JPS6068561A - Electrolyte supplement equipment of matrix type fuel cell - Google Patents

Electrolyte supplement equipment of matrix type fuel cell

Info

Publication number
JPS6068561A
JPS6068561A JP58176684A JP17668483A JPS6068561A JP S6068561 A JPS6068561 A JP S6068561A JP 58176684 A JP58176684 A JP 58176684A JP 17668483 A JP17668483 A JP 17668483A JP S6068561 A JPS6068561 A JP S6068561A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
pressure
replenishment
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58176684A
Other languages
Japanese (ja)
Inventor
Atsuo Watanabe
敦夫 渡辺
Masahiro Sakurai
正博 桜井
Toshihiro Sugiyama
杉山 智弘
Noriyuki Nakajima
中島 憲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58176684A priority Critical patent/JPS6068561A/en
Publication of JPS6068561A publication Critical patent/JPS6068561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide electrolyte supplement equipment of matrix type fuel cell which can surely supplement electrolyte even if fuid resistance in an electrolyte supplement path of a cell is varied. CONSTITUTION:A pressure vessel 21 is incorporated in a manifold cover 11 which supplies reaction gas, for example, fuel gas F for a cell stack 10 formed by stacking a large number of unit cells 1. Electrolyte is supplemented by changing a cross electromagnetic valve to connect a pressure pipe 31 to a piece 38. By this operation, when the pressure of a pressure gas source N is increase by several tens mm.Hg than that of reaction gas, the pressure in the pressure vessel is increased by a specified value than that of reaction gas, and electrolyte stored in an electrolyte vessel 22 is supplemented at one time through electrolyte supplement tubes 23.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電解液保持体としての多孔性のマトリックス層
を含む単電池を複数個積層してなるマトリックス形燃料
電池の電解液補給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an electrolyte replenishing device for a matrix fuel cell formed by stacking a plurality of unit cells including a porous matrix layer as an electrolyte holder.

〔従来技術きその問題点〕[Problems with conventional technology]

前述のマトリックス形燃料電池においては、電解液を保
持する多孔性の絶縁体層としてなるマトリックス層を挾
んで、燃料ガスが供給されアノード反応を維持する燃料
ガス電極1例えば水素電極と、酸化ガスが供給されカソ
ード反応を維持する酸化ガス電極1例えば空気電極とが
配置される。
In the above-mentioned matrix type fuel cell, a fuel gas electrode 1, for example, a hydrogen electrode, to which fuel gas is supplied and which maintains an anode reaction, and an oxidizing gas An oxidizing gas electrode 1, for example an air electrode, is arranged which is supplied and maintains the cathodic reaction.

これらは一つの発電要素体としての単電池を構成するが
、前述の燃料、酸化両電極に連続的に反応ガスすなわち
燃料カスおよび酸化ガスを供鞄するために、電極自体に
反応ガスを通流させるための溝を切るか、単電池を複数
個積層する際に燃料ガス区画と酸化ガス区間とを仕切る
ために単電池相互間に介装されるセパレータ板に溝が設
けられる。
These constitute a unit cell as a power generation element, but in order to continuously supply the reactant gas, that is, fuel residue and oxidant gas to both the fuel and oxidation electrodes mentioned above, the reactant gas is passed through the electrode itself. Either grooves are cut to separate the fuel gas section and the oxidizing gas section when a plurality of unit cells are stacked, or grooves are provided in the separator plate interposed between the unit cells to separate the fuel gas section and the oxidizing gas section.

前者を溝つき電極構造、後者を溝つきセパレータ板構造
と呼ぶことにする。
The former will be referred to as a grooved electrode structure, and the latter will be referred to as a grooved separator plate structure.

一方、電解液に溶解される電解質ないしは電解液として
用いられる電解質には、一般に化学的変化を生じること
が少なくかつ蒸発等による減少も少ない物質2例えばり
ん酸が使用されるが、電池の長期運転中には電解質が微
量すっではあるが電池内から失なわれて行くことを避け
ることができず、電解質ないしは電解液の補給のための
なんらかの手段を講じておかねばならない。
On the other hand, the electrolyte dissolved in the electrolyte or the electrolyte used as the electrolyte is generally a substance that undergoes few chemical changes and is less likely to decrease due to evaporation, etc. 2 For example, phosphoric acid is used, but it is important to avoid long-term battery operation. Although there is only a small amount of electrolyte in the battery, it is unavoidable that the electrolyte will be lost from the inside of the battery, and some means must be taken to replenish the electrolyte or electrolyte.

次第に失なわれて行く電解質をマトリックスに補給する
ため、単電池あるいはその84一体内に電解液を貯留す
るりサーバが設けられることが多い。
In order to replenish the matrix with electrolyte that is gradually being lost, a server is often provided to store the electrolyte within the cell or its 84 unit.

このり→ノ゛−バは、例えば前述の溝つき電極構造の場
合は電極内に、溝つきセパレータ板構造の場合はセパレ
ータ板に設けられるが、電池内の限られたスペース内に
設けなければならないので、貯留できる電解液の量に制
限があり、かつ溝つき電極構造の場合は多孔質材料で構
成される該電極のガス拡散機能がリザーバを設けること
により多少とも阻害される欠点がある。
For example, in the case of the above-mentioned grooved electrode structure, this node is provided inside the electrode, and in the case of the grooved separator plate structure, it is provided on the separator plate, but it must be provided within the limited space inside the battery. Therefore, there is a limit to the amount of electrolyte that can be stored, and in the case of a grooved electrode structure, the gas diffusion function of the electrode made of a porous material is hindered to some extent by providing a reservoir.

電解質補給の問題を解決するには、上述の欠点を克服す
ることのほか、次の事項を満足する電解液補給装置を開
発する必要がある。
In order to solve the problem of electrolyte replenishment, it is necessary to overcome the above-mentioned drawbacks and to develop an electrolyte replenishment device that satisfies the following requirements.

