JPH0145096Y2 - - Google Patents
Info
- Publication number
- JPH0145096Y2 JPH0145096Y2 JP1983192680U JP19268083U JPH0145096Y2 JP H0145096 Y2 JPH0145096 Y2 JP H0145096Y2 JP 1983192680 U JP1983192680 U JP 1983192680U JP 19268083 U JP19268083 U JP 19268083U JP H0145096 Y2 JPH0145096 Y2 JP H0145096Y2
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- reservoir
- electrolytic solution
- longitudinal direction
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003792 electrolyte Substances 0.000 claims description 56
- 239000000446 fuel Substances 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 10
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims 2
- 239000012495 reaction gas Substances 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 description 24
- 239000007788 liquid Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Description
【考案の詳細な説明】
〔考案の技術分野〕
この考案は、積層形燃料電池に関し、特に電解
液供給機構に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a stacked fuel cell, and particularly relates to an electrolyte supply mechanism.
従来の積層形燃料電池における電解液の供給お
よび保持機構としては第1図〜第5図に示すもの
があつた。
Conventional stacked fuel cells have a mechanism for supplying and holding an electrolyte as shown in FIGS. 1 to 5.
第1図はこの考案の対象となる積層形燃料電池
の一部を破断して内部を示す斜視図、第2図およ
び第3図はそれぞれ第1図の−線および−
線による要部断面図、第4図および第5図はそ
れぞれ第1図に示す従来の積層形燃料電池におけ
る電解液供給機構の一例を示す断面図である。図
において、1は電解質マトリツクス、2,3はそ
れぞれ電解質マトリツクス1を介在して対向する
燃料電極および酸化剤電極であり、これら1,
2,3で単電池を構成する。4はシール用パツキ
ン、5はガス分離板であり、単電池とガス分離板
5とを交互に複数個積層して電池堆を得る。6,
7はガス分離板5に設けられ、燃料および酸化剤
電極2,3にそれぞれ燃料および酸化剤ガスを供
給するガス通路、8は電解液供給孔、9は補強
板、10はガス分離板5に設けられ、電解質マト
リツクス1に電解液を供給するリザーバであり、
各リザーバ10は電解液供給孔8により連通して
いる。11はリザーバ10に充填された電解液保
持材であり、電解質マトリツクス1の周縁部を電
解液保持材11に連通させ、この連通部分より電
解液保持材11に浸透させた電解液を電解質マト
リツクス1に供給する。12は電池の温度を一定
に保つために単電池数個毎に挿入される冷却板で
あり、冷却板12から冷却板12までを電池堆の
1ブロツクとする。13は電解液を外部から電解
液供給孔8に供給する液供給口、14は電解液が
ブロツク内のすべてのリザーバ10に供給された
ことを確認する目的と、液供給時に電解液供給孔
8やリザーバ10内に混入した空気抜きを兼ねた
溢液口である。15は電解液の供給が完了した
後、電解液供給孔8内に溜つている電解液を抜き
取るための排液口である。第4図は電解液をブロ
ツクの上部から、第5図は下部からそれぞれ供給
する構造となつている。このようなものは、例え
ば特開昭58−10373号公報(58.1.20)「マトリツ
クス形燃料電池の補液装置」に記載されている。 FIG. 1 is a partially cutaway perspective view showing the inside of a stacked fuel cell to which this invention is applied, and FIGS. 2 and 3 are the - line and - line in FIG. 1, respectively.
4 and 5 are cross-sectional views showing an example of an electrolyte supply mechanism in the conventional stacked fuel cell shown in FIG. 1, respectively. In the figure, 1 is an electrolyte matrix, 2 and 3 are a fuel electrode and an oxidizer electrode that face each other with the electrolyte matrix 1 in between.
