JPH0416378Y2 - - Google Patents

Info

Publication number
JPH0416378Y2
JPH0416378Y2 JP1986015213U JP1521386U JPH0416378Y2 JP H0416378 Y2 JPH0416378 Y2 JP H0416378Y2 JP 1986015213 U JP1986015213 U JP 1986015213U JP 1521386 U JP1521386 U JP 1521386U JP H0416378 Y2 JPH0416378 Y2 JP H0416378Y2
Authority
JP
Japan
Prior art keywords
electrolyte
drain pipe
lower holder
supply path
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986015213U
Other languages
Japanese (ja)
Other versions
JPS62127670U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986015213U priority Critical patent/JPH0416378Y2/ja
Publication of JPS62127670U publication Critical patent/JPS62127670U/ja
Application granted granted Critical
Publication of JPH0416378Y2 publication Critical patent/JPH0416378Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は電解質の供給を容易にした溶融炭酸塩
型積層燃料電池に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten carbonate stacked fuel cell that facilitates the supply of electrolyte.

[従来の技術] 近年、溶融炭酸塩型の積層燃料電池が提案され
ている。この燃料電池は第4図に示す如く電解質
例えばLi2CO3あるいはK2CO3等の炭酸塩を多孔
質状物質に浸込ませた電解質板1を、カソード2
とアノード3によつて両面から挟み、且つ上記ア
ノード3側に形成した流路5にH2ガス等の燃料
を供給すると共に、前記カソード2側に形成した
流路4にCO2を含んだ空気からなる酸化ガスを供
給することにより、前記カソード2側において 1/2O2+CO2+2e-→CO3 2- が、またアノード3側において CO3 2-+H2→CO2+H2O+2e- の反応が行われ、炭酸イオンの良導体である電解
質板1をカソード2とアノード3で挟んでカソー
ド2とアノード3との間に発生する電位差により
発電が行われ、又カソード2、電解質板1、アノ
ード3をセパレータ6を介して多層に積層するこ
とにより所要の電圧まで高めるようになつてい
る。
[Prior Art] In recent years, molten carbonate type stacked fuel cells have been proposed. In this fuel cell, as shown in FIG. 4, an electrolyte plate 1 in which a porous material is impregnated with an electrolyte such as a carbonate such as Li 2 CO 3 or K 2 CO 3 is connected to a cathode 2.
and the anode 3 from both sides, and supply fuel such as H 2 gas to the flow path 5 formed on the anode 3 side, and supply air containing CO 2 to the flow path 4 formed on the cathode 2 side. By supplying an oxidizing gas consisting of The electrolyte plate 1, which is a good conductor of carbonate ions, is sandwiched between the cathode 2 and the anode 3, and electricity is generated by the potential difference generated between the cathode 2 and the anode 3. By laminating multiple layers with separators 6 in between, the voltage can be increased to a required level.

[考案が解決しようとする問題点] 然し、上記したマトリツクス方式、ペースト方
式のいずれも部品状態で液状電解質を保持材に含
浸させており、部品の生産性が悪く量産に向いて
いない。又、燃料電池の作動と共に電解質の蒸発
等により消耗され、ある程度時間が経過すると所
要の起電力が得られなくなる。従つて、所定時間
経過後には電解質板を交換しなければならず、保
守が極めて面倒である。
[Problems to be solved by the invention] However, in both the matrix method and the paste method described above, the holding material is impregnated with liquid electrolyte in the state of parts, and the productivity of the parts is poor, making them unsuitable for mass production. Further, as the fuel cell operates, it is consumed due to evaporation of the electrolyte, etc., and after a certain period of time, it becomes impossible to obtain the required electromotive force. Therefore, the electrolyte plate must be replaced after a predetermined period of time, making maintenance extremely troublesome.

本考案は、燃料電池の組立状態で電解質を電解
質板に供給できる様にし、生産性の向上を図ると
共に保守性を向上しようとするものである。
The present invention aims to improve productivity and maintainability by making it possible to supply electrolyte to an electrolyte plate in the assembled state of a fuel cell.