(at 各単電池への電解液補給路が共通していると、
単電池相互間が電解液を通じていわゆる液絡を生じるの
で、各単電池への電解液補給路は極力相互に分離ないし
は電気的に絶縁しなければならない。
(at If the electrolyte supply route to each cell is common,
Since a so-called liquid junction occurs between the cells through the electrolyte, the electrolyte supply paths to each cell must be separated or electrically insulated from each other as much as possible.

+bl 電池を長期にわたって運転する上で、電解液補
給路からの洩れを防止しなければならない。
+bl When operating a battery for a long period of time, it is necessary to prevent leakage from the electrolyte supply path.

tc+ 電解液は温度が変化すると粘度がかなり変化し
やすく、また電解液中に気泡が混入すると見掛けの粘性
ないしは流体抵抗が変わってくるので、多少流体抵抗が
変化しても確実に逼解黄を補給できなくてはならない。
tc+ The viscosity of the electrolyte tends to change considerably when the temperature changes, and if air bubbles are mixed into the electrolyte, the apparent viscosity or fluid resistance will change, so even if the fluid resistance changes slightly, it will not cause yellowing. Must be able to replenish.

とくにfc1項は、電極ないしはセパレータ板を極力薄
くして電池積層体の外形寸法を縮小しようとするよき、
電解液補給路の断面積がこれに応じて当然小さくなるか
ら、信頼性の高い電解液補給装置ζを開発する上でのか
なりの障害となる因子である。
In particular, the fc1 term is when trying to reduce the external dimensions of the battery stack by making the electrodes or separator plates as thin as possible.
Since the cross-sectional area of the electrolyte replenishment path is naturally reduced accordingly, this is a factor that poses a considerable hindrance to the development of a highly reliable electrolyte replenishment device ζ.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述のような難点を見服して、電池内
の電解液補給路中の流体抵抗が変化しても、確実1こ′
iH解液を補給てきるマトリックス形・燃料電池の電解
液補給装置を得ることにある。
An object of the present invention is to take into consideration the above-mentioned drawbacks, and to ensure that even if the fluid resistance in the electrolyte replenishment path inside the battery changes,
The object of the present invention is to obtain an electrolyte replenishing device for a matrix type fuel cell that can replenish iH solution.

〔発明の要点〕[Key points of the invention]

前記目的を達成するため、本発明においては、ま′g″
電池に補給すべき電解質を貯留する電解液容器を′tニ
池積層体外に設けて、補給に必要な電解液を十分な献だ
け貯留させる。この容器は電池積層体内の電池の積層準
位ごとに設けられるので該積層単位相互間の電解液を通
じての液絡が防止される。積層単位は必すしも単電池と
する必要はなく、液絡が許される限度で数個の単電池が
積層された単位であってよい。
In order to achieve the above object, the present invention
An electrolytic solution container for storing electrolyte to be replenished to the battery is provided outside the two-cell stack, and a sufficient amount of electrolyte necessary for replenishment is stored. Since this container is provided for each stack level of the batteries in the battery stack, liquid junctions through the electrolyte between the stack units are prevented. The laminated unit does not necessarily have to be a single cell, but may be a unit in which several single cells are laminated as long as liquid junction is allowed.

つぎにかかる電解液容器を、燃料電池に供給される反応
ガスとは隔離された区画を形成する密訝4箱としてなる
加圧容器内に、複斂個相互に軍気的に絶縁して収納する
。さらに、該電解液容器内Q)電解液を、望ましくは一
本の連続したチューフ゛力)らなる電解液補給チューブ
を介して、該電1・仔液容器から電解液を補給すべき谷
単電池内θ)電j’l’J液補給路に連通させておいた
上で、加圧手段により加圧容器内のカス圧力を電池内の
反応カスQ)圧力よりも僅かな程度高めることにより、
電解液容器17」の電解液を押し出して前記電解液補給
チューブを通して各単電池の電解液補給路に供給する。
Next, the electrolyte containers are stored in a pressurized container, which is a four-pack box that forms a compartment isolated from the reaction gas supplied to the fuel cell, and is electrically insulated from each other. do. Further, the electrolyte in the electrolyte container Q) is preferably supplied to the valley cell to which the electrolyte is to be replenished from the electrolyte container via an electrolyte replenishment tube consisting of one continuous tube. By connecting the inside θ) to the liquid replenishment path and increasing the scum pressure in the pressurized container by a pressurizing means to a slight degree higher than the reaction scum Q) pressure inside the battery,
The electrolyte in the electrolyte container 17 is pushed out and supplied to the electrolyte supply path of each unit cell through the electrolyte supply tube.

マトリックス層内の電解液はこれに接するカス拡散性の
電極内に滲出しており、常時は電極内で反応ガスの圧力
と均衡した圧力下にあるので、iす述の加圧容器に川け
る圧力を電池内の反応プyスυ〕圧力より大幅に高める
ことは詑−されなGAoこυ)ような電池内の圧力均衡
を大きく狂わせることなく、かつ電解液を確実に補給す
るための差圧は数十ミリメートル水柱程度であるから、
前述の加圧手段による加圧は差圧がこの程度の所定値に
なるようにかなり厳密に制御をしてやる必要がある。
The electrolyte in the matrix layer oozes into the gas-diffusion electrode in contact with it, and is always under a pressure balanced with the pressure of the reaction gas within the electrode, so it can flow into the pressurized container mentioned in i. It is unwise to raise the pressure significantly higher than the reaction pressure within the battery (GAo) without significantly disturbing the pressure balance within the battery, and to ensure that the electrolyte is replenished. Since the pressure is about several tens of millimeters of water column,
The pressurization by the above-mentioned pressurizing means must be controlled quite strictly so that the differential pressure becomes a predetermined value of this order.

