JPS612276A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS612276A
JPS612276A JP59120807A JP12080784A JPS612276A JP S612276 A JPS612276 A JP S612276A JP 59120807 A JP59120807 A JP 59120807A JP 12080784 A JP12080784 A JP 12080784A JP S612276 A JPS612276 A JP S612276A
Authority
JP
Japan
Prior art keywords
electrolyte
separator
electrode
replenishment
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59120807A
Other languages
Japanese (ja)
Other versions
JPH06101338B2 (en
Inventor
Taiji Ogami
泰司 小上
Sanji Ueno
上野 三司
Tamotsu Shirogami
城上 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59120807A priority Critical patent/JPH06101338B2/en
Publication of JPS612276A publication Critical patent/JPS612276A/en
Publication of JPH06101338B2 publication Critical patent/JPH06101338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To uniformly supplement electrolyte to an electrolyte matrix to suppress decrease in cell performance by combining an electrode with rib with a porous plate having high electrolyte retaining ability and a separator for electrolyte supplement. CONSTITUTION:To uniformly supplement electrolyte to a unit cell comprising a negative electrode 2, a positive electrode 3, and a matrix 4, an electrolyte diffusion plate 6, an electrolyte supplement separator 7, and a gas separating separator 8 are stacked in order. electrolyte supplied to an electrolyte supplement channel 10 in the electrolyte supplement separator 7 is passed in an electrolyte supply hole 11, and diffused to the electrolyte diffusion plate 6 and stored there. Then, the electrolyte passes through the electrode 2, and is uniformly supplied to the electrolyte matrix 4.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明はセパレータに、電解質補給用チャンネルを設
け、前記チャネルから電解質マトリックスに電解液を均
等に補給することのできる燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a fuel cell in which a separator is provided with an electrolyte replenishment channel, and an electrolyte matrix can be uniformly replenished with an electrolyte from the channel.

〔従来技術とその問題点〕[Prior art and its problems]

従来の燃料電池は負極(燃料極)と正極(空気極ンの間
に、電解質マトリックスを狭持したものを単電池とし、
前記単電池をセパ1/−夕を介して積層したものである
。従来の積層燃料電池の一部を第1図に示す。(1)は
セパレータ、(2)は負極(燃電極) 、 (31は正
極(空気極) 、 (41はマトリックスを示す。
Conventional fuel cells are single cells with an electrolyte matrix sandwiched between the negative electrode (fuel electrode) and the positive electrode (air electrode).
The above-mentioned unit cells are stacked with one layer between each other. A part of a conventional stacked fuel cell is shown in FIG. (1) is a separator, (2) is a negative electrode (fuel electrode), (31 is a positive electrode (air electrode), (41 is a matrix).

従来の燃料電池は、電解液をマ) IJソックスみに保
有する構造となっているため、マトリックスに含まれる
電解液の量は限定される。電池運転時にはマトリックス
に含まれる電解液が電池外へ運び出される。上記の理由
よ#)運転時間経過と伴にマトリックスに含まれる電解
液の彊″が減少し、電解質マトリックスの導電性が低く
なシ、電池性能が次第に低下してゆくという欠点が有っ
た。現在では、前述の欠点を改良するため、リブ付き@
極を用い電極に電解液を保持させることによシまたはセ
パレータに溝加工を施し、電解液を保持させることによ
シマトリックスに電解液を補給する方法が考えられてい
る。しかし、上述の改良電池において電解液を電解質マ
トリックスに均一に補給できないという欠点が有った。
Conventional fuel cells have a structure in which the electrolyte is held only in the IJ sock, so the amount of electrolyte contained in the matrix is limited. During battery operation, the electrolyte contained in the matrix is carried out of the battery. Due to the above reasons, as the operating time elapses, the flow of the electrolyte contained in the matrix decreases, and the conductivity of the electrolyte matrix is low, resulting in a gradual decline in battery performance. Currently, in order to improve the above-mentioned drawbacks, ribbed @
A method has been considered in which the electrolyte is replenished into the matrix by using electrodes to hold the electrolyte or by forming grooves in the separator to hold the electrolyte. However, the above-mentioned improved battery had a drawback in that the electrolyte solution could not be uniformly replenished into the electrolyte matrix.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来の燃料電池の欠点を改良したも
ので、均一に電解液を電解質マトリックとを目的とする
The present invention improves the above-mentioned drawbacks of conventional fuel cells, and aims to uniformly distribute the electrolyte into an electrolyte matrix.