[問題点を解決するための手段] 本考案はカソードとアノードによつて両面を挟
むようにした電解質板を、燃料ガス流路と酸化ガ
ス流路を画成するセパレータを介して複数積層
し、前記カソードへの酸化ガスの給排とアノード
への燃料ガスの給排を分離して行うようにした溶
融炭酸塩型積層燃料電池に於いて、前記複数積層
したものを上部ホルダと下部ホルダによつて挟持
し、上部ホルダに電解質溜めを形成すると共に該
電解質溜めに連通し下部ホルダ迄貫通して下部ホ
ルダ外面に開口する電解質供給路を設け、下部ホ
ルダの電解質供給路開口部にドレン管を接続し、
該ドレン管の周囲にドレン管を加熱するヒータを
設け、更に前記セパレータの電解質板に対する接
触面外周縁部に、前記電解質供給路と連通する溝
を刻設したことを特徴とするものである。
[Means for Solving the Problems] The present invention consists of stacking a plurality of electrolyte plates sandwiched on both sides by a cathode and an anode through separators that define a fuel gas flow path and an oxidation gas flow path. In the molten carbonate stacked fuel cell in which the supply and discharge of oxidizing gas to the cathode and the supply and discharge of fuel gas to the anode are carried out separately, the plurality of stacked fuel cells are separated by an upper holder and a lower holder. An electrolyte reservoir is formed in the upper holder, and an electrolyte supply channel is provided that communicates with the electrolyte reservoir and penetrates to the lower holder and opens on the outer surface of the lower holder, and a drain pipe is connected to the opening of the electrolyte supply channel in the lower holder. death,
A heater for heating the drain pipe is provided around the drain pipe, and a groove communicating with the electrolyte supply path is carved on the outer periphery of the contact surface of the separator with the electrolyte plate.

[作用] 電解質溜めに溶解した電解質を貯溜させると電
解質は電解質供給路を下る。該供給路下流のドレ
ン管を加熱するヒータが停止の状態であるなら
ば、電解質は冷却され凝固し、ドレン管は閉塞す
る。このため供給路は電解質で満たされ、且つ溝
も電解質で満たされ、電解質は供給路並びに溝よ
り電解質板に迅速に浸透してゆく。余剰の電解質
をこのまま供給路にためておくと、電解質板から
電極へ電解質があふれ出す。余剰の電解質を排出
する場合はドレン管を加熱しドレン管内に固結し
た電解質を溶解することによりドレン管の開放を
行う。
[Operation] When dissolved electrolyte is stored in the electrolyte reservoir, the electrolyte flows down the electrolyte supply path. If the heater that heats the drain pipe downstream of the supply path is in a stopped state, the electrolyte is cooled and solidified, and the drain pipe is blocked. Therefore, the supply channels are filled with electrolyte, and the grooves are also filled with electrolyte, and the electrolyte quickly permeates into the electrolyte plate through the supply channels and the grooves. If excess electrolyte is left in the supply path, the electrolyte will overflow from the electrolyte plate to the electrodes. When draining excess electrolyte, the drain pipe is opened by heating the drain pipe and dissolving the solidified electrolyte inside the drain pipe.

[実施例] 以下第1図〜第3図に基づき本考案の実施例を
説明する。
[Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.

多層に積層した電解質板1、セパレータ6等は
上部ホルダ7、下部ホルダ8によつて挟持してお
り、上部ホルダ7に供給口9を有する電解質溜め
10を形成する。上部ホルダ7から下部ホルダ8
に亘つて貫通する電解質供給路11を設け、該供
給路11の上端は前記電解質溜め10に開口せし
めると共に下部ホルダ8の外部に前記電解質供給
路11に連通するドレン管12を設ける。ドレン
管12の周囲にドレン管開閉用のヒータ13を設
ける。図中14は電解質受け、15は電解質溜め
の蓋である。
The multi-layered electrolyte plate 1, separator 6, etc. are held between an upper holder 7 and a lower holder 8, forming an electrolyte reservoir 10 having a supply port 9 in the upper holder 7. From upper holder 7 to lower holder 8
An electrolyte supply path 11 is provided that penetrates through the electrolyte supply path 11 , and the upper end of the supply path 11 is opened to the electrolyte reservoir 10 , and a drain pipe 12 that communicates with the electrolyte supply path 11 is provided outside the lower holder 8 . A heater 13 for opening and closing the drain pipe is provided around the drain pipe 12. In the figure, 14 is an electrolyte receiver, and 15 is a lid for the electrolyte reservoir.

又、第2図、第3図に示す如くセパレータ6の
電解質板1に対する接触面外周縁部には、前記電
解質供給路11に連通する溝18を刻設し、該溝
18からも電解質が電解質板1に浸透するように
してある。
Further, as shown in FIGS. 2 and 3, a groove 18 communicating with the electrolyte supply channel 11 is carved in the outer peripheral edge of the contact surface of the separator 6 with the electrolyte plate 1, and the electrolyte is also supplied from the groove 18. It is designed to penetrate into plate 1.

電解質の供給には組立時の電解質板1への初期
含浸、使用後の補充がある。
Electrolyte supply includes initial impregnation of the electrolyte plate 1 during assembly and replenishment after use.