上述のように構成された本発明による電解液補給装置に
おいては、前述の加圧容器への加圧状態を常時維持して
おいて、電池に電解液が常に補給される状態にすること
はもちろん可能であるが、電解質の電池からの逸出速度
は極めて小さいので、ふつうは間欠的に加圧容器を加圧
して電解液を補給してやることでよい。かかる場合は、
所定時間加圧容器の加圧状態を維持した後に、加圧容器
内の圧力を電池内の反応ガスの圧力と等しい圧力への制
御状態に戻してやる。このように電解液補給時には、′
d解液液補給路内電解液は電池内の反応カスの圧力より
も所定値だけ高い圧力に付勢されるので、該補給路中の
電解液に対する流体抵抗が温度変化や気泡の混入等の原
因によって多少変化しても、補給は確実に行なわれる。
In the electrolyte replenishment device according to the present invention configured as described above, it is possible to maintain the pressurized state of the pressurized container at all times so that the electrolyte is constantly replenished into the battery. Although this is possible, the rate at which the electrolyte escapes from the battery is extremely slow, so it is usually sufficient to replenish the electrolyte by intermittently pressurizing the pressurized container. In such case,
After maintaining the pressurized state of the pressurized container for a predetermined period of time, the pressure inside the pressurized container is returned to a controlled state equal to the pressure of the reaction gas within the battery. In this way, when replenishing the electrolyte,
d The electrolyte in the solution supply path is energized to a pressure higher than the pressure of the reaction scum in the battery by a predetermined value, so the fluid resistance to the electrolyte in the supply path is reduced by temperature changes, air bubbles, etc. Replenishment will be ensured even if it varies slightly depending on the cause.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を参照しながら詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はリブ付き電極構造の電池に用いられる電極3の
電極基材3aの要部を示すもので、図示のように多数の
溝3Cが切られており、反応カスがこの溝に通流される
。この電極基材3aの溝に平行な端縁部には電解液補給
溝3d、3eが切られており、この内の溝3eには電解
液補給チューブ23が嵌められていて、電解液とくにり
ん酸番と耐食性のある接着剤23a9例えばテフロン系
接着剤により溝3eと接着されており、該接着剤23a
により溝3dは電池外に対して液密に封じられている。
FIG. 1 shows the main part of the electrode base material 3a of the electrode 3 used in a battery with a ribbed electrode structure. As shown in the figure, a large number of grooves 3C are cut, and reaction scum flows through these grooves. It will be done. Electrolyte replenishment grooves 3d and 3e are cut in the edge portion of the electrode base material 3a parallel to the grooves, and an electrolyte replenishment tube 23 is fitted into the groove 3e of these grooves, and an electrolyte replenishment tube 23 is inserted into the groove 3e. An adhesive 23a9 having acid number and corrosion resistance is bonded to the groove 3e by, for example, a Teflon adhesive, and the adhesive 23a
Therefore, the groove 3d is liquid-tightly sealed from the outside of the battery.

溝3dの底面には、図示のように連通孔3fがうがたれ
ていて、溝3d内の電解液を後述のマトリックス層に連
通させる役目を果たす。なお、電極基材3aはガス拡散
性材料1例えば多孔質のグラファイト材料で構成される
ので溝3a、3eの周壁部には撥液性のテフロン系拐料
寺を浸透させておいて、溝3d 、3eから電解液か電
極基材3a内に無用に浸透しないように処置される。
As shown in the figure, a communication hole 3f is formed at the bottom of the groove 3d, and serves to communicate the electrolytic solution in the groove 3d with a matrix layer to be described later. Note that since the electrode base material 3a is made of a gas diffusive material 1, for example, a porous graphite material, a liquid-repellent Teflon-based material is infiltrated into the peripheral walls of the grooves 3a and 3e, and the grooves 3d , 3e to prevent unnecessary penetration of the electrolytic solution into the electrode base material 3a.

第2図の右方には、かかる電解液補給路を有する電極基
板3aを含む電池積層体10の一部uJr面が示されて
いる。図において、符号1で示す部分が1個の単電池を
示し、各単電池1はマトリックス層2と、燃料ガス電極
3と、酸化ガス電極4とを含んでいる。さらに各電極3
,4は、それぞれ電極基板3a 、4aと、触媒層3b
 、4bとからなっており、各電極基板3a 、4aは
マ) l)ツクス層2と反対側の曲にそれぞれ反応ガス
用の溝を有する。図示された酸化ガス側の電極基板4a
の溝4Cは、周知のように前述の燃料ガス側の電極基板
3aの溝3Cと直交すべ方向に切られている。
On the right side of FIG. 2, a partial uJr surface of the battery stack 10 including the electrode substrate 3a having such an electrolyte supply path is shown. In the figure, a portion indicated by the reference numeral 1 represents one unit cell, and each unit cell 1 includes a matrix layer 2, a fuel gas electrode 3, and an oxidizing gas electrode 4. Furthermore, each electrode 3
, 4 are electrode substrates 3a, 4a and catalyst layer 3b, respectively.
, 4b, each of the electrode substrates 3a and 4a has grooves for reactant gas on the curves on the opposite side from the Tx layer 2. Illustrated electrode substrate 4a on the oxidizing gas side
As is well known, the groove 4C is cut in a direction perpendicular to the groove 3C of the electrode substrate 3a on the fuel gas side.

これらの単電池1は周縁部に配されたパツキン6ととも
に、気密性のセパレータ板5を介して相互に積層されて
、前述の電池積層lOを形成している。
These unit cells 1 are stacked together with a gasket 6 disposed on the periphery through an airtight separator plate 5 to form the above-mentioned battery stack 1O.

各単電池1に電解液を補給するための電解液補給路とし
ての前述の溝3d、3e′!6よび連通孔3fは、電解
液補給チューブ23を介して1図の左方に一部断面で示
された加圧y器21内に納められた電解液容器22内に
貯留された電解液Eに連通されている。このため、電解
液補給チューブ23は、加圧容器の容器壁21aを気密
/ずツキン23bを介して貫通し、その端部23cは各
電解液容器22の底面付近に開口している。この各醒解
欣補給チューブとしては、液の洩れを防止する上で1本
の連続したチューブとするのが望ましく、かつその材料
は電解液2例えばりん酸に対する耐食性が要求されるの
で、例えばテフロンチューブがよく、またその可撓性が
チューブの引回しの上で有利である。
The aforementioned grooves 3d and 3e' serve as electrolyte replenishment paths for replenishing electrolyte to each cell 1! 6 and the communication hole 3f, the electrolyte E stored in the electrolyte container 22 housed in the pressurizer 21 shown partially in cross section on the left side of FIG. is communicated with. For this reason, the electrolyte supply tube 23 penetrates the container wall 21a of the pressurized container via an airtight seal 23b, and its end portion 23c opens near the bottom surface of each electrolyte container 22. It is preferable to use one continuous tube for each cooling liquid replenishment tube in order to prevent liquid leakage, and since the material is required to have corrosion resistance against electrolyte 2, such as phosphoric acid, for example, Teflon, etc. Tubes are preferred and their flexibility is advantageous in routing the tubes.

