JPH0129028B2 - - Google Patents

Info

Publication number
JPH0129028B2
JPH0129028B2 JP57048379A JP4837982A JPH0129028B2 JP H0129028 B2 JPH0129028 B2 JP H0129028B2 JP 57048379 A JP57048379 A JP 57048379A JP 4837982 A JP4837982 A JP 4837982A JP H0129028 B2 JPH0129028 B2 JP H0129028B2
Authority
JP
Japan
Prior art keywords
electrolyte
matrix
bipolar plate
fuel cell
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57048379A
Other languages
Japanese (ja)
Other versions
JPS58165263A (en
Inventor
Noryuki Nakajima
Tomoyoshi Kamoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57048379A priority Critical patent/JPS58165263A/en
Publication of JPS58165263A publication Critical patent/JPS58165263A/en
Publication of JPH0129028B2 publication Critical patent/JPH0129028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 この発明は電解質にりん酸を用いたマトリツク
ス型燃料電池、特にその電解質の補給構造の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a matrix fuel cell using phosphoric acid as an electrolyte, and particularly to improvements in the electrolyte supply structure thereof.

この種の燃料電池は燃料電極と空気電極の2枚
の電極の間に電解質を含浸させたマトリツクスを
挟持して単電池が構成される。一方、各電極の層
内への燃料、空気の反応ガスの取り込みはガス拡
散方式によつて行なわれ、また単電池への反応ガ
ス供給方式としては、上記の単電池の上下両端に
バイポーラプレートを重ね合わせて積層し、この
バイポーラプレートに仕切られているガス通路溝
を通じて各電極へ燃料ガス、あるいは空気を送り
込む方式、およびバイポーラプレートの代りに電
極基板を反応ガス通路を仕切つた多孔質電極基板
となし、この電極基板のガス通路を通じて反応ガ
スを電極へ送り込む方式とがある。いずれの方式
の場合にも、電極の層内に安定した三相界面を形
成し、電極反応を効率よく行なわせるためには、
ガス拡散電極に必要以上に液状電解質が浸透する
ことを避けねばならない。
In this type of fuel cell, a single cell is constructed by sandwiching a matrix impregnated with an electrolyte between two electrodes, a fuel electrode and an air electrode. On the other hand, the intake of reactant gases such as fuel and air into the layers of each electrode is carried out by a gas diffusion method, and as a method of supplying reactant gases to single cells, bipolar plates are installed at both the upper and lower ends of the above-mentioned single cells. A method in which fuel gas or air is sent to each electrode through gas passage grooves partitioned by bipolar plates stacked one on top of the other, and a porous electrode substrate in which an electrode substrate is used instead of a bipolar plate to partition a reaction gas passage. There is a method in which the reaction gas is sent to the electrode through the gas passage of the electrode substrate. In either method, in order to form a stable three-phase interface within the electrode layer and conduct the electrode reaction efficiently,
Unnecessary penetration of the liquid electrolyte into the gas diffusion electrode must be avoided.

