JPS60151977A - Supplementary feed of electrolyte in matrix-type battery - Google Patents

Supplementary feed of electrolyte in matrix-type battery

Info

Publication number
JPS60151977A
JPS60151977A JP59008798A JP879884A JPS60151977A JP S60151977 A JPS60151977 A JP S60151977A JP 59008798 A JP59008798 A JP 59008798A JP 879884 A JP879884 A JP 879884A JP S60151977 A JPS60151977 A JP S60151977A
Authority
JP
Japan
Prior art keywords
electrolyte
gas
fuel
matrix
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008798A
Other languages
Japanese (ja)
Inventor
Yoshifumi Yamazaki
山崎 善文
Tsutomu Furuya
降矢 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59008798A priority Critical patent/JPS60151977A/en
Publication of JPS60151977A publication Critical patent/JPS60151977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To perform supplementary feed of electrolyte without downtime and complication of battery construction by connecting in parallel and disconnectably an electrolyte spraying device in an inlet pipe line of fuel gas. CONSTITUTION:An electrolyte supplementary feed system 40 includes as main constituent an electrolyte spraying device 41. The spraying device 41 is connected in parallel to a fuel gas inlet valve 32 of a fuel gas inlet pipe 31 in a fuel gas system 30 through switching valves 42, 43 disposed in front and at the back of the spraying device. The concentration of electrolyte to be sprayed by the spraying device 41 depends upon the kind of the spraying device, and in general, opening degress of the fuel gas inlet valve 32 and switching valves 42, 43 are properly adjusted so that a part or corresponding part of the fuel gas flows into the spraying device 41 to adjust the concentration of the electrolyte in the fuel gas flowing into a battery in such a manner as to be held in the range. This allows the electrolyte mixed in the fuel gas P to be penetrated into a matrix layer 1. Thus, supplementary feed of electrolyte can be performed without downtime and complication of battery construction.

Description

【発明の詳細な説明】 〔発明の鵜する技術分野〕 本発明は、電解質を保持するマトリ、クス層と該マトリ
ックス層に接して配されたガス拡散性の反応カス電極層
とを分散内蔵し、該反応ガス電極層の反マトリックス層
側の面に対して開かれた反応ガス通路が内設された槙層
体としてなる燃料電池2例えばりん酸を電解質とするマ
トリックス形燃料電池、に対する電解質補給方法に関す
る。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention comprises a matrix and a gas layer holding an electrolyte, and a gas-diffusing reaction gas electrode layer disposed in contact with the matrix layer. , Electrolyte replenishment for a fuel cell 2, which is a layered structure in which a reaction gas passage is opened to the surface of the reaction gas electrode layer opposite to the matrix layer, for example, a matrix fuel cell using phosphoric acid as an electrolyte. Regarding the method.

〔従来技術とその問題点り 電池内の多孔性のマ) IJソクス層内に電解質を保持
させておく形式のいわゆるマトリックス形燃料電池は、
自由電解液形燃料電池に比べて電解液の循環系統が不要
で、それだけ発電装置としての系統構成が簡単になる利
点があり、最近の実用的な大形燃料電池とくにりん酸を
電解質とする燃料電池に採用されているが、電池の運転
中に多少とも電解質が電池内に通流される反応ガスによ
って電池外に持ち出されて、電池内の電解質の量が僅か
すってはあるが漸次減少して行く傾向があるOt電池内
通流される反応ガスは、発電作用に伴って生じる反応生
成水や電池自発熱量を電池外に排出する役目をもふつう
兼ねており、電池が発電作用のために消費する必要量の
数倍の量が通流されるので、上記の電解質の減少がさら
にこれによって助長されることになる。
[Prior art and its problems: porosity inside the battery] The so-called matrix fuel cell, in which the electrolyte is retained in the IJ layer, is
Compared to free electrolyte fuel cells, there is no need for an electrolyte circulation system, which has the advantage of simplifying the system configuration as a power generation device. It is used in batteries, but during battery operation, some amount of electrolyte is carried out of the battery by the reactive gas flowing inside the battery, and the amount of electrolyte in the battery gradually decreases, albeit slightly. The reactive gas that flows through the battery also serves to discharge water produced by the reaction and the battery's own heat generated by the power generation process to the outside of the battery, which is consumed by the battery for power generation. Since several times the required amount is passed through, the electrolyte reduction mentioned above is further promoted by this.

第1図はこの種マ) IJワックス形料電池の基本構造
を単電池について示したもので、ふつう多孔質のセラミ
ックス材からなるマトリックス層1に電解液が浸透され
て保持されている。このマトリックス層lを図では上下
の両端から挾むように、かつ該マトリックス層1に直接
的に接して、それぞれガス拡散性の燃料ガス電極層2と
酸化ガス電極層3とが配されている。これらの反応ガス
電極層2,3をさらにその外側から挾むように、それぞ
れ溝4a + ’bを両面に偏えたガス不拡散性の溝つ
きセパレータ板4,4が配され、周知のようにこのよう
な基本構造単位が多数個積層されて実用的な燃料電池の
セルスタックが構成される。燃料ガスはセパレータ板4
の燃料ガス電極層2に接する側の面に切られた燃料ガス
用の溝4aから、酸化ガスはセパレータ板4の反対側の
面に溝4a とは直交する方向に切られた酸化ガス用の
前4bから。
FIG. 1 shows the basic structure of this kind of IJ wax type cell in terms of a single cell, in which an electrolytic solution is permeated into and held in a matrix layer 1, which is usually made of a porous ceramic material. In the figure, a fuel gas electrode layer 2 and an oxidizing gas electrode layer 3 having gas diffusivity are disposed so as to sandwich this matrix layer 1 from both upper and lower ends and in direct contact with the matrix layer 1, respectively. Gas non-diffusive grooved separator plates 4, 4 having grooves 4a+'b on both sides are disposed so as to further sandwich these reaction gas electrode layers 2, 3 from the outside. A practical fuel cell stack is constructed by stacking a large number of basic structural units. Fuel gas is separator plate 4
The oxidizing gas is transferred from the fuel gas groove 4a cut in the surface in contact with the fuel gas electrode layer 2 to the oxidizing gas groove 4a cut in the direction perpendicular to the groove 4a in the opposite surface of the separator plate 4. From front 4b.