各電解液容器22は、電解液への耐食性がありかつ相互
に電気的絶縁をする上で絶縁材料で構成するのがよく、
例えばりん酸電解質に対してはテフロンの成形品が好適
である。もちろん、咳容器は必ずしも電気絶縁性である
賛はなく、他の適宜の手段で相互に絶縁ができればよい
。図示のように該容器22は電解液補給チューブ23が
挿通される開口22aを備えており、できればもう一つ
の開口22bを設ければ加圧容器21内のスペースに対
して連通されるとともに、該容器22に電解液を装入す
る上の便宜が得られる。これらの電解液容器22は加圧
容器21の連通孔2工Cを備えた棚2Ib上に図示しな
い適宜の手段により固定ないし固定的に載置される。
Each electrolyte container 22 is preferably made of an insulating material that has corrosion resistance to the electrolyte and electrically insulates each other.
For example, Teflon moldings are suitable for phosphoric acid electrolytes. Of course, the cough containers do not necessarily have to be electrically insulating, but may be insulated from each other by other appropriate means. As shown in the figure, the container 22 is provided with an opening 22a through which the electrolyte replenishment tube 23 is inserted.If possible, another opening 22b may be provided to communicate with the space inside the pressurized container 21. Convenience in charging the container 22 with electrolyte is provided. These electrolyte containers 22 are fixedly or fixedly placed on the shelf 2Ib provided with the communication hole 2C of the pressurized container 21 by appropriate means (not shown).

第3図には、加圧容器21が燃料電池の反応ガス供給用
マニホールド区画内に組み込まれた実施例が示されてい
る。図において、多数の単電池1を積層してなる電池積
層体10の図の左右の両側面には、反応ガス、例えば燃
料ガスFを図の左方の側面から供給するための供給用マ
ニホールド蓋11と、電池から排出された反応ガスを集
めるための排出用マニホールド蓋12とが取り付けられ
ている。図示の実施例では、これらの肉供給側マニホー
ルド蓋11に加圧容器22が固定されて組み込まれてい
る。もぢろん、電池積層体10の紙面の前後の仙j面に
も同様にマニホールド蓋が取り付けられるが、簡単化の
ため図では省略されている。
FIG. 3 shows an embodiment in which a pressurized vessel 21 is integrated into a manifold section for supplying reactant gases of a fuel cell. In the figure, a supply manifold lid for supplying reactive gas, for example, fuel gas F from the left side of the figure, is provided on both left and right sides of the battery stack 10 formed by stacking a large number of unit cells 1. 11 and an exhaust manifold lid 12 for collecting reaction gas exhausted from the battery. In the illustrated embodiment, a pressurized container 22 is fixedly incorporated into these meat supply side manifold lids 11. Of course, manifold covers are similarly attached to the front and back sides of the battery stack 10, but they are omitted from the figure for the sake of simplicity.

なお、これら電池積層体10およびマニホールド蓋]、
 1 、12等は、図の一点鎖線で示された圧力容器1
3の中に収納されるのが公知のようにふつうである。燃
料電池積層体10への燃料ガスFまたは酸化ガスA1例
えば空気の供給は、マニホールド蓋11を外部から貫通
する入口管1 ]、 aをil+1じて行なわれ、これ
らの反応カスFまたはAは供給側マニホールド区間11
から電池積層体10に入り、前述の溝3Cまたは4C内
を流れて電池内で消費されなかった残余部が排出側マニ
ホールド区間12に至り、さらに図の右下に示された排
出管12aから電池外に排出される。
Note that these battery stack 10 and manifold lid],
1, 12, etc. are pressure vessels 1 indicated by dashed lines in the figure.
As is well known, it is common to be housed in the 3. The fuel gas F or oxidizing gas A1, for example, air, is supplied to the fuel cell stack 10 through an inlet pipe 1 ], a which penetrates the manifold lid 11 from the outside, and these reaction scum F or A are supplied. Side manifold section 11
The remaining portion enters the battery stack 10 from the above-mentioned groove 3C or 4C and is not consumed within the battery. is discharged outside.

加圧容器21への加圧用ガスの導入は、該加圧容器21
の図では下部に示された加圧管31を通じて行なわれ、
加圧用ガスとしては不活性カス。
The pressurizing gas is introduced into the pressurizing container 21 by
In the figure, it is carried out through the pressurizing pipe 31 shown at the bottom,
Inert gas for pressurization.

例えば窒素が安全の見地から好適である。本発明におけ
る加圧手段としての加圧系30は、こθ) 71+1圧
31の下方に示されており、三方電磁弁32゜33、調
整弁34.差圧検出器35.差圧調節器36を含む。
For example, nitrogen is preferred from a safety standpoint. The pressurizing system 30 as a pressurizing means in the present invention is shown below the θ) 71+1 pressure 31, and includes three-way solenoid valves 32, 33, and regulating valves 34. Differential pressure detector 35. A differential pressure regulator 36 is included.

ます、電解液を補給しないときには、三方’t(L 1
1fi圧容器21内の圧力はマニホールド11内の・圧
力。
First, when not replenishing the electrolyte, the three-way 't (L 1
The pressure inside the 1fi pressure vessel 21 is the pressure inside the manifold 11.

すなわち反応カスの圧力と等しい状態に置かれている。In other words, the pressure is equal to that of the reaction scum.