一方、マトリツクスへの電解質供給は、少なく
とも単電池を構成した後に行なう必要があり、更
に運転途中での補充を考慮してセルスタツクを組
立てた状態で行なえることが望まれる。この場合
に前述した理由から、マトリツクスへの電解質補
給は、電極層を通じて行なうことは不適であるた
め、直接マトリツクスへ供給できるようにするこ
とが必要となる。ところでマトリツクス層は耐
熱、耐食性を与えるために、一般にはシリコンカ
ーバイドの微粒子をポリテトラフルオロエチレン
で結着した薄膜状のものとして作られる。しかし
ここで結着剤として用いられるポリテトラフルオ
ロエチレンは撥水性を有しているので、液状電解
質はマトリツクス層内に浸透しずらい面がある。
このような理由から、従来の単電池では、その構
造および機能上の制約から単電池の本体に直接電
解質補給機構を設けることは極めて困難である
し、またマトリツクスへその一端から電解質を大
きな液圧を加えることなしに供給しても、マトリ
ツクスの全域へ一様に含浸させることが仲々むず
かしい等の難点があつた。
On the other hand, it is necessary to supply the electrolyte to the matrix at least after forming the single cells, and it is also desirable to be able to supply the electrolyte with the cell stack assembled in consideration of replenishment during operation. In this case, for the reasons mentioned above, it is not suitable to supply the electrolyte to the matrix through the electrode layer, so that it is necessary to be able to supply the electrolyte directly to the matrix. Incidentally, in order to provide heat resistance and corrosion resistance, the matrix layer is generally made in the form of a thin film made of fine particles of silicon carbide bonded with polytetrafluoroethylene. However, since the polytetrafluoroethylene used as the binder here has water repellency, it is difficult for the liquid electrolyte to penetrate into the matrix layer.
For these reasons, in conventional cells, it is extremely difficult to provide an electrolyte replenishment mechanism directly in the cell body due to its structural and functional limitations, and it is also extremely difficult to provide an electrolyte supply mechanism directly into the cell body from one end to the matrix under large liquid pressure. Even if it is supplied without adding it, there are drawbacks such as difficulty in uniformly impregnating the entire area of the matrix.

この発明は上記の点にかんがみなされたもので
あり、その目的はマトリツクスへの電解質の補給
が外部から容易に行なえ、しかもマトリツクス層
内でその全域へ均等に電解質を含浸できるように
したマトリツクス型燃料電池を提供することにあ
る。
This invention was made in consideration of the above points, and its purpose is to provide a matrix-type fuel that allows electrolyte to be easily replenished into the matrix from the outside, and that allows the electrolyte to be uniformly impregnated throughout the matrix layer. The goal is to provide batteries.

以下この発明を図示実施例に基づいて詳述す
る。
The present invention will be described in detail below based on illustrated embodiments.

第1図ないし第4図に示す実施例は単電池をバ
イポーラプレートを介して積層し、セルスタツク
を構成するタイプの燃料電池の例である。各図に
おいて、1は単電池、2は単電池の上下に重ね合
わせて積層されたバイポーラプレートである。こ
のうち単電池1は上下2枚の燃料電極3および空
気電極4と、電極3と4の間に挟持されたマトリ
ツクス5との積層体としてなり、かつこの積層組
立体はその外周縁が撥水性のあるシール材6によ
つて被覆されている。ところでこの発明により、
第2図に明示されているように、前記のマトリツ
クス5はそれぞれ電極3,4の面に結着形成され
た二つの分割マトリツクス層5Aと5Bに分割さ
れ、かつ分割マトリツクス層5Aと5Bの間には
電解質供給通路となる中間層7が形成されてい
る。この中間層7は例えば親水性に優れた特性を
示す炭素系繊維で作られたカーボンベーパーある
いはシリコンカーバイドの繊維を抄いたものなど
を分割マトリツクス層5Aと5Bの間に介挿する
ことにより形成される。この中間層7では電解質
がマトリツクス層5の中を面方向に浸透移動する
よりもはるかに電解質が流れ易くなる。また単電
池1の上面側には、その左右両端域に電極3およ
び分割マトリツクス層5Aを貫通して中間層7に
達する電解質補給穴8が単電池の側縁に沿つて多
数あけてある。
The embodiments shown in FIGS. 1 to 4 are examples of fuel cells of a type in which unit cells are stacked via bipolar plates to form a cell stack. In each figure, 1 is a single cell, and 2 is a bipolar plate laminated above and below the single cell. Among these, the unit cell 1 is a laminate of two upper and lower fuel electrodes 3 and an air electrode 4, and a matrix 5 sandwiched between the electrodes 3 and 4, and this laminate assembly has a water-repellent outer periphery. It is covered with a sealing material 6. By the way, with this invention,
As clearly shown in FIG. 2, the matrix 5 is divided into two divided matrix layers 5A and 5B which are bonded to the surfaces of the electrodes 3 and 4, respectively, and between the divided matrix layers 5A and 5B. An intermediate layer 7 serving as an electrolyte supply passage is formed in the middle layer 7 . This intermediate layer 7 is formed by interposing, for example, carbon vapor made of carbon-based fibers having excellent hydrophilic properties or silicon carbide fibers between the divided matrix layers 5A and 5B. Ru. In this intermediate layer 7, the electrolyte flows much more easily than when the electrolyte permeates through the matrix layer 5 in the planar direction. Further, on the upper surface side of the unit cell 1, a large number of electrolyte replenishment holes 8 are provided along the side edges of the unit cell 1, penetrating the electrode 3 and the divided matrix layer 5A and reaching the intermediate layer 7 at both left and right end areas.