それぞれ燃料ガス電極層2t−たは酸化ガス電極層3に
供給される。このような構成の燃料電池でれ、反応ガス
通路としての溝4a + ’bに直接面して燃料電池の
ガス拡散の電極層2,3が配設されているので、マトリ
、クス層1から電極層2,3内に8出した電解液中の水
分がさらに溝4a、 4b内に通流される反応ガス中に
反応生成水とともに蒸発し、この際に僅かすってはある
が若干の電解質が蒸気中に混入して電池外に持ち出され
ることになる。
The fuel gas is supplied to the fuel gas electrode layer 2t- or the oxidant gas electrode layer 3, respectively. In a fuel cell having such a structure, the electrode layers 2 and 3 for gas diffusion of the fuel cell are disposed directly facing the grooves 4a + 'b as reaction gas passages, so that the electrode layers 2 and 3 for gas diffusion of the fuel cell are disposed directly facing the grooves 4a + 'b as reaction gas passages. The water in the electrolyte discharged into the electrode layers 2 and 3 is further evaporated into the reaction gas flowing into the grooves 4a and 4b together with the reaction product water, and at this time, some electrolyte is removed, albeit slightly. It will be mixed into the steam and carried out of the battery.

以上のように漸時電池外に逸出する電解質を補充するた
めに従来から種々の手段が試みられているが、電解質を
保持するマトリックス層が前述のように燃料電池セルス
タ、りの内部に位置しその表面から隔離されておシ、か
つセルスタック内に分布して配置されているので、決定
的なよい手段が見つからないのが現状である。最も基本
的な電解質補給方法は電池本体を分解して、電池の製作
時と同方法でマトリ、クス層に9ん酸などの電解質を含
没し直す方法であるが、これでは電解質の完全な補給を
行なうことができても、電解質補給のだめに電。池の運
転を休止しなりれはならないことはもちろん、補給作業
に多大の手間か掛かつてしまう。この点を解決するため
には、セルスタック内の多数の単電池にt解質補給構造
をあらかじめ作シ込んでおくことが試みられている。か
かる従来手段の例を第2因に示す。この例では電解液溜
め6が前述のセパレータ板4の中に設りられ1いる0こ
の電解液溜め6は、図示のようにセルスタックの側面の
近くの位置において七ノくレータ板4の上面からの凹み
として設りられておシ、セルスタック側面から導入され
た補給チューブ7から補給用電解液Eを受容し、凹みの
底に設りられた連通孔4cと、マトリックス層1および
電極層213の周縁部のシール5に設けられた連通孔5
aとを通じてマトリックス層lに電解液をn時補給する
Various methods have been tried in the past to replenish the electrolyte that gradually leaks out of the cell as described above. Since the cells are isolated from the cell surface and distributed within the cell stack, no definitive good means have been found at present. The most basic method of replenishing electrolyte is to disassemble the battery body and re-impregnate the matrix and gas layers with electrolyte such as 9-phosphate using the same method used when manufacturing the battery, but this method does not completely remove the electrolyte. Even if it is possible to replenish electrolytes, electricity is not enough to replenish electrolytes. Not only would the pond have to be shut down, but replenishment work would also take a lot of effort. In order to solve this problem, attempts have been made to build in advance a t-solite replenishment structure in a large number of single cells in a cell stack. An example of such conventional means is shown in the second factor. In this example, an electrolyte reservoir 6 is provided within the separator plate 4 described above. The recess is provided at the bottom of the recess to receive the replenishing electrolyte E from the replenishment tube 7 introduced from the side of the cell stack, and the communication hole 4c provided at the bottom of the recess, the matrix layer 1 and the electrode layer. The communication hole 5 provided in the seal 5 on the periphery of 213
The electrolyte is replenished into the matrix layer l through a and n times.

このような補給手段では電解液溜め6を設けるだめのス
ペースlが側ifu郡に必要となシ、マトリックス層1
等の周縁部の7−ル5に元来必要な以上のスペースが食
われてしまうことになるので、セルスフ、りの断面積の
有効イリ用上の問題点かある。
In such a replenishment means, a space l for arranging the electrolyte reservoir 6 is required in the side ifu group, and the matrix layer 1 is
Since more space than is originally necessary is taken up by the 7-rule 5 on the periphery of the cell surface, there is a problem in terms of the effective cross-sectional area of the cell surface.

また、反応ガス進路としての溝が2図の例では酸化ガス
用の溝4bのセルスタック側面への出口が。
Furthermore, in the example shown in FIG. 2, the groove 4b for the oxidizing gas is the exit to the side surface of the cell stack.

当然ふさがれてしまうことになるので、壽相互間に連絡
用の溝4dを設けるなどの配慮を要するので、構造がど
うしても複雑化してし首う。さらには前述の電%′f液
補給用チーーーブ7を単電池ことに設けなければならな
いので、セ/Lスタ、り全体テi、i カなりの数が必
要となシ、共通母晋がら枝分かれするように4−i’4
 hLし1ことしても、構造の複雑化は避けられず、電
解液による腐食などイマ]随的な問題も生じる。
Naturally, they will be blocked, so consideration needs to be taken such as providing communication grooves 4d between the jugs, which inevitably complicates the structure. Furthermore, since the above-mentioned unit 7 for replenishing the electric liquid must be installed in the single battery, a certain number of SE/L stars are required as a whole, and the common motherboard is divided into branches. 4-i'4
However, even if this is done, the structure will inevitably become complicated, and other problems such as corrosion caused by the electrolyte will also occur.

このほか、11質袖給上の共通問題として、電解液号が
過剰にならないように特に留意する必要がある。うなわ
ち、%、解液iが多すきると電極層2.3内に電解液が
多Iに滲出し1しまって反応カスが電極層内に拡散でき
なくなり、かんじんの電池の発電作用が損なわれてしま
うことになるからである。
In addition, as a common problem when supplying 11 materials, special care must be taken to ensure that the electrolyte number does not become excessive. In other words, when the amount of solution I becomes too large, the electrolyte oozes out into the electrode layer 2.3 and the reaction residue cannot diffuse into the electrode layer, impairing the power generation function of the battery. This is because you will end up getting lost.

〔発明の目的〕[Purpose of the invention]

以上の従来技術のもつ種々な問題点の認識に立脚して、
本発明の目的は、電池の運転を休止することなく、また
電池の構造を複雑化させることなく、燃料電池セルスタ
ック内に分布して存在するマトリックス層に電解質を補
給できる方法を得ることにおる。
Based on the recognition of the various problems of the above-mentioned conventional technologies,
An object of the present invention is to provide a method for replenishing electrolyte to a matrix layer distributed within a fuel cell stack without suspending battery operation or complicating the structure of the battery. .

〔発明の要点〕[Key points of the invention]

上述の目的は、本発明によれば、冒頭に記載の形式のマ
トリ、ジス形燃料電池に対して、燃料電池への燃料カス
の導入管路に電解質霧化装置を並列にかつ挿脱自在に接
続し、−M質の補給時に燃料ガス導入管路内を流れるガ
スの少なくとも一部を前記電解質霧化装置に通流させ、
該ガスとともに霧化された電解質を前記反応カス通路を
介し燃料ガス電極層を通して前記マトリックス層に補給
することによりて達成される。
According to the present invention, an electrolyte atomization device can be freely inserted and removed in parallel to the fuel sludge introduction pipe to the fuel cell in the matrix type fuel cell of the type described at the beginning. - connecting at least a portion of the gas flowing in the fuel gas introduction pipe when replenishing the M substance to the electrolyte atomization device;
This is achieved by replenishing the matrix layer with the electrolyte atomized together with the gas through the reaction gas passage and the fuel gas electrode layer.