2 and 3 constitute a cell. 4 is a sealing gasket, and 5 is a gas separation plate, and a plurality of unit cells and gas separation plates 5 are alternately stacked to obtain a battery stack. 6,
7 is a gas passage provided in the gas separation plate 5 and supplies fuel and oxidant gas to the fuel and oxidizer electrodes 2 and 3, respectively; 8 is an electrolyte supply hole; 9 is a reinforcing plate; 10 is a gas passage provided in the gas separation plate 5. a reservoir provided and supplying an electrolyte to the electrolyte matrix 1;
Each reservoir 10 communicates with the electrolyte supply hole 8 . Reference numeral 11 denotes an electrolytic solution holding material filled in the reservoir 10, which communicates the peripheral edge of the electrolyte matrix 1 with the electrolytic solution holding material 11, and allows the electrolytic solution permeated into the electrolytic solution holding material 11 from this communicating portion to be transferred to the electrolyte matrix 1. supply to. Reference numeral 12 denotes a cooling plate that is inserted every several cells in order to keep the temperature of the battery constant, and the cooling plates 12 to 12 constitute one block of the battery stack. Reference numeral 13 indicates a solution supply port for supplying electrolyte from the outside to the electrolyte solution supply hole 8. Reference numeral 14 indicates a solution supply port 8 for the purpose of confirming that the electrolyte has been supplied to all the reservoirs 10 in the block, and for supplying the electrolyte solution to the electrolyte solution supply hole 8 when supplying the electrolyte. This is an overflow port that also serves as a vent for air mixed in the reservoir 10. Reference numeral 15 denotes a drain port for draining the electrolyte accumulated in the electrolyte supply hole 8 after the supply of the electrolyte is completed. 4 shows a structure in which the electrolyte is supplied from the top of the block, and FIG. 5 shows a structure in which the electrolyte is supplied from the bottom. Such a device is described, for example, in JP-A-58-10373 (58.1.20) ``Fluid Replacement Device for Matrix Type Fuel Cell''.
次に電解液を各電解質マトリツクス1へ供給す
る方法について、第1図〜第5図に従つて説明す
る。各電解質マトリツクス1へ電解液を供給する
には、まず、電解液を液供給口13から電解液供
給孔8を介してリザーバ10に供給する。リザー
バ10に供給された電解液は電解液保持材11に
浸透し、電解液保持材11に連通する燃料電極2
の周縁部から燃料電極2上面に一体成形化された
電解質マトリツクス1に浸透する。電解液が溢液
口14から溢れ電解液の供給が完了した後、各リ
ザーバ10間を連通する電解液供給孔8内に電解
液が溜つている状態では、各単電池が電解液で連
通してしまい、漏洩電流による電圧損失を生じる
ので、電解液供給孔8内の電解液は排液口15か
ら抜き取り、閉塞する。なお、各図中矢印は電解
液の流れる方向を示す。 Next, a method of supplying electrolyte solution to each electrolyte matrix 1 will be explained with reference to FIGS. 1 to 5. In order to supply electrolyte to each electrolyte matrix 1, first, the electrolyte is supplied from the solution supply port 13 to the reservoir 10 through the electrolyte supply hole 8. The electrolytic solution supplied to the reservoir 10 permeates into the electrolytic solution holding material 11, and the fuel electrode 2 communicates with the electrolytic solution holding material 11.
It penetrates into the electrolyte matrix 1 integrally formed on the upper surface of the fuel electrode 2 from the peripheral edge of the fuel electrode 2 . After the electrolytic solution overflows from the overflow port 14 and the supply of electrolytic solution is completed, each unit cell is communicated with the electrolytic solution while the electrolytic solution is accumulated in the electrolytic solution supply hole 8 that communicates between each reservoir 10. This causes voltage loss due to leakage current, so the electrolyte in the electrolyte supply hole 8 is drawn out from the drain port 15 and blocked. Note that the arrows in each figure indicate the direction in which the electrolytic solution flows.
従来の積層形燃料電池は以上のように構成され
ており、各リザーバ10には電解液保持材11が
充填されているので、液供給口13から供給され
た電解液はリザーバ10内での流路抵抗が大き
く、液供給口13から溢液口14へ到達するのに
長時間を要し、各ブロツクへの電解液の供給には
長時間を必要とした。特に第5図に示す構造の場
合は、上部単電池への電解液到達には長時間を要
するために、その間に電池特性が劣化するという
欠点があつた。 The conventional stacked fuel cell is constructed as described above, and each reservoir 10 is filled with the electrolyte holding material 11, so that the electrolyte supplied from the liquid supply port 13 does not flow within the reservoir 10. The path resistance was large, and it took a long time to reach the overflow port 14 from the liquid supply port 13, and it took a long time to supply the electrolytic solution to each block. Particularly, in the case of the structure shown in FIG. 5, it takes a long time for the electrolytic solution to reach the upper cell, which has the disadvantage that the battery characteristics deteriorate during that time.
この考案は上記のような従来のものの欠点を除
去するためになされたもので、リザーバの長手方
向に電解液が流通する通路を確保するように、上
記リザーバ底部に、長手方向に伸びる溝を設ける
ことにより、上記リザーバの平面面積を減少させ
ないで上記電解液通路を確保でき、電解液の供給
時間を短縮できる積層形燃料電池を提供すること
を目的としている。
This idea was made in order to eliminate the drawbacks of the conventional ones as described above, and a groove extending in the longitudinal direction is provided at the bottom of the reservoir to ensure a passage for the electrolyte to flow in the longitudinal direction of the reservoir. Accordingly, it is an object of the present invention to provide a stacked fuel cell in which the electrolyte passage can be ensured without reducing the planar area of the reservoir and the electrolyte supply time can be shortened.
