JPH02826B2 - - Google Patents

Info

Publication number
JPH02826B2
JPH02826B2 JP58230656A JP23065683A JPH02826B2 JP H02826 B2 JPH02826 B2 JP H02826B2 JP 58230656 A JP58230656 A JP 58230656A JP 23065683 A JP23065683 A JP 23065683A JP H02826 B2 JPH02826 B2 JP H02826B2
Authority
JP
Japan
Prior art keywords
electrolyte
circulation system
gas
fuel cell
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58230656A
Other languages
Japanese (ja)
Other versions
JPS60124367A (en
Inventor
Shunsuke Ooga
Kazuo Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58230656A priority Critical patent/JPS60124367A/en
Publication of JPS60124367A publication Critical patent/JPS60124367A/en
Publication of JPH02826B2 publication Critical patent/JPH02826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電池本体の液区画内に保有される電解
液が電池本外体の電解液循環系を介して繰り返し
て循環使用されるいわゆる自由電解液形の燃料電
池の電解液循環系であつて、該循環系内に電池本
体内で電解液中に混入ないし含有されるガスを電
解液から分離する分離装置が設けられるものに関
し、より具体的には酸化ガスとして空気を用い、
電解液としてアルカリ電解質を用いる燃料電池の
電解液循環系として好適なものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a so-called free battery system in which an electrolytic solution held in a liquid compartment of a battery main body is repeatedly used in circulation via an electrolytic solution circulation system of an external battery main body. Regarding the electrolyte circulation system of an electrolyte type fuel cell, in which a separation device is provided in the circulation system to separate gas mixed in or contained in the electrolyte within the battery body from the electrolyte, more specifically. Generally, air is used as the oxidizing gas,
This is suitable as an electrolyte circulation system for a fuel cell that uses an alkaline electrolyte as the electrolyte.

〔従来技術とその問題点〕[Prior art and its problems]

前述のような自由電解液形の燃料電池の電解液
循環系は、元来電池本体内で電解液が電池への供
給ガス中の不純物;とくに供給空気中の炭酸ガス
と反応して生じる固相の反応生成物を系内で電解
液から分離するため、あるいは電池本体内で発生
する熱によつて温度が上昇した電解液を一たん本
体外に導出して系内で冷却するために設けられる
ものであるが、このほか電池本体内で電解液中に
混入ないしは含有されて来るガスを分離する分離
装置を系内に備えることがふつう必要になる。
The electrolyte circulation system of a free electrolyte type fuel cell as described above originally prevents the electrolyte from reacting with impurities in the gas supplied to the battery, especially solid phase produced when the electrolyte reacts with carbon dioxide gas in the supplied air. This is provided to separate the reaction products from the electrolyte within the system, or to temporarily lead the electrolyte, whose temperature has risen due to heat generated within the battery body, out of the battery body and cool it within the system. However, in addition to this, it is usually necessary to provide a separation device within the system to separate gases mixed or contained in the electrolyte within the battery body.

周知のように、燃料電池内で電池発電作用を営
む電極層は、ガス拡散性を有するいわば多孔質の
電極層として構成されており、電極層内には電池
内のガス区画から燃料ガスまたは酸化ガスが拡散
して来ると同時に電解液区画から電解質が浸透し
て来て、固相の電極とくにその中に含有された触
媒と、気相の反応ガスと、液相の電解液との三相
が共存する条件で電気化学的反応が円滑に進行し
て発電作用が生じるのであるが、電解液が電極層
内に過剰に浸出してガス相を追い出してしまい、
前記の三相共存条件が保たれなくなると、いわゆ
る電極層の濡れ現象のために発電作用が正常に起
こらなくなつてしまう。
As is well known, the electrode layer that performs cell power generation in a fuel cell is configured as a so-called porous electrode layer that has gas diffusivity, and the electrode layer contains fuel gas or oxidation from the gas compartment within the cell. At the same time as the gas diffuses, the electrolyte permeates from the electrolyte compartment, forming a three-phase structure consisting of the solid-phase electrode, especially the catalyst contained therein, the gas-phase reaction gas, and the liquid-phase electrolyte. Under conditions in which the electrolyte coexists, the electrochemical reaction proceeds smoothly and power generation occurs, but the electrolyte leaks into the electrode layer excessively and drives out the gas phase.
If the above-mentioned three-phase coexistence condition is no longer maintained, the power generation action will not occur normally due to the so-called wetting phenomenon of the electrode layer.

