1017個/
C♂に抑えることができ、素子の特性変動が非常に小さ
くなる。絶縁膜102上に直接第2プラズマシリコン窒
化膜105の放電周波数で膜形成を行った場合には、絶
縁膜102中には1018〜1019個/ cfの正電
荷が発生し、素子の特性変動が大きい。
In the semiconductor device in which the protective film is formed as described above, the number of positive charges generated in the insulating film 102 is 1016 to 1017/
C♂ can be suppressed, and the variation in device characteristics becomes extremely small. When a film is formed directly on the insulating film 102 at the discharge frequency of the second plasma silicon nitride film 105, 1018 to 1019 positive charges/cf are generated in the insulating film 102, causing variations in device characteristics. big.

また第1のプラズマシリコン窒化膜104の膜応力は8
 X 10 ”dyn/cut (圧縮)で第2プラズ
マシリコン窒化膜105 (8X 109dyn/cJ
 (圧縮))に比べて小さいため、本発明の形成方法を
用いることにより、アルミニウム配線103に加わる応
力も小さくなり、ストレスマイグレーションの抑制効果
がある。
The film stress of the first plasma silicon nitride film 104 is 8
The second plasma silicon nitride film 105 (8X 109 dyn/cJ
(compression)), by using the formation method of the present invention, the stress applied to the aluminum wiring 103 is also reduced, which has the effect of suppressing stress migration.

もちろん緻密な第2プラズマシリコン窒化膜105を最
終膜として用いているため、保護膜特性上もまったく問
題ない。
Of course, since the dense second plasma silicon nitride film 105 is used as the final film, there is no problem in terms of protective film characteristics.

第2図は本発明の第2の実施例であるMOSデバイス上
の保護膜製造工程順の断面図である。本実施例では保護
膜として酸素を含有したプラズマシリコン酸化膜を用い
ている。
FIG. 2 is a cross-sectional view showing the steps of manufacturing a protective film on a MOS device according to a second embodiment of the present invention. In this embodiment, a plasma silicon oxide film containing oxygen is used as the protective film.

第2図(a)はアルミニウム配線205まで形成したM
O3構造の縦断面図である。201は単結晶シリコン基
板、202はシリコン酸化膜、203はゲート電極とな
る多結晶シリコン、204は層間絶縁膜、205はアル
ミニウム配線である。
FIG. 2(a) shows the M formed up to the aluminum wiring 205.
FIG. 3 is a longitudinal cross-sectional view of the O3 structure. 201 is a single crystal silicon substrate, 202 is a silicon oxide film, 203 is polycrystalline silicon that becomes a gate electrode, 204 is an interlayer insulating film, and 205 is an aluminum wiring.

次に保護膜を2つの反応室を持つプラズマ気相成長装置
を用いて形成する。2つの反応室のうち第1反応室の放
電周波数は13.56MHz、第2反応室の放電周波数
は380KHzである。
Next, a protective film is formed using a plasma vapor deposition apparatus having two reaction chambers. Of the two reaction chambers, the discharge frequency of the first reaction chamber is 13.56 MHz, and the discharge frequency of the second reaction chamber is 380 KHz.

まず、第2図(a)の構造を有するシリコン基板上に、
放電周波数13.56MHzの第一反応室において第一
プラズマシリコン酸化窒化膜206を5000人形成す
る(第2図(b))。第1プラズマシリコン酸化窒化膜
206はモノシランガス(S i H4)を170 (
SCCM)、アンモニアガス(N Hs )を300 
(SCCM)、亜酸化窒素ガス(N20)を250 (
SCCM)、希釈用窒素ガス(N2)を1530 (S
CCM)を流し、全ガス圧力を0.35Torrに設定
後、放電周波数13.56MHz、放電電力900wを
印加し、基板温度300℃の条件下で形成した。
First, on a silicon substrate having the structure shown in FIG. 2(a),
A first plasma silicon oxynitride film 206 is formed by 5,000 people in a first reaction chamber with a discharge frequency of 13.56 MHz (FIG. 2(b)). The first plasma silicon oxynitride film 206 is made of monosilane gas (S i H4) at 170% (
SCCM), ammonia gas (NHs) at 300
(SCCM), nitrous oxide gas (N20) at 250 (
SCCM), nitrogen gas (N2) for dilution at 1530 (S
After setting the total gas pressure to 0.35 Torr, a discharge frequency of 13.56 MHz and a discharge power of 900 W were applied, and the substrate temperature was 300° C..

この条件下で形成したシリコン酸化窒化膜206の屈折
率は1.79、バッフアート弗酸に対するエツチングレ
ートは約300人/分、組成はESCA分析値でSi:
N:0=45:32:23であり、その膜応力は3 X
 l O”dyn/cn! (引張)と非常に小さい。
The refractive index of the silicon oxynitride film 206 formed under these conditions is 1.79, the etching rate for buffered hydrofluoric acid is about 300 people/min, and the composition is Si:
N:0=45:32:23, and the film stress is 3X
l O”dyn/cn! (tensile), which is very small.