以下、この考案の一実施例を図をもとに説明す
る。
An embodiment of this invention will be described below with reference to the drawings.
第6図はこの考案の一実施例に係るガス分離板
の一部を分解して示す斜視図、第7図、第8図は
それぞれ第6図に示すガス分離板の−線およ
び−線による断面図である。図において、1
6はリザーバ10底部に設けられ、長手方向に伸
びる溝である。 FIG. 6 is an exploded perspective view of a part of the gas separation plate according to an embodiment of the invention, and FIGS. 7 and 8 are taken by the - line and - line of the gas separation plate shown in FIG. 6, respectively. FIG. In the figure, 1
6 is a groove provided at the bottom of the reservoir 10 and extending in the longitudinal direction.
次に電解液を各電解質マトリツクス1へ供給す
る方法について説明する。第4図、第5図に示す
液供給口13より供給された電解液は、電解液供
給孔8を経て各リザーバ10の溝16に至る。電
解液は流路抵抗がないので短時間で溝16を満た
した後、溝16の上部に位置する電解液保持材1
1に浸透する。この場合、電解液は電解液保持材
11の長手方向の下面全域から同時に浸透するの
で、浸透速度は著しく速い。電解液保持材11か
ら電解質マトリツクス1への電解液の浸透、およ
び溢液口14や排液口15の操作は従来と同様で
ある。 Next, a method of supplying electrolyte solution to each electrolyte matrix 1 will be explained. The electrolytic solution supplied from the liquid supply port 13 shown in FIGS. 4 and 5 reaches the groove 16 of each reservoir 10 through the electrolytic solution supply hole 8. Since the electrolytic solution has no flow resistance, after filling the groove 16 in a short time, the electrolyte holding material 1 located above the groove 16
Penetrate into 1. In this case, the electrolyte permeates from the entire lower surface of the electrolyte holding material 11 in the longitudinal direction at the same time, so that the permeation speed is extremely high. The infiltration of the electrolyte from the electrolyte holding material 11 into the electrolyte matrix 1 and the operation of the overflow port 14 and drain port 15 are the same as in the prior art.
このように、リザーバ10の長手方向に電解液
が流通する通路すなわち溝16を確保したので、
従来のように電解液がリザーバ10内を通過する
際に電解液保持材11による抵抗を受けることが
なく、短時間で、しかも容易に各電解質マトリツ
クス1への電解液の供給(補給をも含む)が行な
える。 In this way, since the passage or groove 16 through which the electrolytic solution flows is secured in the longitudinal direction of the reservoir 10,
Unlike in the past, when the electrolyte passes through the reservoir 10, it is not subjected to resistance by the electrolyte holding material 11, and the electrolyte can be easily supplied (including replenishment) to each electrolyte matrix 1 in a short time. ) can be performed.
また、溝16をリザーバ10の底部に設けたの
で、リザーバ10の平面面積引いては電極の平面
面積を減少させることがない。 Further, since the groove 16 is provided at the bottom of the reservoir 10, the planar area of the reservoir 10 and the planar area of the electrodes are not reduced.
以上のように、この考案によれば、リザーバの
長手方向に電解液が流通する通路を確保するよう
に、上記リザーバ底部に、長手方向に伸びる溝を
設けたので、上記リザーバの平面面積を減少させ
ないで、引いては、電極の平面面積を減少させな
いで、上記電解液通路を確保でき、電解液の供給
時間を短縮できる効果がある。
As described above, according to this invention, a groove extending in the longitudinal direction is provided at the bottom of the reservoir to ensure a passage for the electrolyte to flow in the longitudinal direction of the reservoir, thereby reducing the planar area of the reservoir. In this case, the electrolyte passage can be ensured without reducing the planar area of the electrode, and the electrolyte supply time can be shortened.