この問題を解決する有利な手段は、運転時のガ
ス区画内の圧力を液区画内の圧力に比べて僅かで
も高く維持することである。第1図はこのように
企図された従来の電解液循環系を模式的に示すも
のである。図では燃料電池本体は1で示され、複
数個の単位電池2を積層して1対の締付板3,3
の間に図示しない締結手段を用いて一体化されて
おり、内部に電解液が満たされる電解液区画4と
燃料ガスまたは酸化ガスが導入されるガス区画5
とが画成されている。各単位電池2は枠2aと燃
料ガス用の電極2bと酸化ガス用の電極2cを含
んでおり、前述の両区画4,5はこれらの板状の
電極2b,2cにより相互に隔てられている。な
お、ガス区画5へのガスの導入経路は図の簡単化
のため省略されている。電解液区画4は前述の電
極2b,2cを介してガス区画5に対向する電解
液室部4aと1対のマニホールド部4bと両者間
を連通する連通路部4cとを含んでいる。前述の
ように電池の運転中は、ガス区画5内の圧力が電
解液区画4内の圧力よりも高くなるように該ガス
圧力が制御される。
An advantageous means of solving this problem is to maintain the pressure in the gas compartment during operation at least slightly higher than the pressure in the liquid compartment. FIG. 1 schematically shows a conventional electrolyte circulation system designed as described above. In the figure, the fuel cell main body is indicated by 1, and a plurality of unit cells 2 are stacked together to form a pair of clamping plates 3, 3.
The electrolyte compartment 4 is filled with an electrolyte and the gas compartment 5 is injected with fuel gas or oxidizing gas.
is defined. Each unit cell 2 includes a frame 2a, an electrode 2b for fuel gas, and an electrode 2c for oxidizing gas, and the aforementioned two sections 4 and 5 are separated from each other by these plate-shaped electrodes 2b and 2c. . Note that the gas introduction route to the gas compartment 5 is omitted for the sake of simplification of the diagram. The electrolyte compartment 4 includes an electrolyte chamber part 4a facing the gas compartment 5 via the aforementioned electrodes 2b and 2c, a pair of manifold parts 4b, and a communication passage part 4c communicating between the two. As mentioned above, during operation of the cell, the gas pressure is controlled such that the pressure in the gas compartment 5 is higher than the pressure in the electrolyte compartment 4.

一方、電解液循環系は総称して6で示されてお
り、電解液タンク7とポンプ8と配管系9とを含
んでいる。ポンプ8は電解液を図の矢印の方向に
付勢し、これによつて電解液は電池本体1に送り
込まれ、該本体1内の電解液区画4の下方のマニ
ホールド部4b、下方の連通路部4c、電解液室
部4a、上方の連通路部4c、上方のマニホール
ド部4bを順次下方から上方に向かつて通流した
後本体1外に出て、電解液タンク7に入つて再び
ポンプ8に入る。図ではこの循環系路が矢印で示
されている。
On the other hand, the electrolyte circulation system is generally indicated by 6 and includes an electrolyte tank 7 , a pump 8 , and a piping system 9 . The pump 8 urges the electrolyte in the direction of the arrow in the figure, whereby the electrolyte is fed into the battery body 1, and the lower manifold section 4b of the electrolyte compartment 4 in the body 1, and the lower communication passage. 4c, the electrolyte chamber 4a, the upper communication passage 4c, and the upper manifold part 4b from below to above, the flow exits the main body 1, enters the electrolyte tank 7, and returns to the pump 8. to go into. In the figure, this circulatory system path is indicated by an arrow.

さて、この従来の電解液循環系6では、電解液
タンク7はその液面7aが電池本体1内の電解液
区画4の頂部よりも上方に位置するように配置さ
れている。これは電池本体1内で多孔質の電極2
b,2cを通して電解液区画4よりも圧力の高い
ガス区画5からガスが電解液室部4aに、従つて
電解液区画4に侵入したとき、該ガスを気泡の形
で上方の連通路部4c、上方のマニホールド部4
bおよび配管9を通して電解液タンク7の液面7
a上の空間に排出するためである。しかしこのよ
うに、電解液区画4に侵入したガスを排出するた
めに電解液タンク7を電池本体1の上方に位置さ
せると、電解液区間4内の電解液の圧力は当然大
気圧よりは若干でも高くなり、ガス区間内の圧力
はこれに応じて前述のようにさらに高めなければ
ならなくなる。燃料ガスの圧力はガス供給源が
元々圧力をもつていることが多いので、ガス圧を
高めることにふつうはあまり問題はないが、酸化
ガスの場合、とくに空気を用いる場合にはブロワ
やコンプレツサで圧力を上げた上電池に供給する
必要が生じ、燃料電池発電設備の補機動力に必要
な電力が増し、それだけ設備の総合効率が低下す
ることになる。
In this conventional electrolyte circulation system 6, the electrolyte tank 7 is arranged such that its liquid level 7a is located above the top of the electrolyte compartment 4 in the battery body 1. This is a porous electrode 2 inside the battery body 1.
When gas enters the electrolyte chamber 4a and therefore the electrolyte compartment 4 from the gas compartment 5, which has a higher pressure than the electrolyte compartment 4, through b and 2c, the gas is transferred in the form of bubbles to the upper communication passage 4c. , upper manifold section 4
b and the liquid level 7 of the electrolyte tank 7 through the pipe 9.
This is to discharge the gas into the space above a. However, when the electrolyte tank 7 is positioned above the battery body 1 in order to discharge the gas that has entered the electrolyte section 4, the pressure of the electrolyte in the electrolyte section 4 is naturally slightly lower than atmospheric pressure. However, the pressure in the gas section will have to be increased accordingly, as described above. The pressure of fuel gas usually comes from the gas supply source, so there is usually no problem in increasing the gas pressure, but in the case of oxidizing gas, especially when air is used, blowers and compressors can It becomes necessary to supply the battery with increased pressure, which increases the amount of electric power required to power the auxiliary equipment of the fuel cell power generation equipment, and the overall efficiency of the equipment decreases accordingly.