本発明の上記構成において、補給すべき電解質は燃料ガ
スの電池への導入管路のカス中に霧化さ失なわれて行く
′電解質量が僅少なので、その混入パ量はかなシ稀薄で
あっても補給目的には十分である0この電解質を混入さ
れたガスは燃料カス導入管から電池区画内に入り、電池
本体内の燃料ガス通路に入り、該通路に面した燃料カス
電極層の反マトリックス層側表面にガス中に混入された
電解質がイ1」庖うる。当初、このように付着した電解
質は容易にはマトリックス層の方には拡散せず、むしろ
再飛散して電池区画外に排出されるものと予想されてい
た。しかし、実験結果によれは、このように燃料カス電
極層の反マトリックス層側に付着した電解質は、意外に
も容易にマトリックス層側に拡散、S動してマトリック
ス層内に浸透しうろことがわかった。この原因は、燃料
ガス電極層かもとも七ガス拡散性であることのほか、該
電極層の内部および付近が発電作用に伴って発生する反
応生成水によって湿分ないし水分に富み、電解質が容易
に水分を吸収し電解液の形でマトリックス層へ浸透壊れ
るものと考えられる。なお、この電解質の燃料ガス電極
層側からマトリ、クス層側への移行を促進する意味で、
燃料ガス電極層に後述のように多数の小孔を設け、ある
いは非撥水性の細チャネル部を設けると有利である。
In the above structure of the present invention, the electrolyte to be replenished is atomized and lost in the waste of the fuel gas introduction pipe to the cell.Since the amount of electrolyte is small, the amount of electrolyte mixed in is ephemeral and dilute. This electrolyte-mixed gas enters the cell compartment from the fuel sludge inlet pipe, enters the fuel gas passage in the cell body, and flows through the fuel sludge electrode layer facing the passage. The electrolyte mixed in the gas appears on the surface of the matrix layer. Initially, it was predicted that the electrolyte deposited in this way would not easily diffuse into the matrix layer, but rather would be re-splattered and discharged outside the battery compartment. However, according to experimental results, the electrolyte adhering to the anti-matrix layer side of the fuel waste electrode layer surprisingly easily diffuses to the matrix layer side, moves S, and penetrates into the matrix layer. Understood. The reason for this is that in addition to the fact that the fuel gas electrode layer is gas diffusive, the inside and vicinity of the electrode layer is moist or rich in water due to the reaction product generated during power generation, and the electrolyte is easily absorbed. It is thought that it absorbs water and penetrates into the matrix layer in the form of electrolyte and breaks down. In addition, in order to promote the transfer of this electrolyte from the fuel gas electrode layer side to the matrix and gas layer side,
It is advantageous to provide the fuel gas electrode layer with a large number of small holes or a non-water repellent narrow channel portion as described below.

上述のような補給は、原理上は酸化ガス%極層側から行
なっても同一のはずであるが、実験結果によれば酸化ガ
ス電極層側からの電解質補給は適切でない。これは、電
極層の拡散性が燃料カス側と酸化ガス側で異なることや
、酸化ガス電極側に含まれる反応触媒が電解質の濃度条
件によって影響されやすいためであると考えられる。従
って、本発明方法においては燃料ガス電極側から電解質
を補給することをその要旨とする。
In principle, the above-mentioned replenishment should be the same even if performed from the oxidizing gas electrode layer side, but according to experimental results, electrolyte replenishment from the oxidizing gas electrode layer side is not appropriate. This is considered to be because the diffusivity of the electrode layer differs between the fuel scum side and the oxidizing gas side, and the reaction catalyst contained on the oxidizing gas electrode side is easily influenced by the electrolyte concentration conditions. Therefore, the gist of the method of the present invention is to replenish the electrolyte from the fuel gas electrode side.

以上の記載から容易にわかるように、本発明方法によれ
ば電池のセルスタック構成を電解質の補給のために変え
る必要1、全くないしはほとんどなく、これによシネ必
要な電池構造の複雑化を避けることができる。本発明方
法のもつ他の利点およびその取りうる態様については以
下に説明する。
As can be easily seen from the above description, according to the method of the present invention, there is no or almost no need to change the cell stack configuration of the battery for electrolyte replenishment, thereby avoiding the necessary complication of the battery structure. be able to. Other advantages of the method according to the invention and its possible embodiments will be explained below.

12発明の実施例」 以1図1mを参照しながら本発明の実施例を詳しく説明
する。第3図は本発明方法に実施に関連する燃料電池発
電装置の部分を示す系統図で勘って、燃料電池本体IO
が図の中央に模式的に示されている。該電池本体10は
、第1図に示し/こ構造の寛池単位含多数個積層して図
の上下の押え板tiの間に締め4=Jけられた方形柱状
のセルスタ、りであり、その4個の側面には一部断面で
示されたマニホールド蓋12がそれぞれ取付けられてい
る。これら4個のマニホールド蓋12の内、図の左方の
マニホールド蓋からは反応ガスとしての酸化ガスA1例
えはプロワ2Iで大気から吸入された菟気がその人口管
12aかり入シ、該蓋12によυ形成される入口マニホ
ールドから酸化ガス通路としての溝4bに入って酸化ガ
ス電極層3に供給される。この酸化ガスAはさらに溝4
b内を図の右方に流れて、右方のマニホールド蓋12に
よって@1れた出口マニホールドに入シ、該蓋12の出
口管12bから電池外部に出る。
12 Embodiments of the Invention Embodiments of the present invention will now be described in detail with reference to FIG. 1m. Fig. 3 is a system diagram showing the parts of the fuel cell power generation device related to the implementation of the method of the present invention.
is schematically shown in the center of the figure. The battery main body 10 is shown in FIG. 1, and is a rectangular columnar cell star with a large number of Hiroike units laminated and held between upper and lower holding plates ti in the figure. A manifold lid 12, partially shown in cross section, is attached to each of its four sides. Among these four manifold lids 12, from the manifold lid on the left side of the figure, oxidizing gas A1 as a reaction gas is injected into the manifold pipe 12a. The oxidizing gas enters the groove 4b, which serves as an oxidizing gas passage, from the inlet manifold formed by the method, and is supplied to the oxidizing gas electrode layer 3. This oxidizing gas A is further
b, flows to the right in the figure, enters the outlet manifold defined by the right manifold lid 12, and exits outside the battery from the outlet pipe 12b of the lid 12.