第1反応室で第1プラズマシリコン酸化窒化膜206を
形成後、第2図(b)の構造を有するシリコン基板をロ
ードロック室を介して第2反応室へ設置し、第2プラズ
マシリコン酸化窒化膜207を5000人形成した(第
2図(C))。第2プラズマシリコン酸化窒化膜207
の形成は、放電周波数380KHz、放電電力900W
で行なった。
After forming the first plasma silicon oxynitride film 206 in the first reaction chamber, the silicon substrate having the structure shown in FIG. The film 207 was formed by 5,000 people (FIG. 2(C)). Second plasma silicon oxynitride film 207
The formation of the discharge frequency is 380KHz and the discharge power is 900W.
I did it.

ガス流量、圧力、基板温度は第1プラズマシリコン窒化
膜形成時と全く同じである。第2プラズマシリコン酸化
窒化膜207の屈折率は1.81、バッフアート弗酸に
対するエツチングレートは約210人、組成はESCA
分析値でSi:N:0=45:32:23であり第1シ
リコン酸化窒化膜206よりも密度の大きな緻密なシリ
コン酸化窒化膜が形成されている。
The gas flow rate, pressure, and substrate temperature are exactly the same as in the first plasma silicon nitride film formation. The refractive index of the second plasma silicon oxynitride film 207 is 1.81, the etching rate for buffered hydrofluoric acid is approximately 210, and the composition is ESCA.
The analysis value is Si:N:0=45:32:23, and a dense silicon oxynitride film with a higher density than the first silicon oxynitride film 206 is formed.

以上の様に保護膜を形成した半導体装置においては、ア
ルミニウム配線も大きなチャージアップなせずに、多結
晶シリコンを介したゲート酸化膜への影響も非常に小さ
く、閾値電圧V丁の変動も抑制される。
In the semiconductor device in which the protective film is formed as described above, there is no large charge-up in the aluminum wiring, the influence on the gate oxide film through the polycrystalline silicon is very small, and the fluctuation of the threshold voltage V is also suppressed. Ru.

また第2の実施例では酸素を含有したシリコン酸化窒化
膜を用いているために膜応力が非常に小さく、第1の実
施例よりもストレスマイグレーションの抑制効果が大き
い。
Further, in the second embodiment, since a silicon oxynitride film containing oxygen is used, the film stress is very small, and the effect of suppressing stress migration is greater than that of the first embodiment.

またこの他に弗素(F)を含有したシリコン窒化膜を2
層に用いた場合は半導体素子への水素の影響の少ない保
護膜を形成することができる。
In addition to this, a silicon nitride film containing fluorine (F) was
When used as a layer, it is possible to form a protective film with less hydrogen influence on semiconductor elements.

なお以上説明した本発明の放電周波数を第1層目形成に
はIMHz以上を第2層目形成にはIMHz以下を用い
るのが有効である。
Note that it is effective to use the above-described discharge frequency of the present invention at IMHz or more for forming the first layer and below IMHz for forming the second layer.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明はプラズマ気相成長法を用いて
、第1の高い放電周波数によって1層目の保護絶縁膜を
形成し、続いて、第2の低い放電周波数によって2層目
の保護絶縁膜を形成することによって、下層の絶縁膜や
アルミニウム配線がチャージアップすることなく、機械
的強度、耐湿性、アルカリイオンバリア性を有した保護
膜を形成できる効果がある。
As explained above, the present invention uses plasma vapor phase epitaxy to form a first protective insulating film at a first high discharge frequency, and then to form a second protective insulating film at a second low discharge frequency. By forming the insulating film, it is possible to form a protective film having mechanical strength, moisture resistance, and alkali ion barrier properties without charging up the underlying insulating film or aluminum wiring.

更に1層目に膜応力の小さな保護絶縁膜が形成されるた
め、アルミニウム配線のストレスマイグレーション抑制
効果がある。
Furthermore, since a protective insulating film with low film stress is formed in the first layer, there is an effect of suppressing stress migration of the aluminum wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の第1の実施例を説明す
るための主な製造工程の断面図、第2図は(a)〜(c
)は本発明の第2の実施例を説明するための主な製造工
程の断面図である。 101・・・・・・シリコン基板、102・・・・・・
絶縁膜、103・・・・・・アルミニウム配線、104
・・・・・・第1プラズマシリコン窒化膜、105・・
・・・・第2のプラズマシリコン窒化膜、201・・・
・・・シリコン基板、202・・・・・・シリコン酸化
膜、203・・・・・・多結晶シリコン、204・・・
・・・層間絶縁膜、205・・・・・・アルミニウム配
線、206・・・・・・第1プラズマシリコン酸化窒化
膜、207・・・・・・第2プラズマシリコン酸化窒化
膜。
FIGS. 1(a) to (c) are cross-sectional views of the main manufacturing steps for explaining the first embodiment of the present invention, and FIG. 2 is (a) to (c).
) is a cross-sectional view of the main manufacturing process for explaining the second embodiment of the present invention. 101...Silicon substrate, 102...
Insulating film, 103... Aluminum wiring, 104
...First plasma silicon nitride film, 105...
...Second plasma silicon nitride film, 201...
... Silicon substrate, 202 ... Silicon oxide film, 203 ... Polycrystalline silicon, 204 ...
. . . interlayer insulating film, 205 . . . aluminum wiring, 206 . . . first plasma silicon oxynitride film, 207 . . . second plasma silicon oxynitride film.