また、第1図に示すように、電池本体1から電
解液タンク7に電解液を導く配管部分9aは、で
きるだけ屈曲しない形状にしないと配管の中途に
気泡が溜まつたり、気泡が電解液と一緒に電解液
タンクに円滑に排出されなくなつたりする問題が
生じるので、この配管部分の形状や経路に制約が
生じて設備の配置設計上の自由度が失なわれる。
さらに電解液タンク7を電池本体1の上方に配置
すること自体が、設備の全体配置設計に大きな制
約を課すことであつて望ましくないことが多い。
In addition, as shown in FIG. 1, if the piping section 9a that leads the electrolyte from the battery body 1 to the electrolyte tank 7 is not bent as much as possible, air bubbles may accumulate in the middle of the piping, or the air bubbles may mix with the electrolyte. At the same time, there arises the problem that the electrolyte cannot be discharged smoothly into the electrolyte tank, which places restrictions on the shape and route of this piping section, resulting in a loss of freedom in designing the layout of the equipment.
Furthermore, arranging the electrolyte tank 7 above the battery main body 1 itself imposes a large restriction on the overall layout design of the equipment, which is often undesirable.

そこで、電解液タンク7は電池本体1の下方に
置き、これとは別に電解から気泡を分離する気液
分離装置を設けてこれを電池本体の上方に配置す
ることが考えられるが、当然余分の装置が必要と
なるほか、電解液が大気と接触する機会がそれだ
け多くなり、電解液の管理上思わしくない。
Therefore, it is conceivable to place the electrolyte tank 7 below the battery main body 1 and separately provide a gas-liquid separator for separating air bubbles from the electrolysis and place it above the battery main body. In addition to requiring equipment, this increases the number of opportunities for the electrolyte to come into contact with the atmosphere, which is undesirable in terms of electrolyte management.

〔発明の目的〕 本発明は上述のような従来の電解液循環系のも
つ問題点を解決して、補機動力が少なくてすみか
つ電解液循環系内の装置の配置に制約のない燃料
電池の電解液循環系を得ることにある。
[Object of the Invention] The present invention solves the problems of the conventional electrolyte circulation system as described above, and provides a fuel cell that requires less auxiliary power and has no restrictions on the arrangement of devices within the electrolyte circulation system. The objective is to obtain an electrolyte circulation system.

〔発明の要点〕[Key points of the invention]

上述の目的は本発明によれば、電解液を電池本
体から電解液溜めなどの分離装置に導く配管の内
径を電解液中に気泡の形で混入するガスが電解液
とともに当該分離装置に送られる程度に十分に細
く形成することにより簡単に達成される。この
際、配管の内径の大きさは電解液の種類や配管内
を通流する電解液の流量によつて当然異なつて来
るが、例えば電解液としてアルカリ性電解質の水
溶液を用いた場合には、実用上燃料電池の運転上
必要な規定濃度範囲内において、配管の内径d
(cm)を d0.36(log q+0.7) の範囲に選べばよい。ただしqはc.c./cm3で表わし
た電解液の流量とする。このような内径dを有す
る配管を用いることにより、電解液中にガスの気
泡がかなり混入していても、また配管の一部が下
方に向けて電解液を流すように配置されていて
も、気泡は電解液とともに円滑に分離装置まで運
ばれる。
According to the present invention, the above object is achieved by connecting the inner diameter of the pipe that leads the electrolyte from the battery body to a separation device such as an electrolyte reservoir so that gas mixed in the electrolyte in the form of bubbles is sent to the separation device together with the electrolyte. This can be easily achieved by forming it sufficiently thinly. At this time, the size of the inner diameter of the pipe will naturally vary depending on the type of electrolyte and the flow rate of the electrolyte flowing through the pipe, but for example, if an aqueous solution of alkaline electrolyte is used as the electrolyte, The inner diameter of the pipe d is within the specified concentration range necessary for the operation of the fuel cell.
(cm) should be selected within the range of d0.36 (log q + 0.7). However, q is the flow rate of the electrolyte expressed in cc/cm 3 . By using a pipe with such an inner diameter d, even if a considerable amount of gas bubbles are mixed in the electrolyte, or even if a part of the pipe is arranged so that the electrolyte flows downward, The bubbles are smoothly transported to the separation device along with the electrolyte.