電解液の補給を開始するに当うては、三方電磁弁32を
切り換えて加圧管31を図の配管37と連通させるとと
もに、三方電磁弁33を配管37を加圧ガス源Nからの
配管38と連通させる位置に耐く。これにより、加圧ガ
ス源Nの圧力を前述のように反応カスの圧力よりも数十
ミリメートル水柱程度高い圧力にあらかじめしておけば
、加圧容器21内の圧力が所定値だけ反応ガスの圧力よ
り高められて、電解液容器22内に貯留されている電解
液を電解液補給チューブ23を介して各単′電池1に一
斉に補給することができる。もちろん、この場合には配
管38を配管37のかわりに直接三方電磁弁37に接続
しておいてもよく、三方電磁弁33の設置はとくに必要
ではない。
To start replenishing the electrolyte, switch the three-way solenoid valve 32 to connect the pressurizing pipe 31 with the piping 37 shown in the figure, and connect the three-way solenoid valve 33 to connect the piping 37 with the piping 38 from the pressurized gas source N. Resistant to the position where it communicates with. As a result, if the pressure of the pressurized gas source N is set in advance to a pressure several tens of millimeters of water column higher than the pressure of the reaction scum as described above, the pressure inside the pressurized container 21 can be reduced by a predetermined value to the pressure of the reaction gas. The electrolytic solution stored in the electrolytic solution container 22 can be supplied to each unit cell 1 at the same time via the electrolytic solution replenishment tube 23. Of course, in this case, the pipe 38 may be directly connected to the three-way solenoid valve 37 instead of the pipe 37, and the installation of the three-way solenoid valve 33 is not particularly necessary.

上述のような補給手段により、ふつうは十分電解液補給
の目的は達しられるのであるが、電池内の電解液補給路
や電解液補給チューブ内にたまたま多量の気泡が混入し
て流体抵抗が非常に高い場合や、しばらく運転を休止し
ていた電池の運転再開に際して電解液の温度が低くてそ
の粘度が非常に高い場合には、前述の手段のみでは電解
液の補給が円滑になされえない場合があり得る。かかる
場合の補給手段を本発明の異なる実施例として第3図と
第4図とを参照しながら以下に説明する。
The purpose of electrolyte replenishment is usually achieved by the above-mentioned replenishment means, but if a large amount of air bubbles accidentally get mixed into the electrolyte replenishment channel or the electrolyte replenishment tube inside the battery, the fluid resistance becomes extremely high. If the temperature of the electrolyte is low and its viscosity is extremely high when restarting a battery that has been out of operation for a while, it may not be possible to replenish the electrolyte smoothly using only the above-mentioned methods. could be. Replenishment means in such a case will be described below as different embodiments of the present invention with reference to FIGS. 3 and 4.

第4図の左方には第2図に示されていたとは反対側に相
描する電池の側面部分が断面で示されている。なお、こ
の断面図は第2図とほぼ同じであるが、第2図でパツキ
ン6て示されていた端縁の封止がマドIJツクス層2を
囲む・ように設けられたソール層7て置き換えられてい
る一点て僅かに異なっている。連通孔3fはこのシール
盾7を貫くようにしてマトリックス層2と連通しており
、電解液補給路のやや異なる態様を示している。さて、
電解液補給路としての溝3dに連通ずるように、該溝3
d内の電解液を一時貯留するための電解液溜め25に導
くチューブ24が、′電池の図の右$111の側面から
導出されている。また電解液dめ25はg3dよりも水
柱にして数十ミリメートル程度高い位置に設置されてい
る。
On the left side of FIG. 4, there is shown in cross section a side portion of the cell which is opposite to that shown in FIG. This sectional view is almost the same as FIG. 2, but the sole layer 7 is provided so that the edge seal shown as the gasket 6 in FIG. The one thing that has been replaced is slightly different. The communication hole 3f passes through this seal shield 7 and communicates with the matrix layer 2, showing a slightly different aspect of the electrolyte supply path. Now,
The groove 3 is connected to the groove 3d as an electrolyte supply path.
A tube 24 leading to an electrolyte reservoir 25 for temporarily storing the electrolyte in d is led out from the side of the battery at $111 on the right in the diagram. Further, the electrolytic solution d 25 is installed at a position several tens of millimeters higher in the water column than the electrolyte g 3 d.

電解液の補給開始に洛っては、前述のように加圧ガス源
Nからの加圧ガスが配管38.37および加圧管31を
介して加圧容器21に導入されるよう、三方電磁弁32
.33が操作されるが、加圧ガス源の圧力としては前述
の正規の所定値よりもやや高めに選んで、電解液補給路
内の高い流体抵抗に打ち勝って電解液が溝3d内に導入
されるようにする。しかし、今度の場合には溝3dは電
解液溜め25に連通されているので、当初溝3d内にあ
った電解液はマトリックス層2の方に冬山するよりも先
に、電解液溜め25の方に押し出されてそこで一時貯留
される。これによって、溝詞ないしは電解液補給チュー
ブ23内の粘度の高いないしは気泡を含む電解液は電解
液だめの方に一時取り除かれて、新しい補給用電解液が
溝3d内に満たされる。
When the electrolyte replenishment starts, the three-way solenoid valve is activated so that the pressurized gas from the pressurized gas source N is introduced into the pressurized container 21 via the pipes 38 and 37 and the pressurized pipe 31 as described above. 32
.. 33 is operated, but the pressure of the pressurized gas source is selected to be slightly higher than the above-mentioned regular predetermined value, and the electrolyte is introduced into the groove 3d by overcoming the high fluid resistance in the electrolyte supply path. so that However, in this case, since the groove 3d is in communication with the electrolyte reservoir 25, the electrolyte that was initially in the groove 3d flows toward the electrolyte reservoir 25 before moving toward the matrix layer 2. It is pushed out and temporarily stored there. As a result, the highly viscous or bubble-containing electrolyte in the groove or electrolyte replenishment tube 23 is temporarily removed to the electrolyte reservoir, and new replenishing electrolyte is filled in the groove 3d.