燃料ガスFは、電池本体IOの図では後方のマニホール
ド蓋12の入口管12aから電池に導入され、同様にし
て燃料ガス通路としての溝2a内を図の手前に向かって
流れ、図では手前のマニホールド12の出1コ管12b
から電池外に出る。この燃料カス系20は実際には周知
のように循環系としてM成されるが、図では簡単化のた
め省略されている。出口管12bから出た燃料ノノスは
、後述の電解質トラ、ブ44を経て図の左方に出て1例
えは廃燃料ガスF1として酸化ガス系別からの廃酸化カ
スAIとともに図示しない燃料改質装置の燃料として用
いられる。なお、前述の燃料ガスFは、例えば天然ガス
を改質した20%程度の炭酸ガスを含む水素を主成分と
する改質カスである。
Fuel gas F is introduced into the battery from the inlet pipe 12a of the manifold lid 12 at the rear in the diagram of the battery main body IO, and similarly flows toward the front in the diagram in the groove 2a serving as a fuel gas passage. Output pipe 12b of manifold 12
Remove the battery from the Although this fuel waste system 20 is actually configured as a circulation system as is well known, it is omitted in the figure for the sake of simplicity. The fuel particles coming out of the outlet pipe 12b pass through the electrolyte tube 44, which will be described later, and exit to the left side of the figure, for example, as waste fuel gas F1, together with the waste oxidation residue AI from the oxidation gas system, to be used for fuel reformation (not shown). Used as fuel for equipment. Note that the above-mentioned fuel gas F is, for example, a reformed residue obtained by reforming natural gas and whose main component is hydrogen, which contains about 20% carbon dioxide gas.

本発明方法の実施に必要な電解質補給系40は第3図の
左上部に示された電解質霧化器41f:中心に構成され
ている。この電解質霧化器41は、燃料ガス系30の燃
料ガス導入管31の燃料カス導入弁32に並列に、前後
の開閉弁42 、43を介して接続層れておシ、それ自
体は種々な形式の霧化器として構成することができる。
The electrolyte replenishment system 40 necessary for implementing the method of the present invention is centered around an electrolyte atomizer 41f shown at the upper left of FIG. This electrolyte atomizer 41 is connected in parallel to the fuel sludge inlet valve 32 of the fuel gas inlet pipe 31 of the fuel gas system 30 via front and rear on-off valves 42 and 43. It can be configured as a type of atomizer.

例えば電解質がりん酸のような液体である場合には、電
解質中に燃料ガスFを直接に池として吹き込むことによ
シ、容易に燃料カス中に1ル解質を霧化させることがで
き、電解質が固体の場合であってもその水溶液中に燃料
ガスを吹き込めQま同様に霧化の目的を達することがで
きる。おるいは、公知の超音波を利用した霧化器を採用
するこtができ、丑た後述の第5図に示すような構成を
とることもできる。
For example, when the electrolyte is a liquid such as phosphoric acid, the electrolyte can be easily atomized into the fuel residue by directly blowing the fuel gas F into the electrolyte as a pond. Even if the electrolyte is solid, the purpose of atomization can be achieved in the same way by blowing fuel gas into the aqueous solution. Alternatively, a known atomizer using ultrasonic waves can be used, and a configuration as shown in FIG. 5, which will be described later, can also be adopted.

もて、’1′1L解質がりん酸であり電池の運転温度が
18θOC8’+j後でるる場合に、燃料電池本体10
から漸仄失なわれて行く電解質の■は、電池に供給され
る燃料ガス1立方米あたD 10〜50ミリグラム程度
であるから、電解質を連続補給する場合には、燃料カス
中にlO〜50 ミl)ダラム/立方米の濃度で電解質
を輯化さぜれはよい。電解質を断続補給する場合には、
当然これより味い濃度で電解質を霧化さぜる侠があるが
、あまり補給速度全土けると燃料ガス電極層の発電機能
が一時的にでも低下することが実験的にわかっているの
で、上述の2倍程度、すなわち20〜100ミリグラム
/立方米の濃度で電解質を燃料ガス中に霧化させるのが
適当である。いずれにせよ、電解質霧化器41が霧化し
うる電解質の濃度は、霧化器の種類によってもy、なる
が、上記の濃度範囲よυも高い場合が多いので、ふつう
は前述の燃料カス導入弁32および開閉弁42゜430
開Kを適宜調節して、電池に供給される燃料ガスの一部
または相肖部を霧化器41に通流させて、電池に入る燃
料ガス中の電解質濃度が上記の範囲内に入るように調整
する。
First, when the '1'1L solute is phosphoric acid and the operating temperature of the battery is after 18θOC8'+j, the fuel cell main body 10
The amount of electrolyte that is gradually lost from the fuel gas is about 10 to 50 milligrams per cubic meter of fuel gas supplied to the battery, so if the electrolyte is continuously replenished, the amount of It is recommended to prepare the electrolyte at a concentration of 50 ml) duram/m3. When replenishing electrolytes intermittently,
Of course, there are ways to atomize the electrolyte at a higher concentration than this, but it has been experimentally shown that if the replenishment rate is reduced too much, the power generation function of the fuel gas electrode layer will deteriorate even temporarily, so the above-mentioned It is appropriate to atomize the electrolyte into the fuel gas at a concentration of about twice that of the fuel gas, that is, 20 to 100 milligrams/m3. In any case, the concentration of electrolyte that can be atomized by the electrolyte atomizer 41 varies depending on the type of atomizer, but in many cases υ is higher than the above concentration range, so the above-mentioned fuel sludge introduction is usually Valve 32 and on-off valve 42°430
By adjusting the opening K appropriately, a part or a proportion of the fuel gas to be supplied to the battery is passed through the atomizer 41 so that the electrolyte concentration in the fuel gas entering the battery is within the above range. Adjust to.