これによつて前述のような電解液タンクを分離
装置に利用して電池本体の下方に配置してもなん
ら問題が生じなくなり、余分な分離装置を設ける
必要もまつたくなくなる。なお配管の内径も細く
することは一本の配管内を流しうる電解液の流量
が少なくなることは当然であるが、容易にわかる
ように一本の配管では流量が不足する場合は、上
記のような内径を有する配管を複数本並列に用い
ればよく、本発明によつて得られる効果をなんら
失なうことなく本発明の実施をすることができ
る。
This eliminates any problem even if the electrolyte tank as described above is used as a separation device and is placed below the battery main body, and there is no need to provide an extra separation device. It goes without saying that reducing the inner diameter of the piping will reduce the flow rate of the electrolyte that can flow through one piping, but as can be easily seen, if the flow rate is insufficient in one piping, the above It is sufficient to use a plurality of pipes having such an inner diameter in parallel, and the present invention can be carried out without losing any of the effects obtained by the present invention.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しながら本発明の実施例を詳細
に説明する。第2図は本発明による電解液循環系
を用いた燃料電池発電装置の全体系統図を示すも
ので、分離装置としての電解液溜め7は図示のよ
うに電池本体1の下方に配置されており、電池本
体1の電解液区画4からこの電解液溜め7に電解
液を導く配管10は本発明によつて内径が細目に
構成されている。このほか電池本体1と電解液循
環系との各部分のうち第1図と共通の部分には同
一の符号が付されている。第2図には第1図では
省略されていたガス配管系が太い鎖線で示されて
おり、燃料電池本体1の内部は模式的に燃料ガス
側の電極2bと酸化ガス側の電極2cとによつて
相互に隔てられた電解質区画4と燃料ガス側のガ
ス区画5fと酸化ガス側のガス区画5aとに分離
して示されている。燃料ガスF、例えば水素は、
その供給源としてのガスボンベ11からエジエク
タ装置12を通して電池本体1内の前述のガス区
画5fに送られ、電池内で消費されなかつた燃料
ガスは、該ガス区画5fから下方に出て風冷の熱
交換器13を経てエジエクタ装置12のポンプ吸
収作用により再び電池本体1のガス区画5fに戻
る。すなわち、燃料ガス配管系は一種の循環系と
して構成されており、電池本体1内には電池が消
費する量の数倍の燃料ガスが通流されていて、電
池内で発生した反応生成水を蒸気の形で電池本体
1から取り去り、熱交換器13内で凝集させて凝
縮水管14を介して凝縮水溜め15に集める。一
方、酸化ガス、例えば空気Aは炭酸ガス除去器1
6を介してブロワ17により大気から吸引され
て、電池本体1内の空気側ガス区画5aに入り、
電池内で消費されなかつたガス、例えば窒素は前
述の凝集水溜め15内の凝集水と熱交換をした後
に大気に放出される。凝集水溜め15にはオーバ
ーフロー部15aが設けられていて、一定量以上
の凝集水はこのオーバーフロー15aから排出さ
れるとともに、その下方に配置されている前述の
電解液溜め7内の電解液量が所定値より少なくな
つたとき、その底部の補給水管15b中の電磁弁
18を開いて電解液溜め7に補給水として凝縮水
を供給する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an overall system diagram of a fuel cell power generation device using an electrolyte circulation system according to the present invention, and an electrolyte reservoir 7 serving as a separation device is arranged below the cell main body 1 as shown in the figure. According to the present invention, the pipe 10 that leads the electrolyte from the electrolyte compartment 4 of the battery body 1 to the electrolyte reservoir 7 has a narrow inner diameter. In addition, among the parts of the battery body 1 and the electrolyte circulation system, the same parts as in FIG. 1 are given the same reference numerals. In FIG. 2, the gas piping system that was omitted in FIG. Therefore, the electrolyte compartment 4, the gas compartment 5f on the fuel gas side, and the gas compartment 5a on the oxidizing gas side are shown separated from each other. The fuel gas F, for example hydrogen, is
The fuel gas that is sent from the gas cylinder 11 as a supply source to the aforementioned gas compartment 5f in the battery body 1 through the ejector device 12 and not consumed within the battery exits downward from the gas compartment 5f and is heated by wind cooling. The gas passes through the exchanger 13 and returns to the gas compartment 5f of the battery body 1 again by the pump absorption action of the ejector device 12. In other words, the fuel gas piping system is configured as a type of circulation system, and several times the amount of fuel gas that is consumed by the battery is passed through the battery body 1, and the reaction product water generated within the battery is dissipated. It is removed from the battery body 1 in the form of steam, condensed in a heat exchanger 13, and collected in a condensate reservoir 15 via a condensate pipe 14. On the other hand, oxidizing gas, such as air A, is removed by the carbon dioxide remover 1.
6 from the atmosphere by the blower 17 and enters the air side gas compartment 5a in the battery body 1,
Gas that is not consumed within the battery, such as nitrogen, exchanges heat with the flocculated water in the flocculated water reservoir 15, and then is released into the atmosphere. The flocculating water reservoir 15 is provided with an overflow portion 15a, and a certain amount or more of flocculating water is discharged from this overflow portion 15a, and the amount of electrolyte in the electrolyte reservoir 7 disposed below the overflow portion 15a is increased. When it becomes less than a predetermined value, the solenoid valve 18 in the make-up water pipe 15b at the bottom is opened to supply condensed water to the electrolyte reservoir 7 as make-up water.

電解液溜め7には、液面計7bとして略示され
た液面制御器が付属していて、液面7aが所定レ
ベル以下になつたとき、前述の電磁弁18を開い
て凝縮水溜め15から補給水を補充して電解液量
を、従つて電解液の濃度を一定に保持するほか、
その底部には弁7cを備えた排出管7dが接続さ
れていて、電解液と空気中の残留炭酸ガスが電池
本体内で反応して固相の反応生成物が発生し配管
10を経て電解液溜め7の底部に沈澱を生じたと
き、弁7cを開いて該生成物を電解液とともに排
出できるように考慮されている。電解液溜め7内
の電解液はポンプ8により付勢され、配管9を介
して電池本体1内の電解液区画4の底部に導入さ
れ、電極2b,2cを通してガス区画5a,5f
から侵入して来たガスの気泡とともに、電解液区
画4の頂部から導出され、前述のように内径が細
目に形成された配管10を通り電解液冷却用の前
述の風冷熱交換器13内の風冷蛇管を経て、電解
液溜め7に環流される。この際、配管10内を流
れる電解液中に混入されたガスの気泡は、該配管
10に上昇部や下降部や蛇管部があつても、円滑
に電解液とともに電解液溜め7にまで運ばれ、配
管10の下端10aを出た瞬間に電解液から分離
されて大気中に放出される。なお、図では配管1
0の下端10aは電解液溜め7の液面7a上に位
置して描かれているが、このようにすることは特
に必要ではなく下端を10aを液面7a下にあま
り深くならない程度に沈めて開口させても、気泡
の分離に特に障害を生じるわけではない。
The electrolytic solution reservoir 7 is attached with a liquid level controller schematically shown as a liquid level gauge 7b, and when the liquid level 7a falls below a predetermined level, the above-mentioned electromagnetic valve 18 is opened and the condensed water reservoir 15 is opened. In addition to replenishing make-up water from
A discharge pipe 7d equipped with a valve 7c is connected to the bottom of the discharge pipe 7d, and the electrolyte and residual carbon dioxide in the air react within the battery body to generate a solid phase reaction product, which is then passed through the pipe 10 to the electrolyte. When a precipitate is formed at the bottom of the reservoir 7, the valve 7c is opened so that the product can be discharged together with the electrolyte. The electrolyte in the electrolyte reservoir 7 is energized by the pump 8, introduced into the bottom of the electrolyte compartment 4 in the battery main body 1 via piping 9, and passed through the electrodes 2b, 2c to the gas compartments 5a, 5f.
Together with the gas bubbles that have entered from the electrolyte compartment 4, the gas bubbles are led out from the top of the electrolyte compartment 4 and passed through the pipe 10, which has a narrow inner diameter as described above, into the air-cooled heat exchanger 13 for cooling the electrolyte. The electrolyte is returned to the electrolyte reservoir 7 through the wind-cooled spiral pipe. At this time, gas bubbles mixed into the electrolyte flowing in the pipe 10 are smoothly transported to the electrolyte reservoir 7 together with the electrolyte even if the pipe 10 has an ascending section, a descending section, or a serpentine section. The moment it leaves the lower end 10a of the pipe 10, it is separated from the electrolyte and released into the atmosphere. In addition, in the figure, piping 1
Although the lower end 10a of 0 is drawn above the liquid level 7a of the electrolyte reservoir 7, it is not necessary to do so, and the lower end 10a can be submerged to the extent that it is not too deep below the liquid level 7a. Opening does not particularly impede bubble separation.