一方、第3図、第4図に示すように、バイポー
ラプレート2はその上面と下面に互いに直交する
空気通路9および燃料ガス通路溝10が形成され
たガス不透過性の導電材で作られたものである。
そしてこの発明により、バイポーラプレート2の
左右両端域の下面側には先記した単電池1の電解
質補給穴8の列に対向して下面を開放した両端閉
塞の凹溝としてなる電解質貯蔵タンク11が燃料
ガス通路溝10と平行して画成されている。更に
このタンク11に連ねてバイポーラプレート2の
外側面に開口する電解質補給口12が設けてあ
る。
On the other hand, as shown in FIGS. 3 and 4, the bipolar plate 2 is made of a gas-impermeable conductive material and has air passages 9 and fuel gas passage grooves 10 orthogonal to each other formed on its upper and lower surfaces. It is something.
According to the present invention, an electrolyte storage tank 11 is provided on the lower surface side of both left and right end regions of the bipolar plate 2 as a concave groove whose lower surface is open and closed at both ends, facing the row of electrolyte replenishment holes 8 of the cell 1 described above. It is defined parallel to the fuel gas passage groove 10. Further, an electrolyte replenishment port 12 is provided in series with the tank 11 and opens on the outer surface of the bipolar plate 2.

上記の構成において、電解質貯蔵タンク11は
電極3および分割マトリツクス層5Aを貫通する
穴8を介して単電池内の中間層7に連通し合つて
いる。したがつて2箇所にある電解質補給口12
のいずれか一方を通じて外部から電解質を注入す
ると、電解質は貯蔵タンク11、補給穴8を通つ
て中間層7に流れ込み、ここから分割マトリツク
ス層5Aおよび5Bの層内へ浸透して行く。なお
この電解質の流入に伴つてもう一方の補給口12
からはマトリツクス層5、中間層7に残留してい
るガスが抜け出る。かくしてセルスタツクを組立
てた後でも、補給口12へパイプを接続して外部
から電解質を注入し、マトリツクス5へ円滑に補
給含浸させることが可能になる。
In the above arrangement, the electrolyte storage tank 11 communicates with the intermediate layer 7 in the cell via the electrode 3 and the hole 8 passing through the split matrix layer 5A. Therefore, there are two electrolyte supply ports 12.
When electrolyte is injected from the outside through either one of the two, the electrolyte flows into the intermediate layer 7 through the storage tank 11 and the supply hole 8, and from there permeates into the divided matrix layers 5A and 5B. In addition, as this electrolyte flows in, the other supply port 12
The gas remaining in the matrix layer 5 and intermediate layer 7 escapes. In this way, even after the cell stack is assembled, it is possible to connect the pipe to the replenishment port 12 and inject electrolyte from the outside, thereby allowing smooth replenishment and impregnation into the matrix 5.