初期含浸には、前記電解質溜め10に固体の電
解質(炭酸塩)を装入し、図示しない加熱装置に
より燃料電池16を加熱する。この時ドレン管1
2は加熱しない様にする。
For initial impregnation, a solid electrolyte (carbonate) is charged into the electrolyte reservoir 10, and the fuel cell 16 is heated by a heating device (not shown). At this time, drain pipe 1
Step 2: Avoid heating.

加熱によつて電解質溜め10内の電解質が溶
け、供給路11より下降してドレン管12に到
る。ドレン管12は加熱していないので電解質は
ドレン管12内部で固結し、ドレン管12を閉塞
する。即ち、溶解した電解質はドレン管12より
排出されず、燃料電池16内に溜り、時間と共に
供給路11並びに溝18より電解質板1へ迅速に
浸透する。
The electrolyte in the electrolyte reservoir 10 is melted by heating, and descends from the supply path 11 to reach the drain pipe 12 . Since the drain pipe 12 is not heated, the electrolyte solidifies inside the drain pipe 12 and blocks the drain pipe 12. That is, the dissolved electrolyte is not discharged from the drain pipe 12, but remains in the fuel cell 16, and quickly permeates into the electrolyte plate 1 through the supply path 11 and the groove 18 over time.

電解質板1全域へ電解質が含浸するとヒータ1
3を作動させてドレン管12を加熱する。ドレン
管12が加熱されるとドレン管を閉塞していた電
解質が溶け、余剰の電解質はドレン管12より電
解質受け14へ排出される。
When the entire electrolyte plate 1 is impregnated with electrolyte, the heater 1
3 to heat the drain pipe 12. When the drain pipe 12 is heated, the electrolyte blocking the drain pipe is melted, and excess electrolyte is discharged from the drain pipe 12 to the electrolyte receiver 14.

供給路11が細い場合には電解質がうまく入ら
ないことが多い。この場合はドレン管12を始め
から加熱しておき、電解質を加熱して流しこみ、
ドレン管12から電解質が流れ出た時点でドレン
管12を急冷する。こうすると供給路11に電解
質を完全に入れることができる。
If the supply path 11 is narrow, the electrolyte often does not enter properly. In this case, heat the drain pipe 12 from the beginning, heat the electrolyte, and pour it in.
When the electrolyte flows out from the drain pipe 12, the drain pipe 12 is rapidly cooled. In this way, the supply channel 11 can be completely filled with electrolyte.

以上で初期の含浸作業が完了する。又、電解質
の補充を行う場合は加熱溶融した電解質を前記供
給口9より電解質溜め10へ供給し、上記した初
期含浸作業と同様のことを行えばよい。
This completes the initial impregnation work. Further, when replenishing the electrolyte, the heated and melted electrolyte may be supplied to the electrolyte reservoir 10 from the supply port 9, and the same operation as the above-described initial impregnation operation may be performed.