上述の説明からわかるように、本発明によれば
電解液からの気泡の分離のために特別な分離装置
を設ける必要はなく、電解液溜めを分離装置とし
て共用することで十分である。また、従来と異な
り電解液溜め7は電池本体1の下方に配置しても
なんら差し支えがなくなるので、電池本体1の電
解液区間4内の電解液の圧力をほぼ大気圧と同じ
条件下で電池を運転できるようになり、ガス区画
5a,5f内のガス圧力も大気圧より僅かに高目
にする程度でよく、従つてブロワ17に要する補
機動力は従来より少なくて済む。さらに、電解液
溜め7を全体設備のむしろ下部に配置することが
できるようになり、凝縮水溜め15からの補給に
も動力を要せずに、電解液の濃度を容易に一定化
することができる。なお、電解液溜め7の液面は
必ずしも大気開放にする必要はなく、この液面で
電解液と大気中の炭酸ガスとの反応が懸念される
場合には、電解液溜めの上部を閉じてフイルタ等
を介して大気と半閉的に連通させ、液面上に不活
性ガスを微量流して電解液溜め7内で分離された
ガスとともに該フイルタを介して大気に排出する
ようにしてもよい。
As can be seen from the above description, according to the present invention, there is no need to provide a special separation device for separating bubbles from the electrolyte, and it is sufficient to share the electrolyte reservoir as a separation device. In addition, unlike the conventional case, there is no problem even if the electrolyte reservoir 7 is placed below the battery body 1, so the pressure of the electrolyte in the electrolyte section 4 of the battery body 1 can be maintained at almost the same pressure as atmospheric pressure. The gas pressure in the gas compartments 5a and 5f only needs to be slightly higher than atmospheric pressure, and therefore the auxiliary power required for the blower 17 can be less than that of the conventional blower. Furthermore, the electrolyte reservoir 7 can be placed rather at the bottom of the overall equipment, and the concentration of the electrolyte can be easily stabilized without requiring power to replenish from the condensate reservoir 15. can. Note that the liquid level of the electrolyte reservoir 7 does not necessarily have to be open to the atmosphere, and if there is a concern that the electrolyte may react with carbon dioxide in the atmosphere at this liquid level, the upper part of the electrolyte reservoir should be closed. It is also possible to communicate semi-closedly with the atmosphere through a filter or the like, flow a small amount of inert gas on the liquid surface, and discharge it together with the gas separated in the electrolyte reservoir 7 through the filter to the atmosphere. .

第3図は第2図では簡略して示されていた電池
本体1内の単位電池2の具体構造を部品を展開し
た状態の斜視図で示すもので、第1図と同じ部分
には同一の符号が付されている。図示のように単
位電池2は枠2a、燃料ガス側の電極2b、酸化
ガス側の電極2c、単位電池相互を分離する分離
板2dが積み重ねられて構成され、電解液区間4
は枠2aの内部に形成された電解液室部4aと、
分離された状態の孔として示された下方のマニホ
ールド部4blと、同様に分離された状態の孔とし
て示された上方のマニホールド部4buとして示
されている。なお連通路部4cは枠2aの孔4
bl,4buと電開液室部4aとを結ぶ枠2a内部に
設けられた孔として形成されるが、この図には示
されていない。なお、ガス区画5f,5aは各電
極2b,2cと分離板2dとの間に形成され、こ
の区画を確保するための突条5bが分離板2dの
各電極2b,2cに対応する部位に設けられてい
る。またこの区画5f,5aへの連通路として溝
5cが枠2aに設けられている。
FIG. 3 is a perspective view showing the specific structure of the unit battery 2 in the battery body 1, which was shown in a simplified manner in FIG. 2, with parts expanded. A symbol is attached. As shown in the figure, the unit cell 2 is constructed by stacking a frame 2a, an electrode 2b on the fuel gas side, an electrode 2c on the oxidizing gas side, and a separation plate 2d that separates the unit cells from each other.
is an electrolyte chamber portion 4a formed inside the frame 2a;
The lower manifold section 4bl is shown as separate holes, and the upper manifold section 4bu is also shown as separate holes. Note that the communication passage portion 4c is connected to the hole 4 of the frame 2a.
Although it is formed as a hole provided inside the frame 2a connecting the electrolytic opening liquid chamber 4a and bl, 4bu, it is not shown in this figure. Note that the gas compartments 5f, 5a are formed between each electrode 2b, 2c and the separation plate 2d, and a protrusion 5b for securing this compartment is provided at a portion of the separation plate 2d corresponding to each electrode 2b, 2c. It is being Further, a groove 5c is provided in the frame 2a as a communication path to the sections 5f and 5a.