上述のようにして燃料ガスFにb人された電解質は、燃
料カスFとともに第3図に示す燃料ガス通路としての溝
2aに入り、燃料ガス電極N2のマトリックス層1とは
反対側の表面に刺着し、そこからさらに図の矢印で示す
ようにマトリックス層1中に補給用電解質として浸透さ
れる0このマトリックス層1への浸透ないしは移行を促
進するために有利な構造が第4図に示され一部いる。同
図は前の第2図と同様に単電池の要部を断面で示すもの
で、図示のように燃料ガス電極層2のガス通路溝4aに
面する部位に小孔2aが多数個設けられている。かかる
小孔によυ燃料ガス電極層2の表面に付着された’IL
 M質のマトリックスM1への移行を早めることができ
、一方かかる小孔を設けても電池の発電作用はあまシ影
響されないことが経験かられかっている。また、電解液
が燃料ガス電極層に過剰きみに旬着するようなことがあ
っても、燃料ガスが電極層内に拡散するにつれて電極層
内の電解液は比較的速やかにマトリックス層の方に移行
するので、運転中にやや過剰な電解液が電極層表面に付
着隠れても電極層の機能がとくに損なわれることはない
。他の有利な電極層構造としては、前述の小孔2aのか
わりにその部分のみを撥水剤を含−まないように構成す
ることもできる。このようにすれは、電極ノーの発電機
能を全く損なわずに、該非撥水部を介して電解質を速や
かにマトリックス層1に移行させることができる。
The electrolyte mixed with the fuel gas F as described above enters the groove 2a as a fuel gas passage shown in FIG. An advantageous structure for promoting this penetration or transfer into the matrix layer 1 is shown in FIG. 4. There are some people. This figure, like the previous figure 2, shows the main part of the unit cell in cross section, and as shown in the figure, a large number of small holes 2a are provided in the part facing the gas passage groove 4a of the fuel gas electrode layer 2. ing. 'IL attached to the surface of the fuel gas electrode layer 2 through such small holes.
It has been found from experience that the transition to the M-quality matrix M1 can be accelerated, and that even if such small holes are provided, the power generation effect of the battery is not significantly affected. In addition, even if an excessive amount of electrolyte reaches the fuel gas electrode layer, the electrolyte in the electrode layer will relatively quickly move toward the matrix layer as the fuel gas diffuses into the electrode layer. Therefore, even if a slightly excessive amount of electrolyte adheres to and hides on the surface of the electrode layer during operation, the function of the electrode layer will not be particularly impaired. Another advantageous electrode layer structure may be such that instead of the small holes 2a described above, only those portions do not contain the water repellent. In this way, the electrolyte can be quickly transferred to the matrix layer 1 through the non-water repellent portion without impairing the power generation function of the electrode.

しかし、前述のようにして燃料ガス電極層2の表面に刺
着した電解質の若干は再飛散して電池区画外に排出され
る可能性があるので、第3図に示すように燃料ガス出口
管12bの外側に電解質トラップ44を設けるのが望ま
しい。該出口管12bから排出される燃料カスF1は、
がかる電解質のほかに多景の反応生成水分を含むので、
もともとこの水分除去の工程がふつう必要であシ、電解
質トラップ44はかかる水分凝縮器と共用することがで
きる。凝縮器としては通常の熱交換器でよく、燃料ガス
を水分の凝縮温度まで冷却すれば稀薄な電解溶液が凝縮
器れる。かかる凝縮水中の電解質は中和等の公知の方法
で除去することができ、電解質を除去された凝縮水は単
に廃棄するか、あるいは燃料改質のだめの反応水として
利用するとともできる。
However, some of the electrolyte that has stuck to the surface of the fuel gas electrode layer 2 as described above may be re-splattered and discharged outside the battery compartment. Preferably, an electrolyte trap 44 is provided outside of 12b. The fuel waste F1 discharged from the outlet pipe 12b is
In addition to electrolytes, it also contains water produced by reactions, so
This moisture removal step is usually necessary, and the electrolyte trap 44 can be used in conjunction with such a moisture condenser. A conventional heat exchanger may be used as the condenser, and by cooling the fuel gas to the condensing temperature of water, a dilute electrolytic solution is condensed. The electrolyte in the condensed water can be removed by a known method such as neutralization, and the condensed water from which the electrolyte has been removed can be simply discarded or used as reaction water for fuel reforming.

第5図は本発明の実施に際して用いられる前述の電解質
霧化器41の構造例を示すものである。この構造例では
、霧化器41は図示のように1個の液体収納容器であシ
、電解質の水溶液でめる電解液として例えばりん酸水溶
液が容器41a中に貯留みれている。この容器41aの
側壁を貫通してノズル41bが容器内に導入されておシ
、該ノズル41bがらガス例えは燃料ガスの噴流が搬送
ガスとして電解液の液面41oに吹き伺けられ、これに
よってυん酸型)何賀は容易に霧化されカスとともに上
部の7ランク部41dを経て一点鎖紗で水石れた配管に
導出される。jム、解負かりん酸でおる場合には、この
ように霧化は比較的簡単にできるが、純粋な9ん酸を霧
化さぜるよシは前述のように水を加えた電解液の形で霧
化させた方が籾化効率がよく、電解質を搬送ガス中に多
く含゛まぜめこと〃・できる。また噴流の電j“ノイ液
面への吠き付は角夏は第4図に示すように液間にほぼ平
行にするのが有効である。このような霧化器は前述のフ
シンジ部41dを介して簡単に配゛dにJigす1−j
けることができ、電解液を装入口41cから注入するG
 IBIですむからとくに取9扱いに注意を要しない。
FIG. 5 shows an example of the structure of the above-mentioned electrolyte atomizer 41 used in carrying out the present invention. In this structural example, the atomizer 41 is a single liquid storage container as shown in the figure, and an aqueous electrolyte solution, such as a phosphoric acid aqueous solution, is stored in the container 41a. A nozzle 41b is introduced into the container by penetrating the side wall of the container 41a, and from the nozzle 41b a jet of gas, for example, fuel gas, is blown as a carrier gas onto the liquid surface 41o of the electrolytic solution. The nitric acid type) is easily atomized and led out along with the residue through the upper 7-rank section 41d to the piping lined with chain gauze. Atomization is relatively easy in this way when using dissolved phosphoric acid, but it is better to atomize pure 9-phosphoric acid using an electrolyte solution containing water as described above. It is better to atomize rice in the form of atomization, and it is possible to mix a large amount of electrolyte into the carrier gas. In addition, it is effective to make the angle of the jet flow almost parallel to the liquid surface as shown in Fig. 4. Easily distribute Jig 1-j via
G in which the electrolyte can be injected from the charging port 41c.
Since IBI is enough, there is no need to be particularly careful when handling.

第6図は第5図の霧化器4[【用いてυん酸電解質を霧
化びせる際の電解液濃度(横軸)に対する電解質の単位
時間あたシの霧化器(縦軸)を示すもので、これから前
述のように′電解液の濃度は低い方が霧化効率のよいこ
とがわかる。しかし、シるので、運転温度にある電池に
′電解質を補給する際には、燃料ガス電極層への電解質
の付着が十分になされず、再飛散し1しまうおそれが生
じる。
Figure 6 shows the electrolyte concentration per unit time (vertical axis) versus electrolyte concentration (horizontal axis) when atomizing the phosphoric acid electrolyte using the atomizer 4 in Figure 5. As mentioned above, it can be seen that the lower the concentration of the electrolyte, the better the atomization efficiency. However, because of this, when replenishing the electrolyte to the battery at operating temperature, the electrolyte may not be sufficiently attached to the fuel gas electrode layer and may be re-splattered.