ついで、三方電磁弁33が配管37を調整弁34を含む
配管39に連通ずるように切り換えられる。
The three-way solenoid valve 33 is then switched to communicate the pipe 37 with the pipe 39 containing the regulating valve 34.

この状態で差圧検出器35が動作開始され、反応ガス供
給管14(図ではその支管14a)と調整弁34の出口
圧力との間の差圧を検出し、差圧調節器34は該差圧検
出器の差圧検出値を受けて該差圧が電解液をマ) IJ
ツクス層2内に補給する上で都合のよい所定値になるよ
うに調節弁34を制御する。この望ましい状態を少時持
続させた後、前述のように加圧管31に反応カスの圧力
が導入されるよう三方電磁弁32.33を補給開始前の
状態に戻す。その後、電解液溜め25に一時貯留されて
いた電解液は溝3dに帰り、さらにその量が過剰であっ
たときには電解液補給チューブ23内を逆流して、電解
液容器22内に入る。なお、第4図に図示のように、電
解液溜め25は適宜の止め具25aにより支持部材26
に固定され、第3図のマニホールド蓋12内のマニホー
ルド区画12b内に収納するのが合理的である。また電
解液溜め25は上部をマニホールド区画12b内に開口
させて、一時貯留中の電解液中に含まれつる気泡を該マ
ニホールド区画内に発散させるのがよい。もつとも、こ
のような電解液溜めを必すしも設ける必要はなく、例え
ば第2図に図示したと同じ様な電解液容器を第2図と同
様の態様でマニホールド区画12I)内に設けてもよい
In this state, the differential pressure detector 35 starts operating and detects the differential pressure between the reaction gas supply pipe 14 (its branch pipe 14a in the figure) and the outlet pressure of the regulating valve 34, and the differential pressure regulator 34 detects the differential pressure. In response to the differential pressure detected by the pressure detector, the differential pressure increases the electrolyte (IJ)
The control valve 34 is controlled to a convenient predetermined value for replenishing the stock layer 2. After this desired state is maintained for a short time, the three-way solenoid valves 32 and 33 are returned to the state before the start of replenishment so that the pressure of the reaction scum is introduced into the pressurizing pipe 31 as described above. Thereafter, the electrolyte temporarily stored in the electrolyte reservoir 25 returns to the groove 3d, and if the amount is excessive, it flows back through the electrolyte supply tube 23 and enters the electrolyte container 22. As shown in FIG. 4, the electrolyte reservoir 25 is secured to the support member 26 by a suitable stopper 25a.
It is reasonable to fix this to the manifold compartment 12b of the manifold lid 12 in FIG. Further, it is preferable that the upper part of the electrolytic solution reservoir 25 is opened into the manifold section 12b so that air bubbles contained in the temporarily stored electrolyte solution can be diffused into the manifold section. However, it is not necessary to provide such an electrolyte reservoir; for example, an electrolyte container similar to that shown in FIG. 2 may be provided in the manifold section 12I) in a manner similar to that shown in FIG. .

以上説明した実施例に限らす、本発明による電解液補給
装置は本発明の要旨内において種々の態様で実施をする
こさができる。例えば、第3図に示したように電解液補
給の開始前および終了後において、加圧容器内の圧力を
反応ガスの圧力と平衡させるために反応ガス自体を加圧
管に導入する必要はとくにはなく、槓々の公知の手段を
用いて圧力平衡の目的を容易に達することができる。
The electrolyte replenishing device according to the present invention, which is not limited to the embodiments described above, can be implemented in various ways within the scope of the present invention. For example, as shown in Fig. 3, it is not necessary to introduce the reaction gas itself into the pressure tube in order to balance the pressure in the pressurized container with the pressure of the reaction gas before and after replenishing the electrolyte. Instead, the objective of pressure equalization can be easily achieved using various known means.

〔究明の効果〕[Effect of investigation]

以上説明のように、本発明によるマトリックス形燃料電
池の電解液補給装置は、本発明の要旨に見られるような
比較的簡単な構成で所期の目的を十分に達成することが
できる。すなわち、刀口圧容器に〃0圧手段により適正
値だけ加圧をすることにより、該加圧容器内に納められ
た電解液容器から電池内の各MiL電池に電解液を適度
の圧力で補給できるから、電解液が温度変化や気泡の混
入により粘度変化や流体抵抗の変化を来たしても、確実
に電解液の補給目的を達することができる。また電解液
容器は常に相互に絶縁された状態が保たイ〕るから、電
解液を通じて単電池ないしは電池積層単位が液絡を生じ
るおそれがなく、電池の高い運べ・バ効率が保証される
As described above, the electrolyte replenishing device for a matrix fuel cell according to the present invention can sufficiently achieve the intended purpose with a relatively simple configuration as seen in the gist of the present invention. In other words, by pressurizing the edge pressure vessel to an appropriate value using zero-pressure means, it is possible to replenish electrolyte at an appropriate pressure from the electrolyte container housed in the pressurized vessel to each MiL battery in the battery. Therefore, even if the electrolyte undergoes a change in viscosity or fluid resistance due to a change in temperature or the inclusion of air bubbles, the purpose of replenishing the electrolyte can be reliably achieved. Furthermore, since the electrolyte containers are always kept insulated from each other, there is no risk of a liquid junction occurring between the cells or the battery stack unit through the electrolyte, and high battery transport efficiency is ensured.