第4図は電池本体1と配管10との接続部の構
成を示す断面図であつて、第3図の上方のマニホ
ールド部4bとしての孔4buが設けられた隅部
を斜め方向に切断して示すものである。また、こ
の図は複数個の単位電池が積層された状態を示し
ており、第1図および第3図と共通の部分には同
一の符号が付されている。図示のように枠2aと
分離板2dとは相互間にパツキンシート2eを介
して積層され、これらに設けられた孔4buは積
層状態では連続した上方のマニホールド部4bを
形成している。積層体の端部に配された締め付け
板3の外側面には、前述の上方のマニホールド部
に整合して設けられた孔3aに連通するように筒
状の接続金具10aがパツキン10cを介して液
密にねじ込まれ、この接続金具10aに配管10
の端部がパツキン10dを介して袋ナツト10b
により液密に取り付けられている。電極板2b,
2cの間に形成された各電解液室部4a中の電解
液は、枠2a内にうがたれた孔として形成された
連通路部4cを通つて前述のマニホールド部4b
に入り、接続金具10aを通つて配管10に入
る。この配管10は前述の式を満たす内径dを有
しており、図示の例では電池本体1との接続部付
近で電解液を気泡の移動に有利な上方に流すよう
に屈曲されているが、前述の説明からわかるよう
に必ずしもこのように上方に屈曲させる要はな
い。ただ、電池本体1からガスの気泡を除去する
に有利なよう、配管10と電池本体1との接続部
を電解液室部4a、連通路4c、マニホールド部
4bからなる電解液区画4の頂部に位置させるこ
とが望ましい。第3図に示すようにこの実施例で
は上方のマニホールド部4bは2個あるので、2
本の配管10が電池本体1に接続される。
FIG. 4 is a cross-sectional view showing the configuration of the connecting portion between the battery body 1 and the piping 10, and is a cross-sectional view obtained by cutting diagonally at the corner where the hole 4bu serving as the upper manifold portion 4b in FIG. 3 is provided. It shows. Further, this figure shows a state in which a plurality of unit batteries are stacked, and parts common to those in FIGS. 1 and 3 are given the same reference numerals. As shown, the frame 2a and the separation plate 2d are laminated with a packing sheet 2e interposed therebetween, and the holes 4bu provided therein form a continuous upper manifold portion 4b in the laminated state. A cylindrical connecting fitting 10a is connected to the outer surface of the tightening plate 3 arranged at the end of the stacked body through a packing 10c so as to communicate with the hole 3a provided in alignment with the above-mentioned upper manifold part. The pipe 10 is screwed into this connection fitting 10a in a liquid-tight manner.
The end of the cap nut 10b is inserted through the packing 10d.
It is installed in a liquid-tight manner. electrode plate 2b,
The electrolytic solution in each electrolytic solution chamber section 4a formed between 2c passes through the communication passage section 4c formed as a hollow hole in the frame 2a to the above-mentioned manifold section 4b.
and enters the piping 10 through the connecting fitting 10a. This piping 10 has an inner diameter d that satisfies the above-mentioned formula, and in the illustrated example, it is bent near the connection with the battery body 1 so that the electrolyte flows upward, which is advantageous for the movement of bubbles. As can be seen from the above description, it is not necessarily necessary to bend it upward in this way. However, in order to be advantageous in removing gas bubbles from the battery body 1, the connecting part between the piping 10 and the battery body 1 is placed at the top of the electrolyte compartment 4 consisting of the electrolyte chamber 4a, the communication passage 4c, and the manifold part 4b. It is desirable to locate the As shown in FIG. 3, there are two upper manifold parts 4b in this embodiment, so there are two upper manifold parts 4b.
A main pipe 10 is connected to the battery body 1.

第5図は発明者達が行なつた実験結果をまとめ
たグラフ図であつて、横軸に流量q(c.c./min)
の対数を、縦軸に配管の内径d(cm)をとり、電
解液の流量に対してガスの気泡が電解液とともに
配管内を下方に移動しうる配管の内径dの範囲を
ハツチング部で示したものである。電解液として
は燃料電池にふつうに用いられる水酸化カリウム
の水溶液などを主体にし、かつその濃度も2〜10
規定の範囲内で種々変えて実験を行なつたが電解
液の種類や濃度に関係なく、図示の関係式が成立
する。なお、実験条件としての温度は、燃料電池
とその電解液循環系の運転温度を含む前後の温度
範囲が選ばれた。
Figure 5 is a graph summarizing the results of experiments conducted by the inventors, where the horizontal axis shows the flow rate q (cc/min).
The internal diameter d (cm) of the piping is plotted on the vertical axis, and the range of the internal diameter d of the piping in which gas bubbles can move downward in the piping together with the electrolyte with respect to the flow rate of the electrolyte is shown by the hatched part. It is something that The electrolyte is mainly an aqueous solution of potassium hydroxide, which is commonly used in fuel cells, and its concentration ranges from 2 to 10.
Experiments were conducted with various changes within the specified range, and the relational expression shown holds true regardless of the type and concentration of the electrolyte. As the temperature for the experimental conditions, a temperature range including the operating temperature of the fuel cell and its electrolyte circulation system was selected.

