JPS60227362A - Method of supplying electrolyte in matrix-type fuel cell - Google Patents

Method of supplying electrolyte in matrix-type fuel cell

Info

Publication number
JPS60227362A
JPS60227362A JP59082504A JP8250484A JPS60227362A JP S60227362 A JPS60227362 A JP S60227362A JP 59082504 A JP59082504 A JP 59082504A JP 8250484 A JP8250484 A JP 8250484A JP S60227362 A JPS60227362 A JP S60227362A
Authority
JP
Japan
Prior art keywords
electrolyte
paths
gas
passage
matrix layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59082504A
Other languages
Japanese (ja)
Other versions
JPH0374467B2 (en
Inventor
Masatsuru Umemoto
梅本 真鶴
Hiroyuki Tajima
田島 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59082504A priority Critical patent/JPS60227362A/en
Publication of JPS60227362A publication Critical patent/JPS60227362A/en
Publication of JPH0374467B2 publication Critical patent/JPH0374467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent any formation of a liquid path of electrolyte during the suspension of battery operation by filling electrolyte paths with electrolyte so as to supply electrolyte into the matrix layer and by feeding a gas through the electrolyte paths so as to evaporate and remove electrolyte adhering to the walls of the electrolyte paths. CONSTITUTION:After a bulb 15b is closed and valves 13a and 13b are opened, blind plugs 71c and 72c are attached to the openings 71b and 72b of electolyte paths 71 and 72. Next, after electrolyte in an electrolyte tank 14 is filled into electrolyte paths 71 and 72 by opening a valve 12a, electrolyte is supplied from a supply path 8 into a matrix layer 1 through supply holes 8a. After the supply of electrolyte is completed, the valve 12a is closed and blind plugs 71c and 72c are removed to discharge surplus electrolyte through openings 71b and 72b. Next, after the bulb 15b is opened, moistended gas is sent into electrolyte paths 71 and 72 through bulbs 13a and 13b by means of blower 15a before being exhausted through openings 71b and 72b, thereby evaporating and removing electrolyte adhering to the walls of the paths 71 and 72.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明性、単電池を積層してなるセルスタックの積層方
向に貫通して設けられた電解質通路を介して、当該単電
池のマトリックス層に電解質を補給する方法に関する。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] The present invention provides a method for applying electrolyte to the matrix layer of a cell stack through an electrolyte passage provided in the stacking direction of a cell stack formed by stacking cell cells. Concerning how to replenish electrolytes.

〔従来技術とその問題点〕[Prior art and its problems]

第1図はマトリックス形燃料電池の単電池の一例を示す
分解斜視図である。マトリックス層1の両側VC#i燃
料電極2および酸化剤電極3が配され、さらにその外側
に矢印A方向に設けられた溝4aを有する多孔性のリプ
付電極基材4と、溝4aと直交する方向に設けられた構
5aを有する多孔性のリプ付電極基材5とが設けられて
単電池を構成している。この単電池間にはガス不拡散性
のセパレート板6が介装されて反応ガスを分離し、これ
らが多数積層されてセルスタックを構成している。そし
て反応ガスとしての燃料ガスが矢印A方向よシ、酸化剤
ガスが矢印B方向よシそれぞれリプ付電極基材4,5の
溝4a、5aに流入して各電極に供給さ′れ電気を発生
する。
FIG. 1 is an exploded perspective view showing an example of a unit cell of a matrix type fuel cell. VC#i fuel electrodes 2 and oxidizer electrodes 3 are disposed on both sides of the matrix layer 1, and a porous lip-attached electrode base material 4 having grooves 4a provided in the direction of arrow A on the outside thereof and perpendicular to the grooves 4a. A porous lip-attached electrode base material 5 having a structure 5a provided in the direction of the electrode is provided to constitute a unit cell. A gas non-diffusible separation plate 6 is interposed between the single cells to separate the reaction gas, and a large number of these cells are stacked to form a cell stack. Then, the fuel gas as a reaction gas flows in the direction of arrow A, and the oxidant gas flows in the direction of arrow B, respectively, into the grooves 4a and 5a of the electrode base materials 4 and 5 with lips, and are supplied to each electrode to generate electricity. Occur.