このため、霧化された電解液を含むガスを成池区画内に
供給する前に加熱して霧化電解液中の水分蓋を減らし、
できるだけ純粋な霧化電解質の形で電池に供給すること
が望ましい。もちろん、燃料ガス自体の湿度が低くよく
乾燥状態にある場合には、前述のような加熱は僅かでよ
くまた必要としない場合もある。第7図は本発明方法の
異なる実施例を示すもので、この図では燃料電池本体1
0は模式的に単電池として示きれており、マトリックス
層1.燃料ガス電極層2.酸化ガス電極層3のほかに燃
料ガス区画10aと酸化ガス区画10b とが示されて
いる。燃料ガス区画lOaは前述の燃料ガス通路溝4a
と考えてよい。また酸化ガス系配管は一切省略されてお
シ、第3図と同一の部分には同一の符号が付されている
。図の上左方から大口弁33を介して導入される燃料ガ
スFは例えば燃料改質装置から供給塾れる高圧の燃料カ
スであって、入口弁33を播過後テフーーザ34に入っ
て膨張して一低圧の燃料ガスとなり、燃料ガス4人管3
1を経て電池内の燃料ガス区間10aに図では上方から
人シ、その下方から排出された後再びデフー−ザ34に
吸引されて循環爆ノシる。この循環路内には前述の反応
生成水の凝縮器を兼ねた電解質トラップ44が挿入され
ている。−まン′ここの循環路内の燃料ガスの一部は、
電池内でγ11費Cれない炭酸カスとともに図の左下方
にbム悠料カス1゛lとして導出きれ、例えに燃料改質
装置用の燃も1をカスとして利用される。
For this reason, the gas containing the atomized electrolyte is heated before being supplied into the growth zone to reduce the moisture content in the atomized electrolyte.
It is desirable to supply the battery in the form of an atomized electrolyte that is as pure as possible. Of course, if the fuel gas itself has low humidity and is well dry, the above-mentioned heating may be slight or may not be necessary. FIG. 7 shows a different embodiment of the method of the present invention, in which the fuel cell main body 1
0 is schematically shown as a single cell, and matrix layer 1. Fuel gas electrode layer 2. In addition to the oxidizing gas electrode layer 3, a fuel gas compartment 10a and an oxidizing gas compartment 10b are shown. The fuel gas section lOa is the aforementioned fuel gas passage groove 4a.
You can think that. Further, the oxidizing gas system piping is completely omitted, and the same parts as in FIG. 3 are given the same reference numerals. The fuel gas F introduced from the upper left side of the figure through the large mouth valve 33 is, for example, high-pressure fuel waste supplied from a fuel reformer, and after passing through the inlet valve 33, enters the fuel gas F and expands. 1 low pressure fuel gas, fuel gas 4 pipe 3
1, the fuel gas enters the fuel gas section 10a in the battery from above, and is discharged from below, and is sucked into the defuser 34 again for circulation and detonation. The electrolyte trap 44, which also serves as a condenser for the reaction product water described above, is inserted into this circulation path. -Man' A part of the fuel gas in the circulation path here is
In the battery, along with the carbon dioxide scum that does not contain γ11 and C, it can be extracted as 1 liter of free sludge at the bottom left of the figure, and for example, fuel 1 for a fuel reformer is used as scum.

電解質イ11ノ給系40は、Milに第5図で示したよ
うな)1「構造の電力(質緋化器41 k含み、そのノ
スル41bニはノスル弁451ブrして611述の高圧
の燃料ガスF。
The electrolyte supply system 40 has a power structure (as shown in FIG. Fuel gas F.

まだd2〜3気圧程度に減圧されたカス、が導入されて
′亀力了質のU化に使用される。該霧化器41からの電
解質を含む燃料カスは電解質導出管46を経て燃料カス
専大管31中の燃料カスと合流される。
The waste, which is still under reduced pressure to about d2 to 3 atmospheres, is introduced and used for converting the material into U. The fuel sludge containing electrolyte from the atomizer 41 passes through the electrolyte outlet pipe 46 and is combined with the fuel sludge in the fuel sludge special pipe 31 .

この%fif(負4出管46には、前述の霧化電解液の
濃度を高めるためのガス加熱装飯を設けることが奄きる
。また以上の説明では、電解質トラップ44を反応生成
水の凝縮器と兼用して鱈料ガスの循環路内に挿入する例
を示したが、凝縮器とは分離して図で鎖線で示す廃燃料
ガス路内の位置に設けてもよいことにもらろんである。
This %fif (negative 4 outlet pipe 46 can be provided with a gas heating device for increasing the concentration of the atomized electrolyte mentioned above. Also, in the above explanation, the electrolyte trap 44 is used to condense the reaction product water. Although we have shown an example in which it is inserted into the cod gas circulation path and also serves as a container, it is also possible to separate it from the condenser and install it in the waste fuel gas path shown by the chain line in the figure. be.

第3図および第7図に示した両実施例のいずれについて
も、電解質補給系は電池の運転時に連続的に動作させる
ことができ、また間欠的に動作させ−Cもよい。間欠動
作の場合の動作開始時点としては、電池中の電解質量が
低下すると発′aL電圧の低下が観測式れるから、発電
電圧が所定値を下回わったとき補給系を動作開始さゼる
ようにすればよい。また間欠動作の場合の動作終了時点
としては、電池内の電解質量が過大になυ始めると電池
の発′亀電圧が一定せず上下にふらつく現象が経験上知
られているから、発t’WL圧に僅かでもふらつき現象
が観測され始めたら、直ちに補給動作を終了させるよう
にすれはよい。また電解質の保有量の大小は、電池の開
路電圧を測定することによってより精密に把握すること
ができるから、連続および間欠運転の双方について、極
く短時間内電池の運転を中止して開路発′iM、亀圧を
測定し、電解質補給のだめの指針を得ることは有用であ
る。
In both embodiments shown in FIGS. 3 and 7, the electrolyte replenishment system can be operated continuously during operation of the battery, or may be operated intermittently. In the case of intermittent operation, when the electrolyte amount in the battery decreases, a decrease in the generated aL voltage is observed, so the replenishment system starts operating when the generated voltage falls below a predetermined value. Just do it like this. Furthermore, in the case of intermittent operation, when the operation ends, it is known from experience that when the amount of electrolyte in the battery becomes too large, the firing voltage of the battery is not constant and fluctuates up and down. If even a slight fluctuation phenomenon in the WL pressure begins to be observed, it is a good idea to immediately end the replenishment operation. In addition, the amount of electrolyte retained can be determined more precisely by measuring the open circuit voltage of the battery, so for both continuous and intermittent operation, the battery operation can be stopped for a very short period of time to develop an open circuit. It is useful to measure the tortoise pressure and get a guide to electrolyte replenishment.