〔発明の概吸〕[Summary of the invention]

本発明は負極としてカーボンを基材とした多孔質板の片
面罠溝加工を施し、他方の面に触媒層を形成した電極(
リブ付き電極)を用い、正極としてリブ付き電極乃至は
平滑な薄型カーボン電極を用い、前記正、負極の間に電
解質マトリックスを狭持した単電池の負極を上にして単
電池を配置しその上に導電性の平滑な電解液保持力の高
い多孔質板(%層液拡散板)、電解液補給用セパレータ
、ガス隔離用セパレータの順でくり返し積層して形成さ
れたことを特徴とする燃料電池である。
The present invention uses a porous plate made of carbon as a negative electrode, with trap grooves on one side and a catalyst layer formed on the other side.
A ribbed electrode or a smooth thin carbon electrode is used as the positive electrode, and an electrolyte matrix is sandwiched between the positive and negative electrodes, and the unit cell is placed with the negative electrode facing upward. A fuel cell characterized in that it is formed by repeatedly stacking a conductive smooth porous plate with high electrolyte holding power (percent layer liquid diffusion plate), a separator for electrolyte replenishment, and a separator for gas isolation in this order. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば電解質マ) IJソックス電解液を均一
に補給することが出来、電池機能の低下が抑制出来ると
いう効果が得られる。
According to the present invention, it is possible to uniformly replenish the electrolyte solution (IJ sock electrolyte), and it is possible to obtain the effect that deterioration of battery function can be suppressed.

〔発明の実施例〕[Embodiments of the invention]

本発明の燃料電池の単セル構成部材の分解斜視図を第2
図に示す。
The second exploded perspective view of the single cell component of the fuel cell of the present invention is shown in FIG.
As shown in the figure.

負極(燃料極)(2)と正極(空気極)(3)の間にマ
トリックス(4)を狭持した単電池に、電解液を均一に
補給するため、電解液拡散板(6)、電解液補給用セパ
レータ(7)、ガス隔離用セパレータ18)、の順で載
置した。
In order to uniformly replenish the electrolyte to the unit cell with the matrix (4) sandwiched between the negative electrode (fuel electrode) (2) and the positive electrode (air electrode) (3), an electrolyte diffusion plate (6), an electrolyte A liquid replenishment separator (7) and a gas isolation separator 18) were placed in this order.

電解液拡散板(6)は、電解液を均一にマトリックスに
補給するためのもので、次の性質を有するものである。
The electrolyte diffusion plate (6) is for uniformly replenishing the matrix with electrolyte and has the following properties.

(1)食型導性(II)電解液保持力が大きい(ul耐
酸性。
(1) Edible type conductivity (II) High electrolyte holding power (UL acid resistance.

電解質補給用セパレータ(7)には、電解液を補給する
ためのチャネルが設けである。また、前記電解液補給用
チャネルに電池外部から矩1解液を導くための外部電解
質補給口(9)をコーナーに設けである。ガス隔離用セ
パレータ(8)は、燃料ガスと空気が混合しないように
挿入している。
The electrolyte replenishment separator (7) is provided with a channel for replenishing the electrolyte. Furthermore, an external electrolyte replenishment port (9) is provided at the corner for introducing rectangular solution into the electrolyte replenishment channel from outside the battery. A gas isolation separator (8) is inserted to prevent fuel gas and air from mixing.