〔発明の効果〕〔Effect of the invention〕

以上に説明のとおり、本発明によれば電池本体
内で電解液中に混入されて来るガスを分離するた
めの分離装置を電解液循環系内に設けるに際し
て、電池本体から分離装置に至るまでの電解液の
移送用配管の内径を所定の関係式を満たすように
選ぶことによつて、配管が下方に向けて電解液を
流すように向けられる場合においても、電解液中
に気泡の形で混入するガスを電解液とともに確実
に移送できるようになり、従来のように分離装置
とくに電解液溜めを電池本体の上方に配置しなけ
ればならないという制約を全く取り除くことがで
きる。これにより、電池本体内の電解液区画内の
圧力を大気圧よりも高める必要もなくなるので、
ガス区画内のガス圧力を下げることが可能にな
り、これに相応してガス昇圧用のブロワ等の所要
動力が減じ、燃料電池発電装置の総合効率を上昇
させることができる。また分離装置として電解液
溜めを利用する場合には、その設置位置を従来と
は逆にむしろ発電装置全体の下部に配置して電解
液の液量制御や濃度制御を最も合理的にかつ余分
な補機動力を用いないで行なうことができる。さ
らには、配管の屈曲形状や配設経路にも余り気を
使わないで設計しても、気泡の排除に支障を生じ
ることがなくなるので、発電装置の全体設計にあ
たつても制約やむりのない理想的な設計を施すこ
とが本発明によつて可能になる。
As explained above, according to the present invention, when installing a separator in the electrolyte circulation system to separate gas mixed into the electrolyte within the battery body, the separation device from the battery body to the separator is By selecting the inner diameter of the electrolyte transfer piping to satisfy a predetermined relational expression, even when the piping is oriented to flow the electrolyte downward, it is possible to prevent air bubbles from entering the electrolyte. This makes it possible to reliably transport the gas containing the electrolyte together with the electrolyte, and completely eliminates the conventional restriction that the separation device, particularly the electrolyte reservoir, must be placed above the battery body. This eliminates the need to increase the pressure within the electrolyte compartment within the battery body above atmospheric pressure.
The gas pressure in the gas compartment can be lowered, and the power required for blowers and the like for boosting the gas pressure can be correspondingly reduced, increasing the overall efficiency of the fuel cell power plant. In addition, when using an electrolyte reservoir as a separation device, its installation position should be placed at the bottom of the entire power generation device, contrary to the conventional method, in order to control the amount and concentration of the electrolyte in the most rational manner and to eliminate excess. This can be done without using auxiliary power. Furthermore, even if you do not pay too much attention to the bending shape of the piping or the installation route, there will be no problem in eliminating air bubbles, so there will be no restrictions or unavoidable problems when designing the entire power generation equipment. The present invention makes it possible to create an ideal design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の従来技術による電解液循環
系の要部を模式的に示す系統図、第2図以降はす
べて本発明による燃料電池の電解液循環系の実施
例を示すもので、内第2図は本発明による電解液
循環系を用いた燃料電池発電装置の全体系統図、
第3図は電池本体内の単位電池の分解斜視図、第
4図は電池本体と電解液循環系の配管との接続部
を示す断面図、第5図はガスの気泡を電解液とと
もに自由に移動させうる範囲を示す実験結果をま
とめたグラフ図である。図において、 1:燃料電池の電池本体、4:電池本体内の電
解液区画、5:電池本体内のガス区画、6:電解
液循環系、7:気泡の分離装置としての電解液溜
め、10:電解液循環系内の配管、d:配管の内
径、である。
Figure 1 is a system diagram schematically showing the main parts of the electrolyte circulation system of a fuel cell according to the prior art, and everything from Figure 2 onwards shows examples of the electrolyte circulation system of the fuel cell according to the present invention. FIG. 2 is an overall system diagram of a fuel cell power generation device using an electrolyte circulation system according to the present invention;
Figure 3 is an exploded perspective view of the unit cell inside the battery body, Figure 4 is a cross-sectional view showing the connection between the battery body and the piping of the electrolyte circulation system, and Figure 5 is a diagram showing how gas bubbles are freed together with the electrolyte. It is a graph diagram summarizing experimental results showing a range in which movement can be made. In the figure, 1: fuel cell main body, 4: electrolyte compartment within the battery main body, 5: gas compartment within the battery main body, 6: electrolyte circulation system, 7: electrolyte reservoir as a bubble separation device, 10 : Piping in the electrolyte circulation system, d: Inner diameter of piping.