しかも分割マトリツクス層5Aと5Bの間には
流路抵抗が小さく、かつ撥水性のない中間層7が
形成されているので、電解質は抵抗なく流れ込
み、この中間層7から上下の分割マトリツクス層
5A,5Bの全面域へ一様に含浸されることにな
る。また前記の貯蔵タンク11は電池の運転時に
はリザーバとしての役目を果し、運転状態の変化
に伴つてマトリツクス5に含浸保持されている電
解質の体積が増減しても、過不足のないようタン
ク11で吸収することができる。加えて中間層7
を設けたことにより、マトリツクスの端部からで
も十分全面域へ浸透させることができ、それだけ
電極のガス拡散領域を広く活用し得て電池の性能
向上にも寄与できる。
Moreover, since an intermediate layer 7 with low flow path resistance and no water repellency is formed between the divided matrix layers 5A and 5B, the electrolyte flows without resistance from this intermediate layer 7 to the upper and lower divided matrix layers 5A, The entire area of 5B will be uniformly impregnated. Furthermore, the storage tank 11 serves as a reservoir during operation of the battery, and even if the volume of the electrolyte impregnated and held in the matrix 5 increases or decreases as the operating conditions change, the tank 11 ensures that there is no excess or deficiency. can be absorbed. In addition, middle layer 7
By providing this, it is possible to penetrate the entire surface area even from the edges of the matrix, and the gas diffusion area of the electrode can be utilized more widely, which can also contribute to improving the performance of the battery.

なお図示実施例におけるバイポーラプレートの
代りに、多孔質電極基板を用いたタイプの燃料電
池でもまつたく同様に実施できる。この場合には
電解質貯蔵タンクが電極基板の内部に画成され
る。
It should be noted that, in place of the bipolar plate in the illustrated embodiment, a type of fuel cell using a porous electrode substrate can be used in the same manner. In this case an electrolyte storage tank is defined within the electrode substrate.

以上述べたように、この発明は単電池のマトリ
ツクス層を2層に分割してその間に電解質通路と
して働く中間層を形成するとともに、この単電池
に組合わせて積層されるバイポーラプレートある
いは多孔質電極基板の内部に電解質貯蔵タンクを
画成し、しかもこのタンクと前記の中間層との間
を電極を貫通して連通し合うように構成したもの
であり、したがつてマトリツクスへの電解質補給
を外部からスムーズにしかもマトリツクス全域に
均等に行き渡るように行なうことができ、その実
益は極めて大である。
As described above, the present invention divides the matrix layer of a single cell into two layers, forms an intermediate layer between them that serves as an electrolyte passage, and a bipolar plate or porous electrode that is laminated in combination with this single cell. An electrolyte storage tank is defined inside the substrate, and the tank and the intermediate layer are communicated through the electrodes, so that electrolyte replenishment to the matrix can be carried out externally. This can be done smoothly and evenly over the entire matrix, and the practical benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による単電池の構成
を示す一部切欠平面図、第2図は第1図における
矢視―断面図、第3図は単電池にバイポーラ
プレートを組合わせた実施例の一部切欠平面図、
第4図は第3図における矢視―断面図であ
る。 1…単電池、2…バイポーラプレート、3,4
…電極、5…マトリツクス、5A,5B…分割マ
トリツクス層、7…中間層、8…穴、11…電解
質貯蔵タンク、12…電解質補給口。
Fig. 1 is a partially cutaway plan view showing the structure of a unit cell according to an embodiment of the present invention, Fig. 2 is a sectional view taken in the direction of the arrow in Fig. 1, and Fig. 3 is an embodiment in which a unit cell is combined with a bipolar plate. A partially cutaway plan view of an example,
FIG. 4 is a cross-sectional view taken in the direction of the arrows in FIG. 3. 1...Single cell, 2...Bipolar plate, 3,4
...electrode, 5...matrix, 5A, 5B...divided matrix layer, 7...intermediate layer, 8...hole, 11...electrolyte storage tank, 12...electrolyte supply port.