電解液補給用セパレータ(7)をガス隔離用セパレータ
(8)側から見た図を第3図に示す。箇、層液補給用セ
パレータ(7)に溝加工を施し、電解液補給用チャンネ
ル叫を設けている。チャンネル(l(1の底部には、電
解液拡散板(6)に通じる内部電解液補給口aυを開け
ている。図では外部電解液補給口(9)を2ケ所設けて
いるが、これは最高4ケ所まで可能である。
FIG. 3 shows a view of the electrolyte replenishment separator (7) viewed from the gas isolation separator (8) side. In addition, the separator (7) for replenishing the layer liquid is grooved to provide a channel for replenishing the electrolyte. An internal electrolyte replenishment port aυ leading to the electrolyte diffusion plate (6) is opened at the bottom of the channel (1).In the figure, two external electrolyte replenishment ports (9) are provided, but this Up to 4 locations are possible.

第4図に本発明の燃料電池の単セルの断面図を示す。電
解液補給用セパレータ(7)に設けられた電解補給用チ
ャンネル(1αに導かれた電解液は内部電解液補給口(
1υを辿り、電解液拡散板(6)に拡散し、蓄えられる
。その後リン酸はリブ付き電極(2)を通り、1(L解
質マトリックス(4)に均一に供給される。
FIG. 4 shows a sectional view of a single cell of the fuel cell of the present invention. The electrolyte led to the electrolyte replenishment channel (1α) provided in the electrolyte replenishment separator (7) is connected to the internal electrolyte replenishment port (
1υ, diffuses into the electrolyte diffusion plate (6), and is stored. The phosphoric acid then passes through the ribbed electrode (2) and is uniformly supplied to the 1(L solute matrix (4)).

1だ、′r8.解液袖層液セパレータ(7)は、内部電
解液保給ITI(II)が開いているため燃料ガスと空
気が混合する。このため、電解液補給用セパレータ(7
)と正極(3)との間に挿入されたガス隔離用セパレー
タ(8)は(1)食型導性(1)気密性l1l)耐酸性
のものである。
It's 1, 'r8. In the solution sleeve layer liquid separator (7), fuel gas and air mix because the internal electrolyte storage ITI (II) is open. For this reason, the electrolyte replenishment separator (7
) and the positive electrode (3) are (1) erodible conductive (1) airtight (111) acid resistant.

このように構成することにより、電解液補給用チャネル
(1(0を有した電解質補給用セパ1/−タ(7)を挿
入することにより、電解ηマトリックスに電解液を補給
することが可能とかった。1だ霜、池外から電解液拡散
板1チャネルθO)へ′電解液を導く鋤、層液補給1コ
(9)を−(・:バレーターのコーナに付けることによ
り、電解液を電解質マトリックスに容易に補給すること
が可能に・なった。
With this configuration, it is possible to replenish the electrolytic solution to the electrolytic η matrix by inserting the electrolyte replenishing channel (1 (0) separator (7) for electrolyte replenishment). When there is 1 frost, the electrolyte is introduced from the outside of the pond to the electrolyte diffusion plate 1 channel θO) by attaching the plow and 1 layer liquid replenisher (9) to the corner of the valator. It is now possible to easily replenish the electrolyte matrix.

次に電解液拡散板(6)の効果を以下に記す。従来の提
案されているセパレータを電解液リザーバーとした燃料
電池は電解液拡散板(6)をセパレータ(7)と負極(
2)との間に挿入していなかったためセパレーター(7
)の内部電解液補給口Ql)と、負極(3)のリブ部が
接するように位置合せせねばならず、加工が非常に困難
でありまた穴の数が限られているため電解液は均一にマ
トリックスに補給されない。本発明では、電解液拡散板
を挿入することによシ内部電解液補給口αυの穴の位置
合せが不要となり、しかも均一に電解質をマトリックス
に補給することが可能となった。
Next, the effects of the electrolyte diffusion plate (6) will be described below. In the conventionally proposed fuel cell in which the separator is used as the electrolyte reservoir, the electrolyte diffusion plate (6) is connected to the separator (7) and the negative electrode (
Since it was not inserted between the separator (7) and
) must be aligned so that the internal electrolyte replenishment port Ql) and the rib part of the negative electrode (3) are in contact with each other, which is very difficult to process, and because the number of holes is limited, the electrolyte cannot be uniformly distributed. The matrix is not resupplied. In the present invention, by inserting the electrolyte diffusion plate, alignment of the holes of the internal electrolyte supply port αυ becomes unnecessary, and moreover, it becomes possible to uniformly supply the electrolyte to the matrix.