Claims (1)

【特許請求の範囲】[Claims] 高周波プラズマ気相成長法を用いて半導体装置の保護絶
縁膜を形成する工程において、該保護絶縁膜を、第1の
印加放電周波数および、続いて該第1の印加放電周波数
より低周波数の第2の印加放電周波数を用いて形成する
ことを特徴とする半導体装置の保護膜形成方法。
In a step of forming a protective insulating film of a semiconductor device using high-frequency plasma vapor phase epitaxy, the protective insulating film is applied at a first applied discharge frequency and then at a second applied discharge frequency lower than the first applied discharge frequency. 1. A method for forming a protective film for a semiconductor device, the method comprising: forming a protective film using an applied discharge frequency.
JP16570588A 1988-07-01 1988-07-01 Formation of protective film for semiconductor device Pending JPH0215630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16570588A JPH0215630A (en) 1988-07-01 1988-07-01 Formation of protective film for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16570588A JPH0215630A (en) 1988-07-01 1988-07-01 Formation of protective film for semiconductor device

Publications (1)

Publication Number Publication Date
JPH0215630A true JPH0215630A (en) 1990-01-19

Family

ID=15817490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16570588A Pending JPH0215630A (en) 1988-07-01 1988-07-01 Formation of protective film for semiconductor device

Country Status (1)

Country Link
JP (1) JPH0215630A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714408A (en) * 1995-12-14 1998-02-03 Denso Corporation Method of forming silicon nitride with varied hydrogen concentration
US6316794B1 (en) 1998-04-22 2001-11-13 Fuji Electric Co., Ltd. Lateral high voltage semiconductor device with protective silicon nitride film in voltage withstanding region
WO2007037094A1 (en) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device with nitride and oxide layers
US8588692B2 (en) 2005-02-02 2013-11-19 Panasonic Corporation Communication terminal and communication service decision method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714408A (en) * 1995-12-14 1998-02-03 Denso Corporation Method of forming silicon nitride with varied hydrogen concentration
US6137156A (en) * 1995-12-14 2000-10-24 Denso Corporation Semiconductor device employing silicon nitride layers with varied hydrogen concentration
US6316794B1 (en) 1998-04-22 2001-11-13 Fuji Electric Co., Ltd. Lateral high voltage semiconductor device with protective silicon nitride film in voltage withstanding region
US6558983B2 (en) 1998-04-22 2003-05-06 Fuji Electric Co., Ltd. Semiconductor apparatus and method for manufacturing the same
US8588692B2 (en) 2005-02-02 2013-11-19 Panasonic Corporation Communication terminal and communication service decision method
WO2007037094A1 (en) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device with nitride and oxide layers
JP2007123825A (en) * 2005-09-29 2007-05-17 Toshiba Corp Method of manufacturing semiconductor device
US7772129B2 (en) 2005-09-29 2010-08-10 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device
US8557717B2 (en) 2005-09-29 2013-10-15 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP2682403B2 (en) Method for manufacturing semiconductor device
US5068124A (en) Method for depositing high quality silicon dioxide by pecvd
US6593655B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US3652324A (en) A METHOD OF VAPOR DEPOSITING A LAYER OF Si{11 N{11 {0 ON A SILICON BASE
US6235650B1 (en) Method for improved semiconductor device reliability
JP2004165628A (en) Interface structure of oxide thin film and forming method therefor, and thin-film transistor
KR100382387B1 (en) Method of plasma processing
JP2004165625A (en) Plasma method for manufacturing oxide thin film
US5045346A (en) Method of depositing fluorinated silicon nitride
JPH0215630A (en) Formation of protective film for semiconductor device
US20010012701A1 (en) Method of forming a silicon nitride thin film
JPH01304735A (en) Method of forming protective film of semiconductor device
Takamatsu et al. Plasma‐Activated Deposition and Properties of Phosphosilicate Glass Film
US7419919B2 (en) Method of manufacturing semiconductor device
JPH0745610A (en) Manufacture of semiconductor device
Song et al. Chemical and electrical characteristics of low temperature plasma enhanced CVD silicon oxide films using Si2H6 and N2O
JPS60204880A (en) Production of insulating film
Kato et al. Characteristics of thermally nitrided silicon dioxide film and plasma enhancement
JPH01293624A (en) Manufacture of integrated circuit
JPH0878408A (en) Manufacture of semiconductor device
WO2022073176A1 (en) Plasma-enhanced chemical vapor deposition processes for depositing passivation films on microelectronic structures
JPH10335325A (en) Silicon oxide film forming method
JPH09260372A (en) Manufacture of insulating film of semiconductor device
JPH11150246A (en) Capacitor-insulating film of semiconductor device and its manufacturing method
JPH05129286A (en) Silicon nitride film