[考案の効果] 以上述べた如く本考案によれば、ヒータのオン
オフという簡単な操作により、電解質供給路と溝
から電解質板に電解質を組立状態で迅速に含浸さ
せることができ、生産性が向上すると共に電解質
の補充が容易となつて保守性が向上する。
[Effects of the invention] As described above, according to the invention, by the simple operation of turning on and off the heater, the electrolyte plate can be quickly impregnated with electrolyte from the electrolyte supply channel and the groove in the assembled state, improving productivity. At the same time, electrolyte replenishment becomes easy and maintainability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す概略断面図、第
2図は第1図に示す実施例の部分断面図、第3図
は第2図のA−A矢視図、第4図は従来の燃料電
池の構造を示す部分断面図である。 1は電解質板、2はカソード、3はアノード、
4,5は流路、7は上部ホルダ、8は下部ホル
ダ、10は電解質溜め、12はドレン管、13は
ヒータ、18は溝を示す。
Fig. 1 is a schematic sectional view showing an embodiment of the present invention, Fig. 2 is a partial sectional view of the embodiment shown in Fig. 1, Fig. 3 is a view taken along arrow A-A in Fig. 2, and Fig. 4 is a schematic sectional view showing an embodiment of the present invention. 1 is a partial cross-sectional view showing the structure of a conventional fuel cell. 1 is an electrolyte plate, 2 is a cathode, 3 is an anode,
4 and 5 are flow channels, 7 is an upper holder, 8 is a lower holder, 10 is an electrolyte reservoir, 12 is a drain pipe, 13 is a heater, and 18 is a groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] カソードとアノードによつて両面を挟むように
した電解質板を、燃料ガス流路と酸化ガス流路を
画成するセパレータを介して複数積層し、前記カ
ソードへの酸化ガスの給排とアノードへの燃料ガ
スの給排を分離して行うようにした溶融炭酸塩型
積層燃料電池に於いて、前記複数積層したものを
上部ホルダと下部ホルダによつて挟持し、上部ホ
ルダに電解室溜めを形成すると共に該電解質溜め
に連通し下部ホルダ迄貫通して下部ホルダ外面に
開口する電解質供給路を設け、下部ホルダの電解
質供給路開口部にドレン管を接続し、該ドレン管
の周囲にドレン管を加熱するヒータを設け、更に
前記セパレータの電解質板に対する接触面外周縁
部に、前記電解質供給路と連通する溝を刻設した
ことを特徴とする溶融炭酸塩型積層燃料電池。
A plurality of electrolyte plates sandwiched on both sides by a cathode and an anode are stacked with separators interposed therebetween to define a fuel gas flow path and an oxidant gas flow path, and oxidant gas is supplied and discharged to the cathode and to the anode. In a molten carbonate stacked fuel cell in which fuel gas is supplied and discharged separately, the plurality of stacks are held between an upper holder and a lower holder, and an electrolytic chamber reservoir is formed in the upper holder. At the same time, an electrolyte supply path that communicates with the electrolyte reservoir, penetrates to the lower holder, and opens on the outer surface of the lower holder is provided, a drain pipe is connected to the electrolyte supply path opening of the lower holder, and the drain pipe is heated around the drain pipe. 1. A molten carbonate stacked fuel cell, characterized in that a heater is provided, and a groove communicating with the electrolyte supply path is carved in the outer peripheral edge of the contact surface of the separator with the electrolyte plate.
JP1986015213U 1986-02-05 1986-02-05 Expired JPH0416378Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986015213U JPH0416378Y2 (en) 1986-02-05 1986-02-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986015213U JPH0416378Y2 (en) 1986-02-05 1986-02-05

Publications (2)

Publication Number Publication Date
JPS62127670U JPS62127670U (en) 1987-08-13
JPH0416378Y2 true JPH0416378Y2 (en) 1992-04-13

Family

ID=30805936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986015213U Expired JPH0416378Y2 (en) 1986-02-05 1986-02-05

Country Status (1)

Country Link
JP (1) JPH0416378Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088109B2 (en) * 1988-11-25 1996-01-29 株式会社日立製作所 Molten carbonate fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227362A (en) * 1984-04-24 1985-11-12 Fuji Electric Corp Res & Dev Ltd Method of supplying electrolyte in matrix-type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227362A (en) * 1984-04-24 1985-11-12 Fuji Electric Corp Res & Dev Ltd Method of supplying electrolyte in matrix-type fuel cell

Also Published As

Publication number Publication date
JPS62127670U (en) 1987-08-13

Similar Documents

Publication Publication Date Title
CA1309457C (en) Multicell recombinant lead-acid battery with vibration resistantintercell connector
US5599637A (en) Performance zinc anode for batteries
US4761348A (en) Electrolytic cell stack with molten electrolyte migration control
CA1257325A (en) Lightweight bipolar metal-gas battery
US4830936A (en) Activatable electrochemical battery implementing lithium/oxyhalide couples
WO2019069764A1 (en) Battery casing, metal-air battery and method for producing metal-air battery
US9806360B2 (en) Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
JP3502508B2 (en) Direct methanol fuel cell
JPH0416378Y2 (en)
US5201924A (en) Filling mat-immobilized-electrolyte batteries
JPS62180966A (en) Impregnation method for liquefied electrolyte in fuel cell
JP5047567B2 (en) MICRO FUEL CELL WITH ELECTROLYTIC MEMBRANE REINFORCED BY FIXING ELEMENT AND METHOD FOR PRODUCING MICRO FUEL CELL
JPH0145095Y2 (en)
JPH0145096Y2 (en)
JP2504522B2 (en) Molten carbonate fuel cell
JPS63241868A (en) Fuel cell stack
JPH0782867B2 (en) Laminated fuel cell
JPH01143161A (en) Electrolyte circulation type battery
US5658690A (en) Modular molded components for a bipolar battery and the resulting bipolar battery
JPS6063876A (en) Llquid supplement equipment for matrix type fuel cell
JPH08321318A (en) Electrolyte refilling device of fused carbonate type fuel cell
JPH06101338B2 (en) Fuel cell
JPS62234870A (en) Fused carbonate fuel cell
KR100777240B1 (en) A separator for fuel cell
JPS61214367A (en) Carbonate supply method for fuel cell