本発明により多少の悪条件下でも電解液補給を円滑に行
なうことができるので、従来のようにかなりのスペース
が必要な電解液リザーバを電池内に設ける必要がなくな
るので、リブ付き電極板構造、リブ付きセパレータ板構
造の双方について、電極基板やセパレータ板の厚さを思
い切って減少させることができ、電池の外形寸法を縮少
させることが可能になる。さらには、電解液補給路の断
面積を少なくしても確実な電解液補給ができるので、従
来電解液補給の面からの電池の積層双系体の寸法縮少に
対する制約条件が芙質上なくなり、この電池構造の合理
化を思い切って図ることができる。なお、本発明におけ
る電解液容器は加圧に必要な密閉構造の加圧容器内に反
応ガスとは全く隔離されて収納されるので、電解液漏れ
によるトラブル発生の可能性を極めて少なくすることが
できる。
According to the present invention, electrolyte replenishment can be carried out smoothly even under some adverse conditions, and there is no need to provide an electrolyte reservoir inside the battery, which requires a considerable amount of space as in the past. For both ribbed separator plate structures, the thickness of the electrode substrate and the separator plate can be drastically reduced, making it possible to reduce the external dimensions of the battery. Furthermore, since reliable electrolyte replenishment can be achieved even if the cross-sectional area of the electrolyte replenishment path is reduced, the conventional constraints on the size reduction of the laminated twin battery system from the aspect of electrolyte replenishment are essentially eliminated. , it is possible to drastically rationalize this battery structure. Furthermore, since the electrolyte container according to the present invention is housed in a pressurized container with a closed structure necessary for pressurization, completely isolated from the reaction gas, the possibility of troubles caused by electrolyte leakage can be extremely reduced. can.

【図面の簡単な説明】[Brief explanation of drawings]

図面はすべて本発明装置の実施例を示し、第1図は電解
液補給路が設けられる燃料電池の電極基板の要部を示す
斜視図、第2図は本発明による電解質補給装置中の電解
液容器、電解液補給チューブおよび加圧容器の配置を電
池との関連において示す断面図、第3図は本発明による
電解質補給装置の全体を電池本体と組み合わせた状態で
示す一部断面および系統図、第4図は本発明装置の異な
る実施例の要部を示す断面図である。図において、1:
単電池、2:マトリックス層、3d、3e:電解液補給
路としての溝、3f:電解液補給路さしての連通孔、1
0:電池積層体、21:加圧容器、22:電解液容器、
23:電解液補給チューブ、25:電解液溜め、30:
加圧手段、31:加圧管、32,33:加圧手段として
の三方電磁弁、34:加圧制御手段としての調節弁、3
5:加圧制御手段としての差圧検出器、36:加圧制御
手段としての差圧調節器、37,38,39:加圧手段
としての配管、A:反応カスとしての酸化ガス、E:電
解液、F:反応カスとしての燃料カス、N:加圧ガス源
、である。 jC −it (2) オZ喝 第1頁の続き ■発明者中島 憲之 満須賀 所内
The drawings all show embodiments of the device of the present invention, and FIG. 1 is a perspective view showing the main part of the electrode substrate of a fuel cell in which an electrolyte replenishment path is provided, and FIG. FIG. 3 is a partial cross-sectional view and system diagram showing the entire electrolyte replenishment device according to the present invention in combination with the battery main body; FIG. 4 is a sectional view showing a main part of a different embodiment of the device of the present invention. In the figure, 1:
Cell, 2: Matrix layer, 3d, 3e: Groove as electrolyte supply path, 3f: Communication hole through electrolyte supply path, 1
0: Battery laminate, 21: Pressurized container, 22: Electrolyte container,
23: Electrolyte supply tube, 25: Electrolyte reservoir, 30:
Pressurizing means, 31: Pressurizing pipe, 32, 33: Three-way solenoid valve as pressurizing means, 34: Control valve as pressurizing control means, 3
5: Differential pressure detector as pressurization control means, 36: Differential pressure regulator as pressurization control means, 37, 38, 39: Piping as pressurization means, A: Oxidizing gas as reaction scum, E: Electrolytic solution, F: fuel scum as reaction scum, N: pressurized gas source. jC -it (2) Continuing from page 1 of O-Zaki ■Inventor Nakajima Noriyuki Masukasho

Claims (1)