しかしながら、燃料電池の運転時間が長くなると電解質
は蒸発、飛散するので、ある運転時間になると電解質を
補給する必要がある。
However, as the operating time of the fuel cell increases, the electrolyte evaporates and scatters, so it is necessary to replenish the electrolyte after a certain operating time.

旦 このため従来では、電池の運転を一担停止し1から、単
電池を積層してなるセルスタックの積層方向に貫通して
設けられた電解質通路に電解質を満たし、この補給通路
よ多分枝する連通路を介して、単電池のマトリックス層
に電解質を補給し、補給後は余剰の電解質を補給通路よ
シ排出して再び電池を運転するものが知られているが、
補給通路に供給された電解質が通路の内壁に付着し、こ
の付着した電解質によシ、液絡が生じるという問題があ
った。特に水分が飛散して濃縮された電解質は容易に通
路の内壁から離れず、実用にあってはその改善が望まれ
ていた。
For this reason, conventionally, the operation of the battery is temporarily stopped and an electrolyte passage provided penetrating in the stacking direction of a cell stack formed by stacking unit cells is filled with electrolyte, and multiple branches are formed from this replenishment passage. It is known that electrolyte is replenished into the matrix layer of a unit cell through a communication path, and after replenishment, the excess electrolyte is discharged through the replenishment path to operate the battery again.
There is a problem in that the electrolyte supplied to the supply passage adheres to the inner wall of the passage, and this adhered electrolyte causes a liquid junction. In particular, the electrolyte that has been concentrated due to the scattering of water does not easily separate from the inner wall of the passage, and in practical use, it has been desired to improve this problem.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みなされたものであり、電解質による
液絡が生じない電解質の補給方法を提供することを目的
とする。
The present invention has been made in view of the above, and an object of the present invention is to provide an electrolyte replenishment method that does not cause a liquid junction due to the electrolyte.

〔発明の要旨〕[Summary of the invention]

上記の目的は本発明によれば、単電池を積層してなるセ
ルスタックの積層方向に貫通して設けられた電解質通路
を介して、積層単電池のマ) +Jックス層に電解質を
補給する方法において、電池の運転休止時、電解質通路
に電解質を満たして前記マトリックス層に電解質を補給
するとともに、この電解質通路から残余の電解質を排出
した後、この電解質通路にガスを通流させて通路壁に付
着した電解質を蒸散除去することにより達成される。
According to the present invention, the above object is a method of replenishing electrolyte to the M+Jx layer of a stacked cell through an electrolyte passage provided penetrating in the stacking direction of a cell stack formed by stacking cell stacks. When the battery is out of operation, the electrolyte passageway is filled with electrolyte to replenish the electrolyte to the matrix layer, and after the remaining electrolyte is discharged from the electrolyte passageway, gas is caused to flow through the electrolyte passageway to form a gas on the passageway wall. This is achieved by removing the attached electrolyte by transpiration.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