第1図は従来の積層形燃料電池の一部を破断し
て示す斜視図、第2図および第3図はそれぞれ第
1図の−線および−線による断面図、第
4図および第5図はそれぞれ第1図に示す従来の
積層形燃料電池における電解液供給機構の一例を
示す断面図、第6図はこの考案の一実施例に係わ
るガス分離板の一部を分解して示す斜視図、第7
図および第8図はそれぞれ第6図に示すこの考案
の一実施例に係わるガス分離板の−線および
−線による断面図である。
図において、1は電解質マトリツクス、2は燃
料電極、3は酸化剤電極、5はガス分離板、6,
7は燃料および酸化剤ガス通路、8は電解液供給
孔、10はリザーバ、11は電解液保持材、13
は液供給口、14は溢液口、15は排気口、16
は溝である。なお、各図中同一符号は同一または
相当部分を示すものとする。
FIG. 1 is a partially cutaway perspective view of a conventional stacked fuel cell, FIGS. 2 and 3 are sectional views taken along lines - and - in FIG. 1, respectively, and FIGS. 4 and 5. 1 is a sectional view showing an example of an electrolyte supply mechanism in a conventional stacked fuel cell shown in FIG. 1, and FIG. 6 is a partially exploded perspective view showing a gas separation plate according to an embodiment of the invention. , 7th
8 and 8 are cross-sectional views taken along the - line and - line, respectively, of the gas separation plate according to an embodiment of the invention shown in FIG. 6. In the figure, 1 is an electrolyte matrix, 2 is a fuel electrode, 3 is an oxidizer electrode, 5 is a gas separation plate, 6,
7 is a fuel and oxidant gas passage, 8 is an electrolyte supply hole, 10 is a reservoir, 11 is an electrolyte holding material, 13
is the liquid supply port, 14 is the liquid overflow port, 15 is the exhaust port, 16
is a groove. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
極および酸化剤電極を有する単電池と、上記各電
極に反応ガスを供給するガス通路および上記電解
質マトリツクスに電解液を供給するリザーバを有
するガス分離板とを交互に複数個積層し、上記各
リザーバ間を電解液供給孔で連通し、上記各リザ
ーバに充填した電解液保持材に電解液を浸透させ
る積層形燃料電池において、上記リザーバの長手
方向に電解液が流通する通路を確保するように、
上記リザーバ底部に、長手方向に伸びる溝を設け
たことを特徴とする積層形燃料電池。 A unit cell having a fuel electrode and an oxidizer electrode facing each other with an electrolyte matrix interposed therebetween, and a gas separation plate having a gas passage supplying a reaction gas to each of the electrodes and a reservoir supplying an electrolyte to the electrolyte matrix are alternately arranged. In a stacked fuel cell in which a plurality of the above-mentioned reservoirs are stacked together, each of the above-mentioned reservoirs is communicated through an electrolyte supply hole, and the electrolyte is permeated into the electrolyte-retaining material filled in each of the above-mentioned reservoirs, the electrolyte is distributed in the longitudinal direction of the above-mentioned reservoirs. To ensure a route for distribution,
A stacked fuel cell characterized in that a groove extending in the longitudinal direction is provided at the bottom of the reservoir.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983192680U JPS6098265U (en) | 1983-12-12 | 1983-12-12 | stacked fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983192680U JPS6098265U (en) | 1983-12-12 | 1983-12-12 | stacked fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6098265U JPS6098265U (en) | 1985-07-04 |
JPH0145096Y2 true JPH0145096Y2 (en) | 1989-12-26 |
Family
ID=30414601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1983192680U Granted JPS6098265U (en) | 1983-12-12 | 1983-12-12 | stacked fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6098265U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2792626B2 (en) * | 1987-11-04 | 1998-09-03 | 三菱電機株式会社 | Fuel cell device and electrolyte replenishing method therefor |
-
1983
- 1983-12-12 JP JP1983192680U patent/JPS6098265U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6098265U (en) | 1985-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4366211A (en) | Control of electrolyte fill to fuel cell stack | |
JPH0286071A (en) | Solid polymer fuel cell | |
JPH0145096Y2 (en) | ||
JPH0145095Y2 (en) | ||
JPS63119166A (en) | Fuel battery | |
JPS59217955A (en) | Phosphoric-acid-type fuel cell | |
JPH0416378Y2 (en) | ||
JPH0129026B2 (en) | ||
JPH0129028B2 (en) | ||
JPS6063876A (en) | Llquid supplement equipment for matrix type fuel cell | |
JPS62222570A (en) | Stacked fuel cell | |
CA1319171C (en) | Dry fuel cell stack assembly | |
JPS63313472A (en) | Free electrolyte type fuel cell | |
JPS62165866A (en) | Electrolyte supply construction of fuel cell | |
JPS6362158A (en) | Device for replenishing electric solution for fuel cell | |
JPH06101338B2 (en) | Fuel cell | |
JPS62254364A (en) | Matrix type fuel cell | |
JPS58161266A (en) | Matrix type fuel cell | |
JPS6137736B2 (en) | ||
JPS58103784A (en) | Fuel cell | |
JPS58165262A (en) | Matrix type fuel cell | |
JPH03225766A (en) | Liquid holding device for fuel cell | |
JPH08321318A (en) | Electrolyte refilling device of fused carbonate type fuel cell | |
JPS6068561A (en) | Electrolyte supplement equipment of matrix type fuel cell | |
JPH1167259A (en) | Stack structure for fuel cell |