前述の実施例説明では、燃料ガスの一部を電解質霧化器
に分流させる態様をのみ示したが、霧化器の種類によシ
燃料ガスの全1を霧化器に通流させる必要がある場合も
め9、補給時間を短縮するためにその方が望ましい場合
も生じ得る。また本発明方法による′電解質補給は電池
の運転中に限らず実施をうることかできる。ただし、電
池の運転休止中に補給をする場合は、燃料ガスを運転休
止中に電池に供袷することは避りるべきであるから、電
解質上び化Cぜて搬送する媒体としての搬送ガスには屋
索ンよとの不活性カス葡用いる必要がある。
In the above description of the embodiment, only a mode in which a part of the fuel gas is diverted to the electrolyte atomizer was shown, but depending on the type of atomizer, it may be necessary to flow all of the fuel gas through the atomizer. In some cases, it may be desirable to shorten the replenishment time. Moreover, electrolyte replenishment according to the method of the present invention can be carried out not only while the battery is in operation. However, when replenishing the battery while the battery is out of operation, it is best to avoid supplying fuel gas to the battery while the battery is out of operation. It is necessary to use inert casseroles for this purpose.

lたこの際は′屯池温嵐が低く、゛電解質の燃料カス電
極層−′−の11看はむしろ良好に行なわれるが、過剰
の付盾は4害な場合もめるので、カス中への翫屏實の混
入斌やガスと電池との温良差を制御することによりイマ
」着量を調整することが望ましい。もし過剰に何着して
しまった場合は、高温の乾燥した不活性カスを送って付
着電解質を再飛散させることができ、また不着量が過大
でな轄れば次の運転開始時に飛散させる程題ですむ場合
も多い。このように、本発明方法は種々の変形された態
様で広〈実施をすることができる。
At the time of octopus, the thermal storm is low and the electrolyte fuel sludge electrode layer is rather well maintained, but excessive shielding can be harmful, so it is important not to It is desirable to adjust the current amount by controlling the mixing of the screen and the temperature difference between the gas and the battery. If an excessive amount of adhesion occurs, the adhering electrolyte can be redispersed by sending high-temperature dry inert scum, and if the amount of adhesion is too large and fails, the adhering electrolyte can be dispersed at the start of the next operation. In many cases, it is just a question. Thus, the method of the present invention can be widely implemented in various modified forms.

〔発明の効果〕〔Effect of the invention〕

以上説明のとおシ、本発明方法においては、燃料電池へ
の燃料ガスの導入管路に電解質霧化装置を並列にかつ挿
脱自在に接続し、電解質の補給時に燃料ガス専大管路内
を流れるガスの少なくとも一部を前記電解質霧化装置に
通流させ、該カスとともに霧化された電解質を前記反応
ガス通路を介し燃料ガス電極層を通して前記マトリック
ス層に補給するようにしたので、電池の構成単位ないし
はセルスタックの構造を#にとんどあるいは全く変更を
することなく 、iim質補給の所期の目的を達成する
ことができ、従来技術におけるように電池の構成を複雑
化させる必要もなく、むろん電池の一部を分解するよう
な余分な手間をかける必要も一切なくなる。また、容易
に理解芒れるように本発明方法によれば、電池のセルス
タック内に分散しているマトリックス層に一斉に電解質
が補給されるので、マトリックス層の分布に基づく電解
質補給上の難点が本質的に解決される。さらには、本発
明方法によれは、電池の運転状態のいかんに拘らず、必
黴なまたは所望の時期に随時または連続的に電解質を補
給することが始めて可能とな広燃料電池発1粍装置の高
効率運転に多大の貢献をすることができる。
As explained above, in the method of the present invention, an electrolyte atomization device is connected in parallel and detachably to the fuel gas introduction pipe to the fuel cell, and when replenishing the electrolyte, the fuel gas flows through the dedicated pipe. At least a portion of the gas is made to flow through the electrolyte atomization device, and the electrolyte atomized together with the scum is supplied to the matrix layer through the fuel gas electrode layer through the reaction gas passage, so that the structure of the battery is improved. The intended purpose of IIM quality replenishment can be achieved without making little or no change to the structure of the unit or cell stack, and there is no need to complicate the structure of the battery as in the prior art. Of course, there is no need to take any extra effort to disassemble part of the battery. In addition, as can be easily understood, according to the method of the present invention, the electrolyte is replenished all at once to the matrix layer dispersed within the cell stack of the battery, which eliminates the difficulty in replenishing the electrolyte due to the distribution of the matrix layer. Essentially resolved. Furthermore, according to the method of the present invention, it is possible for the first time to supply electrolyte at any necessary or desired time, regardless of the operating state of the battery, in a single-capacity fuel cell generator. This can greatly contribute to the highly efficient operation of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による電解質補給がなされる対象と
してのマトリックス形撚料電池の基本構造を単電池につ
いて示す斜視図、第2図は従来の電解質補給方法例を示
す燃料電池の要部断面図、第3図以降は本発明方法の実
施例を説明するもので、自記3図は本発明に基つく電解
質補給方法に関連する燃料電池と付属ガス系とを示す一
部切欠き断面および配管図、第4図は本発明方法の実施
に有利な燃料ガス電極層に小孔が設けられた電池の構造
例を示す断面図、第5図は本発明方法の実施に用いられ
る電解質霧化器の構造例を示す断面図、第6図は第5図
に示された霧化器による電解質の霧化速腿を示すグラフ
図、第7図は本発明の異なる実施例を説明するだめの電
池および付属系の系統図である。図において、 l:マトリックス層、2:燃料ガス電極層、3二酸化ガ
ス電極層、4a:反応ガス通路としての燃料4 才3図 オフ[!l′
FIG. 1 is a perspective view showing the basic structure of a matrix-type twisted cell cell as a target for electrolyte replenishment according to the method of the present invention, and FIG. 2 is a cross-sectional view of essential parts of a fuel cell showing an example of a conventional electrolyte replenishment method. Figures 3 and 3 onwards explain embodiments of the method of the present invention, and Figure 3 is a partially cutaway cross-section and piping showing a fuel cell and attached gas system related to the electrolyte replenishment method based on the present invention. Figure 4 is a sectional view showing an example of the structure of a battery in which small holes are provided in the fuel gas electrode layer, which is advantageous for implementing the method of the present invention, and Figure 5 is an electrolyte atomizer used for implementing the method of the present invention. FIG. 6 is a graph showing the rate of atomization of electrolyte by the atomizer shown in FIG. and a systematic diagram of the attached system. In the figure, l: matrix layer, 2: fuel gas electrode layer, 3 carbon dioxide gas electrode layer, 4a: fuel as reactant gas passage. l′