上記理由により電解質マトリックス中の電解液の量を常
に一定にすることができ特性の安定した高性能、長寿命
の電池を得ることができた。
For the above reasons, the amount of electrolyte in the electrolyte matrix can be kept constant, and a battery with stable characteristics, high performance, and long life can be obtained.

さらに具体的な本発明の実施例を以下に説明する。More specific examples of the present invention will be described below.

本発明の実施例として110X10の単電池を作製した
。ガス隔離用セパレータ(8)として黒鉛シート(二カ
フィルム9日本カーボン製)を用いた。
As an example of the present invention, a 110×10 cell was fabricated. A graphite sheet (Nika Film 9 manufactured by Nippon Carbon) was used as the gas isolation separator (8).

上記セパレータ(8)の板厚は0.3腔程度である。The plate thickness of the separator (8) is approximately 0.3 cavities.

電解液補給用セパレータ(7)は厚さ5鰭程廐の黒鉛板
を用い第3図に示す溝加工を施した。外部電解液補給口
(9)にはねじが切られており電解液補給時以外シール
されている。内部電解液補給口α1)は1α径]、、 
5 rvn程度の穴とした。
The electrolyte replenishment separator (7) was made of a graphite plate with a thickness of about 5 fins and was grooved as shown in FIG. The external electrolyte replenishment port (9) is threaded and sealed except when replenishing the electrolyte. Internal electrolyte supply port α1) has a diameter of 1α],
The hole was about 5 rvn.

電解液拡散板(6)として負極(2)で使用している多
孔質カーボンと同材質のカーボンシートを使用した。電
解液保持力を高めるためカーボンブラック(商品名: 
VXC72R)を含浸させた。含浸方法は次のように行
った。カーボンブランクを水に分散させ、その分散液に
多孔質カーボンシートを浸漬し、十分カーボンブラック
が浸透した後乾燥させた。ガお多孔質カーボンシートの
厚さは2調程度である。
A carbon sheet made of the same material as the porous carbon used in the negative electrode (2) was used as the electrolyte diffusion plate (6). Carbon black (product name:
VXC72R) was impregnated. The impregnation method was as follows. A carbon blank was dispersed in water, a porous carbon sheet was immersed in the dispersion, and after the carbon black had sufficiently penetrated, it was dried. The thickness of the porous carbon sheet is about 2 mm.

上記のガス隔離用セパレータ(8)、電解液補給用セパ
レータ(71,1i)解法拡散板(6)を用いて第2図
に示す構造の単電池を作製し、常圧205℃電流密度1
60mA/cy+fの条件で運転を行った。なお、10
00時間おきに外部電解液補給口(9)から電解液を2
ml 補給した。以上の結果を第5図に示す。
Using the above-mentioned gas isolation separator (8), electrolyte replenishment separator (71, 1i) and solution diffusion plate (6), a unit cell with the structure shown in Fig. 2 was fabricated, and a current density of 1 at normal pressure and 205°C was prepared.
Operation was performed under the condition of 60 mA/cy+f. In addition, 10
00 hours, add 2 liters of electrolyte from the external electrolyte replenishment port (9).
ml supplemented. The above results are shown in FIG.

(5)は本発明燃料電池の電池特性、(B)は従来燃料
電池の電池特性を示す。従来燃料電池の電池特性(B)
は、4000時間程度運転の後、電池特性は急激に低下
するのに対して本発明の燃料電池においてはほとんど電
池性能の低下は見られなかった。
(5) shows the cell characteristics of the fuel cell of the present invention, and (B) shows the cell characteristics of the conventional fuel cell. Battery characteristics of conventional fuel cells (B)
In the fuel cell of the present invention, the cell characteristics rapidly deteriorated after approximately 4000 hours of operation, whereas in the fuel cell of the present invention, almost no deterioration in the cell performance was observed.

〔発明の他の実施例〕[Other embodiments of the invention]

上記実施例において、ガス隔離用セパレータ(8)とし
て黒鉛シートを用いたがこの他タンクル板々どのメタル
シートなどがある。
In the above embodiment, a graphite sheet was used as the gas isolation separator (8), but other materials such as metal sheets such as tank plates may also be used.