Claims (1)

【特許請求の範囲】 1 燃料電池本体の液区画内に保有される電解液
が電池本体外の電解液循環系を介して繰り返して
循環され、該電解液循環系内に電池本体内で電解
液中に混入ないし含有されるガスを電解液から分
離する分離装置が設けられるものにおいて、該分
離装置が電池本体よりも下方に位置され、電解液
を電池本体から分離装置に導く配管の内径が電解
液中に気泡の形で混入するガスを電解液とともに
分離装置に導きうるよう細く形成されたことを特
徴とする燃料電池の電解液循環系。 2 特許請求の範囲第1項記載の電解液循環系に
おいて、分離手段が自由液面を有する電解液溜め
として構成され、該電解液溜め内において電池本
体からの配管を通じて電解液溜めに流入する電解
液中のガスが前記液面上の空間に分離、排出され
るようにしたことを特徴とする燃料電池の電解液
循環系。 3 特許請求の範囲第2項記載の電解液循環系に
おいて、電解液溜め内の電解液面上の空間が大気
に連通ないし開放され、電池本体が電解液にほぼ
大気圧が掛かつた状態で運転されることを特徴と
する燃料電池の電解液循環系。 4 特許請求の範囲第1項記載の電解液循環系に
おいて、配管の内径d(cm)が該配管内の電解液
の流量q(c.c./min)に対して、式 d0.36(log q+0.7) を満たすように選ばれたことを特徴とする燃料電
池の電解液循環系。 5 特許請求の範囲第1項記載の電解液循環系に
おいて、配管が電池本体内の液区画の頂部に接続
されたことを特徴とする燃料電池の電解液循環
系。
[Scope of Claims] 1. The electrolytic solution held in the liquid compartment of the fuel cell main body is repeatedly circulated via an electrolytic solution circulation system outside the battery main body, and the electrolytic solution inside the battery main body is circulated within the electrolytic solution circulation system. In a device that is equipped with a separation device that separates the gas mixed or contained in the electrolyte from the electrolyte, the separation device is located below the battery main body, and the inner diameter of the pipe that leads the electrolyte from the battery main body to the separation device is 1. An electrolyte circulation system for a fuel cell, characterized in that the electrolyte circulation system for a fuel cell is formed to be narrow so that gas mixed in the liquid in the form of bubbles can be guided to a separation device together with the electrolyte. 2. In the electrolyte circulation system according to claim 1, the separation means is configured as an electrolyte reservoir having a free liquid surface, and the electrolyte flowing into the electrolyte reservoir through piping from the battery body within the electrolyte reservoir. 1. An electrolyte circulation system for a fuel cell, characterized in that gas in the liquid is separated and discharged into a space above the liquid surface. 3. In the electrolyte circulation system described in claim 2, the space above the electrolyte surface in the electrolyte reservoir is communicated with or opened to the atmosphere, and the battery body is in a state where the electrolyte is under approximately atmospheric pressure. An electrolyte circulation system of a fuel cell characterized by being operated. 4 In the electrolyte circulation system according to claim 1, the inner diameter d (cm) of the pipe is expressed by the formula d0.36 (log q+0. 7) An electrolyte circulation system for a fuel cell characterized by being selected to satisfy the following. 5. The electrolyte circulation system for a fuel cell according to claim 1, wherein a pipe is connected to the top of the liquid compartment within the battery main body.
JP58230656A 1983-12-08 1983-12-08 Electrolyte circulation system of fuel cell Granted JPS60124367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230656A JPS60124367A (en) 1983-12-08 1983-12-08 Electrolyte circulation system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230656A JPS60124367A (en) 1983-12-08 1983-12-08 Electrolyte circulation system of fuel cell

Publications (2)

Publication Number Publication Date
JPS60124367A JPS60124367A (en) 1985-07-03
JPH02826B2 true JPH02826B2 (en) 1990-01-09

Family

ID=16911219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230656A Granted JPS60124367A (en) 1983-12-08 1983-12-08 Electrolyte circulation system of fuel cell

Country Status (1)

Country Link
JP (1) JPS60124367A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0604598D0 (en) * 2006-03-07 2006-04-19 Dfc Energy Ltd Improvements in and relating to fuel cells
JP2009529213A (en) 2006-03-07 2009-08-13 エイエフシー エナジー ピーエルシー Fuel cell electrode
JP5194569B2 (en) * 2007-05-31 2013-05-08 トヨタ自動車株式会社 Fuel cell
KR101763698B1 (en) 2010-01-25 2017-08-01 라모트 앳 텔-아비브 유니버시티 리미티드 Regenerative fuel cell stacks

Also Published As

Publication number Publication date
JPS60124367A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
US4908281A (en) Metal/air battery with recirculating electrolyte
JP5829565B2 (en) Fuel cell system
JP4591872B2 (en) Fuel cell device
JP2006140164A (en) Fuel cell device
JP2007242491A (en) Fuel cell system and its operation control method
US6787263B2 (en) Method and apparatus for establishing a negative pressure inside an enclosure that houses a fuel cell system
US9099722B2 (en) Recombinator for flowing electrolyte battery
JP4959112B2 (en) Fuel cell system
KR101095665B1 (en) Fuel cull power generation system
JPH02826B2 (en)
EP1168476B1 (en) Fuel cell power generating system and operation method
JP5280063B2 (en) Fuel cell water purification system
JP5173302B2 (en) Fuel cell device
JP4944403B2 (en) Cathode gas supply device for polymer electrolyte fuel cell
JP7380431B2 (en) fuel cell system
JP2009076216A (en) Fuel cell power generation system, and water circulating system thereof
US11362346B2 (en) Fuel cell system
JP2006502546A (en) Power supply having a fuel cell that does not release substances to the outside, and control method for such power supply
JP6895784B2 (en) Water electrolysis device, water electrolysis system, water electrolysis / fuel cell device and water electrolysis / fuel cell system
JP4221981B2 (en) Fuel cell system
JP2000357527A (en) Fuel cell system
JP2016051521A (en) Fuel cell system
JP6378508B2 (en) Fuel cell system
JP6411793B2 (en) Fuel cell system
JP2020030972A (en) Fuel cell system