【特許請求の範囲】 工)電解液保持体きしての多孔性のマトリックス層を含
み、かっ該マ) IJフック層に連通された電解液補給
路を内部に備えた単電池を複数個積層してなる電池積層
体に電解液を補給する装置であって、燃料電池に供給さ
れる反応ガスとは隔離された区画を画成する密閉箱とし
てなる加圧容器と、該加圧容器内に相互に電気的に絶縁
された状態で納められかつそれぞれ該容器内区画に対し
て開く開口を備え、前記電池積層体内の電池の積層単位
ごとに設けられて、それぞれ該単位に補給すべき電解液
を貯留する複数個の電解液容器と、該各電解液答器内の
電解液を前記単電池の電解液補給路にそれぞれ連通させ
る電解液補給チューブと、前記加圧容器内の圧力を燃料
電池内の反応ガスの圧力よりも所定値だけ高めるように
該加圧容器内圧力を制御する加圧手段とを備えてなるマ
トリックス形燃料電池の電解液補給装置。 2、特許請求の範囲第1項記載の装置において、加圧容
器が燃料電池への供給反応ガスのマニホールド区画内に
納められたことを特徴とするマトリックス形燃料電池の
電解液補給装置。 3)特許請求の範囲第1項記載の装置において、加圧容
器への加圧ガスとして不活性ガスが用いられることを特
徴とするマトリックス形燃料電池の電解液補給装置。 4)特許請求の範囲第1項記載の装置において、加圧手
段が燃料電池への電解液補給のために加圧容器を間欠的
に加圧することを特徴とするマトリックス形燃料電池の
電解液補給装置。 5)特許請求の範囲第4項記載の装置において、加圧手
段が電解液補給時に所定時間内持続して加圧容器を加圧
することを特徴とするマトリックス形燃料電池の電解液
補給装置。 6)特許請求の範囲第4項記載の装置において、燃料電
池内の電解液補給路が電池積層体の互いに異なる二つの
側面にそれぞれ開口を有し、該両開口の内の一方の開口
が電解液補給チューブを介して電解液容器内の電解液に
連通され、他方の開口lこは該開口よりも上方tこおい
て電解液を電解液補給路と連通された状態で一時貯留す
る電解液だめが接続されることを%徴とするマトリック
ス形燃料電池の電解液補給装置。 7)特許請求の範囲第6項記載の装置において、電解液
溜めが燃料電池への供給反応ガスのマニホールド区画内
に納められ、該電解液溜め内の液面が該マニホールド内
の反応ガスに開放されることを特徴きするマ) IJン
クス形燃料電池の電解液補給装置。 8)特許請求の範囲第4項記載の装置において、加圧手
段が電解液補給後に加圧容器内の圧力を燃料電池内の反
応カスの圧力と等しくするように制御することを特徴さ
するマトリックス形燃料電池の電解液補給装置。 9)特許請求の範囲第1項記載の装置において、各電解
液補給チューブが1本の連続した可撓性のテフロンチュ
ーブからなることを特徴とするマトリックス形燃料電池
の電解液補給装置。 10)特許請求の範囲第1項記載の装置において、電解
液容器が電気絶縁性材料からなることを特徴とするマト
リックス形燃料電池の電解液補給装置。
[Scope of Claims] d) A porous matrix layer serving as an electrolyte holder; A device for replenishing electrolyte to a battery stack made of an electrolytic solution which is housed in a mutually electrically insulated state and each has an opening that opens to the inner compartment of the container, is provided for each stacked unit of batteries in the battery stack, and is to be replenished to each unit; a plurality of electrolyte containers for storing the electrolyte, an electrolyte replenishment tube that connects the electrolyte in each electrolyte container to the electrolyte replenishment path of the unit cell, and An electrolyte replenishing device for a matrix fuel cell, comprising: pressurizing means for controlling the pressure inside the pressurized container so that it is higher than the pressure of the reactant gas within the pressurized container by a predetermined value. 2. An electrolyte replenishing device for a matrix fuel cell according to claim 1, wherein the pressurized container is housed in a manifold section for supplying reaction gas to the fuel cell. 3) An electrolyte replenishing device for a matrix fuel cell according to claim 1, wherein an inert gas is used as pressurizing gas to the pressurized container. 4) The apparatus according to claim 1, wherein the pressurizing means intermittently pressurizes the pressurized container for replenishing the electrolyte to the fuel cell. Device. 5) An electrolyte replenishing device for a matrix fuel cell according to claim 4, wherein the pressurizing means pressurizes the pressurized container for a predetermined period of time during electrolyte replenishment. 6) In the device according to claim 4, the electrolyte replenishment path in the fuel cell has openings on two different side surfaces of the battery stack, and one of the openings is used for electrolysis. The electrolyte is connected to the electrolyte in the electrolyte container via the liquid replenishment tube, and the other opening is located above the opening to temporarily store the electrolyte while communicating with the electrolyte replenishment path. An electrolyte replenishment device for a matrix fuel cell, which is characterized by the connection of a reservoir. 7) In the device according to claim 6, the electrolyte reservoir is housed in a manifold section for supplying reaction gas to the fuel cell, and the liquid level in the electrolyte reservoir is open to the reaction gas in the manifold. An electrolyte replenishment device for an IJ type fuel cell. 8) The apparatus according to claim 4, wherein the pressurizing means controls the pressure in the pressurized container to be equal to the pressure of reaction scum in the fuel cell after replenishing the electrolyte. Electrolyte replenishment device for fuel cells. 9) An electrolyte replenishing device for a matrix fuel cell according to claim 1, wherein each electrolyte replenishing tube is comprised of one continuous flexible Teflon tube. 10) An electrolyte replenishing device for a matrix fuel cell, wherein the electrolyte container is made of an electrically insulating material.
JP58176684A 1983-09-24 1983-09-24 Electrolyte supplement equipment of matrix type fuel cell Pending JPS6068561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176684A JPS6068561A (en) 1983-09-24 1983-09-24 Electrolyte supplement equipment of matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176684A JPS6068561A (en) 1983-09-24 1983-09-24 Electrolyte supplement equipment of matrix type fuel cell

Publications (1)

Publication Number Publication Date
JPS6068561A true JPS6068561A (en) 1985-04-19

Family

ID=16017913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176684A Pending JPS6068561A (en) 1983-09-24 1983-09-24 Electrolyte supplement equipment of matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS6068561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115668A (en) * 1985-11-13 1987-05-27 Mitsubishi Electric Corp Electrolyte supplement equipment of fuel cell
JPS62117272A (en) * 1985-11-18 1987-05-28 Mitsubishi Electric Corp Electrolyte feeding apparatus for layer-built fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115668A (en) * 1985-11-13 1987-05-27 Mitsubishi Electric Corp Electrolyte supplement equipment of fuel cell
JPS62117272A (en) * 1985-11-18 1987-05-28 Mitsubishi Electric Corp Electrolyte feeding apparatus for layer-built fuel cell

Similar Documents

Publication Publication Date Title
US6391485B1 (en) Method and apparatus for purging a fuel cell system with coolant
JPH0286071A (en) Solid polymer fuel cell
EP1303887B1 (en) Subambient pressure coolant loop for a fuel cell power plant
US4463067A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
JPS61227370A (en) Fuel battery assembly
EP0107396B1 (en) System for supplying electrolyte to fuel cells
EP4281603A1 (en) An electrolysis system with a buffer tank
JPS6068561A (en) Electrolyte supplement equipment of matrix type fuel cell
EP0171346A2 (en) Method and apparatus for adding electrolyte to a fuel cell stack
JPH01292751A (en) Electrolyte replenisher of matrix type fuel cell
JPS6147074A (en) Electrolyte supplying process to fuel battery stack
US4702972A (en) Electrolyte replenishing system for a laminated fuel cell
WO1994015377A1 (en) Proton exchange membrane fuel cell device with water transfer separator plates
JP2590526B2 (en) Method of replenishing electrolyte for matrix fuel cell
JP2006348328A (en) Electrolytic cell, and gas generation and storage device
JPH0414469B2 (en)
JPH01307172A (en) Electrolyte refilling device for matrix type fuel battery
JPS58161267A (en) Matrix type fuel cell
JPH0129026B2 (en)
JPH0145096Y2 (en)
JP2006348325A (en) Gas generation and storage device
JPH02826B2 (en)
JPS62117272A (en) Electrolyte feeding apparatus for layer-built fuel cell
JPH0145095Y2 (en)
JPS60227362A (en) Method of supplying electrolyte in matrix-type fuel cell