第2図は本発明の実施例による補給方法を示す系統図で
あシ、第3図は第2図における補給構造の図において、
マトリックス層1の両側には、燃料電極2と酸化剤電極
3が配され、その周縁部にはシール材9が設けられてい
る。さらにその外側には、燃料ガスの通路となる溝4a
(第1図参照)を有する多孔性のリプ付電極基材4と、
溝4aと直交する方向に設けられた酸化剤ガスの流れる
溝5aを有する多孔性のリプ付電極基材5がそれぞれ燃
料電極2および酸化剤電極3に密着されてマ) IJフ
ッ2フ この単電池間に反応ガスを分離するガス不拡散性のセパ
レート板6を介装して、これらを多数積層し、これらの
複数個ごとに冷却板10を介装してセルスタックを構成
してイル。
FIG. 2 is a system diagram showing a replenishment method according to an embodiment of the present invention, and FIG. 3 is a diagram of the replenishment structure in FIG.
A fuel electrode 2 and an oxidizer electrode 3 are arranged on both sides of the matrix layer 1, and a sealing material 9 is provided around the periphery thereof. Furthermore, on the outside thereof, there is a groove 4a that serves as a passage for fuel gas.
(see FIG. 1), a porous lip-attached electrode base material 4;
A porous lip-attached electrode base material 5 having a groove 5a through which an oxidant gas flows, which is provided in a direction perpendicular to the groove 4a, is in close contact with the fuel electrode 2 and the oxidizer electrode 3, respectively. A gas non-diffusible separate plate 6 for separating reaction gas is interposed between the cells, a large number of these are stacked, and a cooling plate 10 is interposed between each of these cells to form a cell stack.

リプ付電極基材4には電解質補給路8を設け、マトリッ
クス層IK補給孔8aを介して連通させている。そして
セルスタックのマニホールド20。
An electrolyte replenishment path 8 is provided in the electrode base material 4 with a lip, and is communicated with the electrolyte replenishment channel 8 through a matrix layer IK replenishment hole 8a. And the cell stack manifold 20.

20a(第3図参照)の外側の場所に電解質通路71。Electrolyte passage 71 at a location outside of 20a (see Figure 3).

72をセルスタックの稿層方向に設け、上部の冷却板1
0の側面に開ロア1a,72aを、下部の冷却板t。
72 is provided in the direction of the cell stack, and the upper cooling plate 1
Open lower lower 1a, 72a on the side of 0, lower cooling plate t.

8aの側面に開ロア1b,72bを設けている。なお開
口する位置は場合によシ冷却板の代シに設けた端板でも
よい。そしてこれらの電解質通路71.72は電解質補
給路8に連通している。
Open lower lower parts 1b and 72b are provided on the side surface of 8a. Note that the opening may be located at an end plate provided in place of the cooling plate, depending on the case. These electrolyte passages 71 and 72 communicate with the electrolyte supply passage 8.

電解質を満たした電解質タンク11はセルスタックの上
方の位置に設けられておシ、出口管路12はパルプ12
aを介して管路13に結合されている。
An electrolyte tank 11 filled with electrolyte is provided above the cell stack, and an outlet pipe 12 is connected to the pulp 12.
It is connected to the conduit 13 via a.

そしてパルプ13a,13bをそれぞれ設けた管路16
And a pipe line 16 provided with pulps 13a and 13b, respectively.
.

17は開ロア1a,72aを介して電解質通路71.7
2に接続されている。−力水が注入された密閉水タンク
15の上部空間15cにガス供給管14が送風機14a
を介して水タンク15の側壁を貫通して水中に挿入され
、その先端にガラスフィルタ14bが設けられている。
17 is an electrolyte passage 71.7 via the open lower lower parts 1a and 72a.
Connected to 2. - The gas supply pipe 14 is connected to the blower 14a in the upper space 15c of the sealed water tank 15 into which the power water is injected.
The glass filter 14b is inserted into the water by penetrating the side wall of the water tank 15 through the glass filter 14b.

水タンク15の上部空間15cに接続された配管は、電
解質通路71.72に加湿されたガスを送気する送風機
15aおよびパルプ15bを介して管路13に結合され
ている。
A pipe connected to the upper space 15c of the water tank 15 is connected to the pipe line 13 via a blower 15a and pulp 15b that send humidified gas to the electrolyte passages 71, 72.

さて電解質をマトリックス層に補給するには、電池の運
転を停止した上で先ずパルプ15bを閉にし、パルプ1
3a 、 13bを開にして、電解質通路71。
Now, in order to replenish the electrolyte to the matrix layer, first stop the operation of the battery, close the pulp 15b, and then close the pulp 15b.
3a, 13b open, electrolyte passage 71.