電解液補給用セパレータ(7)に設けた電解液補給用チ
ャンネル(10)の型は実施例に示した型の外容易に考
えられる。他の型の電解液補給用チャンネル00)を有
するセパレータ(7)も本発明の範囲に含まれる。
The type of the electrolyte replenishment channel (10) provided in the electrolyte replenishment separator (7) can be easily conceived other than the type shown in the embodiment. Separators (7) with other types of electrolyte replenishment channels 00) are also within the scope of the invention.

第2図には正極、負極共リフ付き電極を使用した例を示
したが、正極には薄型カーボン電極も使用できる。薄型
カーボン電極使用の燃料電池分解斜視図を第6図に示す
。(121は片面に触媒層を形成した薄型カーボン電極
0:aは溝加工を施したセパレー タである。
Although FIG. 2 shows an example in which both the positive and negative electrodes use rifted electrodes, a thin carbon electrode can also be used for the positive electrode. FIG. 6 shows an exploded perspective view of a fuel cell using thin carbon electrodes. (121 is a thin carbon electrode 0 with a catalyst layer formed on one side; a is a separator with grooves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の燃料電池の斜視図、第2図は、本発明
の一実施例の燃料電池分解斜視図、第3図は、第1図に
示した本発明実施例の電解液補給用セパレータillか
ら見た平面図、第4図は第1図に示した本発明実施例の
断面図、第5図は本発明に係る’+41:池特1よのグ
ラフ、第6図は本発明の他の実施例の斜視図である。 2・・・負極、3・・・正極、4・・・マトリックス、
6・・電解液拡散板、7・・電解液補給用セパレータ、
8・・・ガス隔1.171用セパレータ、9・・・外部
′1(を解法補給「」、10・パ電F+T ?ik補給
用チャンネル、11・・・内部電解液補給口。 代理人 弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第3図 第4図 (4辺)メ刀10A
Fig. 1 is a perspective view of a conventional fuel cell, Fig. 2 is an exploded perspective view of a fuel cell according to an embodiment of the present invention, and Fig. 3 is an electrolyte replenishment of the embodiment of the present invention shown in Fig. 1. FIG. 4 is a cross-sectional view of the embodiment of the present invention shown in FIG. 1, FIG. FIG. 3 is a perspective view of another embodiment of the invention. 2... Negative electrode, 3... Positive electrode, 4... Matrix,
6. Electrolyte diffusion plate, 7. Electrolyte replenishment separator,
8...Separator for gas gap 1.171, 9...External '1 (solution supply), 10-Panel F+T?ik supply channel, 11...Internal electrolyte supply port. Agent Patent Attorney Kensuke Chika (and 1 other person) Fig. 1 Fig. 2 Fig. 3 Fig. 4 (4 sides) Metto 10A

Claims (3)