Claims (1)

【特許請求の範囲】 1)電解質を保持するマトリックス層と該マトリックス
層に接して配されたガス拡散性の反応ガス電極層とを分
散内蔵し、該反応ガス電極層の反マトリ、カス層側の面
に対して開かれた反応ガス通路が内設された積層体とし
てなる燃料電池への電解質補給方法であって、燃料電池
への燃料ガスの導入管路に電解質霧化装置を並列にかつ
挿脱自在に接続し、電解質の補給時に燃料ガス導入管路
内を流れるカスの少なくとも一部を前記電解質霧化装置
に通流させ、該ガスとともに霧化された電解質を前記反
応ガス通路を介し燃料ガス電極層を通して前記マトリッ
クス層に補給しうるようにしたことを特徴とするマトリ
ックス形燃料電池の電解質補給方法。 2、特許請求の範囲第1項記載の方法において、電解質
の補給ケ燃料電池の発電運転中に行なうことを特徴とす
るマトリ、ジス形燃料電池の電解質補給方法。 3)特許請求の範囲第1項または第2項記載の方法にお
いて、電解質霧化装置に通流されるガスが燃料ガスであ
ることを特徴とするマトリックス形燃料電池の電解質補
給方法。 4)特許請求の範囲第1項記載の方法において、電解質
の補給が燃料電池の運転休止中に行なわれ、電解質霧化
装置に通流されるガスが不活性ガスであることを特徴と
するマトリックス形燃料電池の電解質補給方法。 5)特許請求の範囲第1項記載の方法において、tWl
質がυん酸であシ、ガス中にlO〜100ミリグラム/
立方米の割立方群化された該電解質が燃料電池に補給用
として供給されることを特徴とするマトリックス形燃料
電池の電解質補給方法。 6)%許請求の範囲第1項記載の方法において、電解質
を燃料ガス電極層の反応ガス通路に面する部位に明けら
れた多数の小孔を通してマトリックス層に補給すること
を特徴とするマトリ、クス形燃料電池の電解質補給方法
[Claims] 1) A matrix layer that retains an electrolyte and a gas-diffusible reactive gas electrode layer disposed in contact with the matrix layer are dispersed and incorporated, and the anti-matrix and waste layer sides of the reactive gas electrode layer are disposed in a dispersion manner. A method of replenishing electrolyte to a fuel cell formed of a stacked body having a reactant gas passage opened to the surface of the fuel cell, the method comprising: installing an electrolyte atomizer in parallel with a conduit for introducing fuel gas into the fuel cell; The device is removably connected, and when replenishing the electrolyte, at least a part of the waste flowing in the fuel gas introduction pipe is made to flow through the electrolyte atomization device, and the electrolyte atomized together with the gas is passed through the reaction gas passage. 1. A method for replenishing electrolyte for a matrix fuel cell, characterized in that the matrix layer can be replenished through a fuel gas electrode layer. 2. A method for replenishing electrolyte for a matrix-type fuel cell or a dispersion-type fuel cell according to claim 1, wherein the replenishment of electrolyte is carried out during power generation operation of the fuel cell. 3) A method for replenishing electrolyte for a matrix fuel cell according to claim 1 or 2, wherein the gas flowing through the electrolyte atomization device is a fuel gas. 4) In the method according to claim 1, the matrix type is characterized in that the electrolyte is replenished while the fuel cell is out of operation, and the gas flowing through the electrolyte atomization device is an inert gas. How to replenish electrolytes in fuel cells. 5) In the method according to claim 1, tWl
The quality is phosphoric acid, and the gas contains lO~100mg/
1. An electrolyte replenishment method for a matrix fuel cell, characterized in that the electrolyte divided into cubes of cubic meters is supplied to the fuel cell for replenishment. 6) % The method according to claim 1, characterized in that the matrix layer is supplied with electrolyte through a large number of small holes formed in a portion of the fuel gas electrode layer facing the reaction gas passage; Electrolyte replenishment method for a gas-type fuel cell.
JP59008798A 1984-01-20 1984-01-20 Supplementary feed of electrolyte in matrix-type battery Pending JPS60151977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008798A JPS60151977A (en) 1984-01-20 1984-01-20 Supplementary feed of electrolyte in matrix-type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008798A JPS60151977A (en) 1984-01-20 1984-01-20 Supplementary feed of electrolyte in matrix-type battery

Publications (1)

Publication Number Publication Date
JPS60151977A true JPS60151977A (en) 1985-08-10

Family

ID=11702878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008798A Pending JPS60151977A (en) 1984-01-20 1984-01-20 Supplementary feed of electrolyte in matrix-type battery

Country Status (1)

Country Link
JP (1) JPS60151977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158583A2 (en) * 1984-04-11 1985-10-16 United Technologies Corporation Method for replacing lost electrolyte in fuel cells
JPS6142870A (en) * 1984-08-03 1986-03-01 Hitachi Ltd Fuel cell power generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158583A2 (en) * 1984-04-11 1985-10-16 United Technologies Corporation Method for replacing lost electrolyte in fuel cells
JPS6142870A (en) * 1984-08-03 1986-03-01 Hitachi Ltd Fuel cell power generating system

Similar Documents

Publication Publication Date Title
TWI301158B (en) Hydrogen production system
JPH07263003A (en) Gas separator for solid high polymer electrolytic fuel cell
US20020142200A1 (en) Fuel cell system and method of operating a fuel cell system
JPS61116763A (en) Operation of fuel battery system
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
JP2000090954A (en) Fuel cell stack
US6855442B2 (en) Fuel cell and method of operating same
US7338727B2 (en) Method of operating a fuel cell to provide a heated and humidified oxidant
US20030194369A1 (en) Gas generation system
JP3447875B2 (en) Direct methanol fuel cell
JPS60227361A (en) Internal structure of fuel cell for supply and exhaust of reaction gas
JPS60151977A (en) Supplementary feed of electrolyte in matrix-type battery
JP2002352831A (en) Anode flow recirculation system for fuel cell
JPS63119166A (en) Fuel battery
JP3575650B2 (en) Molten carbonate fuel cell
KR101421355B1 (en) Fuel humidifier
JPS6147073A (en) Fuel battery system and electrolyte supplying process to fuel battery stack
JPS6147074A (en) Electrolyte supplying process to fuel battery stack
CA1263436A (en) Fuel cell system having electrolyte reclaiming means
US3556857A (en) Fuel cell
JPS5816471A (en) Liquid fuel cell
JPS59149664A (en) Fuel-cell system
US3536534A (en) Fuel cell with nonporous hydrogen electrode and hydrogen generating means
KR100563226B1 (en) Bipolar-Plate for Fuel Cell
JPH10513306A (en) Galvo sorption reaction battery