72の開ロア1b,72bに第3図に示される盲栓71
c。
A blind plug 71 shown in FIG.
c.

72cをそれぞれ取シ付ける。そして電解質タンク14
内の電解質をパルプ12aを開にして電解質通路71.
72にそれぞれ充満させ、通路8bを介して補給路8よ
)補給孔8aを通じてマトリックス層1に電解質を補給
し、セルスタックの各マトリックス層に電解質を補給す
る〇 電解質補給終了後は、先ずパルプ12aを閉にして盲栓
71c l 72cを取外して残余の電解質を開ロア1
b 、 72bから排出する。次にパルプ15bを開に
し、図示しないガス供給源よシ送風機14aにょシガス
供給管14よシ水タンク15の水中に送気し、先端のガ
ラスフィルタ14bを通して細かくバブリングして上部
空間15cに加湿したガスを作る。そしてこの加湿した
ガスを送風機15aによシバルブ13a、13bを通し
て管路16,17によシミ解質通路の開ロア1a 、 
72aを介して電解質通路71.72に同一圧力で送気
し、開ロア1b 、 72bよシ排出することによシ、
通路壁に付着した電解質を蒸散除去する。
72c respectively. and electrolyte tank 14
The electrolyte in the pulp 12a is opened to drain the electrolyte in the electrolyte passage 71.
72 respectively, and replenish the electrolyte to the matrix layer 1 through the replenishment hole 8a via the passage 8b and the replenishment hole 8a, and replenish the electrolyte to each matrix layer of the cell stack. After electrolyte replenishment, first, the pulp 12a Close the plug, remove the blind plug 71c l 72c, and open the remaining electrolyte.
b, discharge from 72b. Next, the pulp 15b was opened, air was blown into the water in the water tank 15 through the gas supply pipe 14 through the blower 14a from a gas supply source (not shown), and air was bubbled finely through the glass filter 14b at the tip to humidify the upper space 15c. make gas. The humidified gas is then passed through the blower 15a, the valves 13a and 13b, and the pipes 16 and 17.
By supplying air at the same pressure to the electrolyte passages 71 and 72 through 72a and discharging it through the open lowers 1b and 72b,
The electrolyte adhering to the passage wall is evaporated and removed.

なお、この場合蒸散除去を電解質通路71.72のいづ
れか一方づつ行なってもよい◇例えば先に電解質通路7
1を蒸散除去するときは、パルプ13bを閉にし、電解
質通路72の開ロア2aおよび72bを盲栓等によシ閉
にし、パルプ13aを開にして加湿ガスを開ロア1aか
ら流入させて電解質通路71のみを通流し、出ロア2a
よシ排出するようにする。
In this case, the transpiration removal may be performed on either one of the electrolyte passages 71 and 72. For example, the electrolyte passage 7
1 is removed by transpiration, the pulp 13b is closed, the open lowers 2a and 72b of the electrolyte passage 72 are closed with blind plugs, etc., and the pulp 13a is opened to allow humidified gas to flow in from the open lower 1a to remove the electrolyte. Only the passage 71 is allowed to flow through the outlet lower 2a.
Make sure to drain it well.

電解質通路71の蒸散除去完了後、パルプ13aを閉に
し、開ロア1a、71bを閉にして電解質通路72のパ
ージを上述と同じような方法で行なって、各電解質通路
の蒸散除去を完了する。なお、本実施例では加湿ガスを
上部の開ロア1a、72mよシ通流さが可能である。
After the completion of transpiration removal in the electrolyte passages 71, the pulp 13a is closed, the open lowers 1a and 71b are closed, and the electrolyte passages 72 are purged in the same manner as described above, thereby completing the transpiration removal in each electrolyte passage. In this embodiment, the humidifying gas can be passed through the open lower portion 1a and 72m of the upper portion.