Claims (1)

【特許請求の範囲】 1 上下2枚の電極の間に電解質を含浸保持する
マトリツクスを挟持して単電池を構成したマトリ
ツクス型燃料電池において、前記マトリツクスを
2層に分割してこの分割層の間に電解質供給通路
となる中間層を設けるとともに、前記上下の電極
のうちの上位の電極側に積層された反応ガス供通
路を有するバイポーラプレートあるいは多孔質電
極基板の内部に電解質貯蔵タンクを画成し、かつ
該タンクと前記中間層との間を電極を貫通して上
下に連通したことを特徴とするマトリツクス型燃
料電池。 2 特許請求の範囲第1項記載の燃料電池におい
て、バイポーラプレートあるいは多孔質電極基板
がその内部に画成された電解質貯蔵タンクへ通じ
る電解質補給口を外側面に開口して備えているこ
とを特徴とするマトリツクス型燃料電池。
[Scope of Claims] 1. In a matrix type fuel cell in which a single cell is constructed by sandwiching a matrix impregnated with and holding an electrolyte between two upper and lower electrodes, the matrix is divided into two layers, and a layer is formed between the divided layers. An intermediate layer serving as an electrolyte supply passage is provided in the electrode, and an electrolyte storage tank is defined inside a bipolar plate or a porous electrode substrate having a reactive gas supply passage laminated on the upper electrode side of the upper and lower electrodes. , and a matrix fuel cell characterized in that the tank and the intermediate layer are communicated vertically through electrodes. 2. The fuel cell according to claim 1, characterized in that the bipolar plate or porous electrode substrate is provided with an electrolyte replenishment port opening on the outer surface leading to an electrolyte storage tank defined inside the bipolar plate or porous electrode substrate. A matrix type fuel cell.
JP57048379A 1982-03-26 1982-03-26 Matrix type fuel cell Granted JPS58165263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048379A JPS58165263A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048379A JPS58165263A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Publications (2)

Publication Number Publication Date
JPS58165263A JPS58165263A (en) 1983-09-30
JPH0129028B2 true JPH0129028B2 (en) 1989-06-07

Family

ID=12801679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048379A Granted JPS58165263A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS58165263A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088463U (en) * 1983-11-24 1985-06-18 三菱電機株式会社 Fuel cell
JPH0610988B2 (en) * 1985-11-20 1994-02-09 三菱電機株式会社 Electrolyte replenishing device for stacked fuel cell

Also Published As

Publication number Publication date
JPS58165263A (en) 1983-09-30

Similar Documents

Publication Publication Date Title
EP0343679B1 (en) Water and heat management for solid polymer fuel cell stack
US6280870B1 (en) Combined fuel cell flow plate and gas diffusion layer
US5176966A (en) Fuel cell membrane electrode and seal assembly
CA1105991A (en) Porous carbon foam gas distribution layer for fuel cells
JP2922132B2 (en) Polymer electrolyte fuel cell
JPS6130385B2 (en)
US4855194A (en) Fuel cell having electrolyte inventory control volume
JPS5931568A (en) Film cooling type fuel battery
JP2007073514A (en) Electrode for fuel cell
JPS61227370A (en) Fuel battery assembly
JPH0729579A (en) Separator for fuel cell and cell stack for fuel cell
JPH0129028B2 (en)
US4596749A (en) Method and apparatus for adding electrolyte to a fuel cell stack
JPS63119166A (en) Fuel battery
JPH0963602A (en) Solid polymer electrolyte membrane fuel cell
JPH0421988B2 (en)
JPS5848366A (en) Fuel cell
JPS6010564A (en) Seal structure for fuel cell
JPS58103784A (en) Fuel cell
JPH06101338B2 (en) Fuel cell
JPH0145096Y2 (en)
JPS58161261A (en) Fuel cell
JPS59132572A (en) Fuel cell
JPS58165262A (en) Matrix type fuel cell
JPH0311556A (en) Electrolyte reservoir structure for fuel battery