【特許請求の範囲】[Claims] (1)負極としてカーボンを基材とした多孔質板の片面
に溝加工を施し、他方の面に触媒層を形成した電極(リ
ブ付き電極)を用い、正極としてリブ付き電極乃至は平
滑な薄型カーボン電極を用い、前記正、負極の間に電解
質マトリックスを狭持した単電池の負極を上にして単電
池を配置しその上に導電性の平滑な電解液保持力の高い
多孔質板(電解液拡散板)、電解液補給用セパレータ、
ガス隔離用セパレータの順でくり返し積層して形成され
たことを特徴とする燃料電池。
(1) As the negative electrode, an electrode (ribbed electrode) with grooves formed on one side of a carbon-based porous plate and a catalyst layer formed on the other side is used, and as the positive electrode, a ribbed electrode or a smooth thin electrode is used. Using a carbon electrode, an electrolyte matrix is sandwiched between the positive and negative electrodes.The unit cell is placed with the negative electrode facing upward, and a conductive, smooth porous plate with high electrolyte retention capacity is placed on top of the unit cell. liquid diffusion plate), electrolyte replenishment separator,
A fuel cell characterized in that it is formed by repeatedly stacking gas isolation separators in this order.
(2)ガス隔離用セパレータは気密性、導電性の板であ
り、電解液補給用セパレータは、ガス隔離用セパレータ
側より溝加工が施されてた電解液補給用チャンネルを設
けており前記電解液補給用チャンネルへ電解液を電池外
部から導くための外部電解液補給口を電解液補給用セパ
レータの4つのコーナーのうち、少なくとも1つのコー
ナーに設けたことを特徴とする特許請求の範囲第1項記
載の燃料電池。
(2) The gas isolation separator is an airtight, conductive plate, and the electrolyte replenishment separator is provided with an electrolyte replenishment channel that is grooved from the side of the gas isolation separator. Claim 1, characterized in that an external electrolyte replenishment port for guiding electrolyte from outside the battery to the replenishment channel is provided at at least one corner of the four corners of the electrolyte replenishment separator. The fuel cell described.
(3)電解液補給用セパレータに設けた電解液補給用チ
ャンネルから電解液拡散板へ電解液を補給するための内
部電解液補給口を電解液補給用チャンネル底部に設けた
ことを特徴とする特許請求の範囲第1項記載の燃料電池
(3) A patent characterized in that an internal electrolyte replenishment port for replenishing electrolyte from the electrolyte replenishment channel provided in the electrolyte replenishment separator to the electrolyte diffusion plate is provided at the bottom of the electrolyte replenishment channel. A fuel cell according to claim 1.
JP59120807A 1984-06-14 1984-06-14 Fuel cell Expired - Lifetime JPH06101338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120807A JPH06101338B2 (en) 1984-06-14 1984-06-14 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120807A JPH06101338B2 (en) 1984-06-14 1984-06-14 Fuel cell

Publications (2)

Publication Number Publication Date
JPS612276A true JPS612276A (en) 1986-01-08
JPH06101338B2 JPH06101338B2 (en) 1994-12-12

Family

ID=14795461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120807A Expired - Lifetime JPH06101338B2 (en) 1984-06-14 1984-06-14 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06101338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232269A (en) * 1986-12-29 1988-09-28 インターナショナル フューエル セルズ コーポレーション Electrochemical cell sealing composite unit
US5413338A (en) * 1991-11-15 1995-05-09 Sumitomo Rubber Industries Inc. Golf club shaft and its manufacturing mandrel
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232269A (en) * 1986-12-29 1988-09-28 インターナショナル フューエル セルズ コーポレーション Electrochemical cell sealing composite unit
US5413338A (en) * 1991-11-15 1995-05-09 Sumitomo Rubber Industries Inc. Golf club shaft and its manufacturing mandrel
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells

Also Published As

Publication number Publication date
JPH06101338B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US4129685A (en) Fuel cell structure
EP0188873B1 (en) Lightweight bipolar metal-gas battery
US4467019A (en) Fuel cell with electrolyte feed system
US4614025A (en) Method for making a lightweight bipolar metal-gas battery
JPH0630253B2 (en) Fuel cell
JPH0756807B2 (en) Fuel cell
KR20180117403A (en) Flow frame and secondary vattery comprising the same
JPS612276A (en) Fuel cell
JPS58150271A (en) Fuel cell
JPS63119166A (en) Fuel battery
US3647543A (en) Low-maintenance batteries having electrolyte reservoir in vapor contact with the cells
US4751062A (en) Fuel cell with electrolyte matrix assembly
JPH11204118A (en) Fuel cell separator and fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
KR20090091704A (en) Liquid electrolyte fuel cell having an anode substrate layer thicker than the cathode substrate layer
EP0106605A1 (en) Fuel cell with multiple porosity electrolyte matrix assembly and electrolyte feed system
JPS58165263A (en) Matrix type fuel cell
JP2633522B2 (en) Fuel cell
JPS6358768A (en) Fuel cell
JP4553785B2 (en) Assembled battery
JPH09161821A (en) Solid polymer electrolytic fuel cell
JPH039590B2 (en)
JP3884027B2 (en) Fuel cell
JPH0696777A (en) Solid polymer electrolytic fuel cell
JPS61179068A (en) Enclosed lead storage battery