第4図は、ガスとして空気を用いて加湿したガスを送気
する線速度Cm / 8e(!と電解質をりん酸とした
ときのシん酸排出量を示すりん酸蒸散速度fh/d−h
rとの関係を実験によ請求めた結果を示したものでアシ
、これよりガス線速度の対数値とりん酸蒸散速度の対数
値との間に比例の関係があることが理解される。したが
ってシん酸の付着量が多いときには第4図に示されるよ
うにガスの線速度を増加すればよいことがわかシ、また
他の方法としては加湿ガス中に含まれる水蒸気の割合お
よび加湿ガスを送気する時間を増加して行なうことによ
り蒸散除去することができる。
Figure 4 shows the linear velocity Cm/8e (!) when humidified gas is supplied using air as the gas, and the phosphoric acid evaporation rate fh/d-h, which indicates the amount of phosphoric acid discharged when phosphoric acid is used as the electrolyte.
This shows the results of the experimental determination of the relationship with r.From this, it is understood that there is a proportional relationship between the logarithm of the gas linear velocity and the logarithm of the phosphoric acid evaporation rate. Therefore, when there is a large amount of cynic acid attached, it is possible to increase the linear velocity of the gas as shown in Figure 4. It can be removed by transpiration by increasing the time of air supply.

蒸散除去するとき、本実施例では加湿したガスを使用し
たが、加湿しないカスでも可能である。
In this embodiment, humidified gas was used for transpiration removal, but it is also possible to remove the residue without humidification.

加湿したカスを使用する場合は、電解質通路に付着し、
水分の蒸発によシ濃度の高くなった電解質を加湿ガス中
の水分により濃度を薄くすることができるため、加湿し
ないガスを使用する場合よシφ 蒸散除去が容易なる。なお、ガスの種類は特に指定しな
いが安全面を考慮した場合不活性ガス、例えは窒素を使
用するのが望ましい。
When using humidified scum, it may adhere to the electrolyte passages and
Since the concentration of the electrolyte, which has become high due to evaporation of water, can be diluted by the water in the humidifying gas, it is easier to remove the electrolyte by transpiration than when using a non-humidifying gas. Although the type of gas is not particularly specified, in consideration of safety, it is desirable to use an inert gas, for example nitrogen.

ガス中への水蒸気の混入には、上述のような加湿ガス発
生器を使用する代シに1改質器の排熱または燃料電池の
排熱を利用して水を気化してもよい。なお、燃料電池か
らの燃料ガスまたは酸化剤ガスの排出ガスを利用すれば
、これらには電気化学反応によシ生成した水蒸気を含有
するので都合がよい。
To mix water vapor into the gas, instead of using the humidified gas generator as described above, the water may be vaporized using the exhaust heat of one reformer or the exhaust heat of a fuel cell. Note that it is convenient to use exhaust gas of fuel gas or oxidant gas from the fuel cell, since these contain water vapor generated by electrochemical reaction.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば電解質
通路よシミ解質をマ) IJックス層に補給し、残余の
電解質を排出した上、旙参セ央ガスを電解質通路に送気
し、通路壁に付着した電解質を蒸散除去することによシ
、単電池間の電解質による液絡がなくなり、単電池間の
漏洩電流による出力損失、および電池構成部材の電食が
なくなるため、寿命の長い燃料電池が得られるという効
果がある。
As is clear from the above description, according to the present invention, after replenishing the electrolyte passageway with stained solutes and discharging the remaining electrolyte, the electrolyte passageway is supplied with stained solutes and the remaining electrolyte is discharged. By evaporating and removing the electrolyte adhering to the passage walls, there is no liquid junction caused by the electrolyte between the cells, which eliminates output loss due to leakage current between the cells and electrolytic corrosion of the battery components, thereby shortening the service life. This has the effect of providing a long fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマトリックス形燃料電池の単電池の分解斜視図
、第2図は本発明の実施例による電解質を補給する系統
図、第3図は第2図における電解質補給構造のX−X部
分断面図、第4図はガス線速度とシん酸蒸散速度の関係
を示すグラフである。
Fig. 1 is an exploded perspective view of a unit cell of a matrix fuel cell, Fig. 2 is a system diagram for replenishing electrolyte according to an embodiment of the present invention, and Fig. 3 is a partial cross section taken along line X-X of the electrolyte replenishment structure in Fig. 2. FIG. 4 is a graph showing the relationship between the gas linear velocity and the phosphoric acid evaporation rate.

Claims (1)

【特許請求の範囲】[Claims] 単電池を積層してなるセルスタックの積層方向に貫通し
て設けられた電解質通路を介して、当該単電池のマトリ
ックス層に電解質を補給する方法において、電池の運転
休止時、前記電解質通路に電解質を満たして前記マトリ
ックス層に電解質を補給するとともに、該補給通路にガ
スを通流させて通路壁に付着した電解質を蒸散除去する
ことを特徴とするマトリックス形燃料電池の電解質補給
方法。
In a method for replenishing electrolyte to the matrix layer of a single cell through an electrolyte passage provided to penetrate in the stacking direction of a cell stack formed by laminating single cells, when the battery is out of operation, the electrolyte is supplied to the electrolyte passage. A method for replenishing electrolyte for a matrix fuel cell, characterized in that the matrix layer is replenished with electrolyte by filling the replenishment passageway, and the electrolyte adhering to the walls of the passageway is evaporated and removed by passing gas through the replenishment passageway.
JP59082504A 1984-04-24 1984-04-24 Method of supplying electrolyte in matrix-type fuel cell Granted JPS60227362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082504A JPS60227362A (en) 1984-04-24 1984-04-24 Method of supplying electrolyte in matrix-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082504A JPS60227362A (en) 1984-04-24 1984-04-24 Method of supplying electrolyte in matrix-type fuel cell

Publications (2)

Publication Number Publication Date
JPS60227362A true JPS60227362A (en) 1985-11-12
JPH0374467B2 JPH0374467B2 (en) 1991-11-27

Family

ID=13776328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082504A Granted JPS60227362A (en) 1984-04-24 1984-04-24 Method of supplying electrolyte in matrix-type fuel cell

Country Status (1)

Country Link
JP (1) JPS60227362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127670U (en) * 1986-02-05 1987-08-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127670U (en) * 1986-02-05 1987-08-13
JPH0416378Y2 (en) * 1986-02-05 1992-04-13

Also Published As

Publication number Publication date
JPH0374467B2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
US7645530B2 (en) Method and apparatus for humidification of the membrane of a fuel cell
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
JPS6130385B2 (en)
JPH0286071A (en) Solid polymer fuel cell
JP2000090954A (en) Fuel cell stack
JP2001519081A (en) Method for controlling membrane moisture of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4921469B2 (en) PEM fuel cell with filling chamber
JPS61227370A (en) Fuel battery assembly
JPS63119166A (en) Fuel battery
JPS60227362A (en) Method of supplying electrolyte in matrix-type fuel cell
JPS6147073A (en) Fuel battery system and electrolyte supplying process to fuel battery stack
US4612262A (en) Process for adding electrolyte to a fuel cell stack
JPS59217958A (en) Device for supplying electrolyte for matrix-type fuel cell
US4702972A (en) Electrolyte replenishing system for a laminated fuel cell
JPH09320619A (en) Molten carbonate fuel cell
JPH01292751A (en) Electrolyte replenisher of matrix type fuel cell
JPH039590B2 (en)
JPS60225365A (en) Electrolyte supplementing structure for matrix type fuel cell
JPS62117272A (en) Electrolyte feeding apparatus for layer-built fuel cell
JPH0145096Y2 (en)
JPH08138707A (en) Fuel cell power generating system
JPS58165263A (en) Matrix type fuel cell
JPH02158060A (en) Phosphoric acid fuel cell
JPS60151977A (en) Supplementary feed of electrolyte in matrix-type battery
JPS6068561A (en) Electrolyte supplement equipment of matrix type fuel cell