JPS6358768A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6358768A
JPS6358768A JP61201441A JP20144186A JPS6358768A JP S6358768 A JPS6358768 A JP S6358768A JP 61201441 A JP61201441 A JP 61201441A JP 20144186 A JP20144186 A JP 20144186A JP S6358768 A JPS6358768 A JP S6358768A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
plate
gas
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61201441A
Other languages
Japanese (ja)
Other versions
JPH0577152B2 (en
Inventor
Yasutaka Komatsu
小松 康孝
Akio Soma
相馬 昭男
Keizo Otsuka
大塚 馨象
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201441A priority Critical patent/JPS6358768A/en
Publication of JPS6358768A publication Critical patent/JPS6358768A/en
Publication of JPH0577152B2 publication Critical patent/JPH0577152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a fuel cell having small size, long life, and high performance by filling a porous body, in which an electrolyte for reserve is retained, in a space formed by the surface, which is not faced to an electrode, of a corrugated current collecting plate and a separator. CONSTITUTION:When the electrolyte in an electrolyte plate 1 is in short supply, the electrolyte in an electrolyte reservoir 11 is supplied to the electrolyte plate 1 from upper and lower directions through electrolyte supply holes 12, and an anode 2 or a cathode 3. The consumption of the electrolyte in the electrolyte plate 1 is supplemented and the life of a cell is increased. Since the electrolyte reservoir 11 is conductive, internal resistance in the cell is decreased and cell performance is increased. In addition, since the need for installing a reserve space separately is eliminated, a fuel cell is made compact.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に係り、特に長寿命化及び高性能化に
好適な燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell, and particularly to a fuel cell suitable for extending life and improving performance.

〔従来の技術〕[Conventional technology]

燃料電池は従来は第7図に示すように構成されていた。 Conventionally, a fuel cell has been constructed as shown in FIG.

すなわち、マトリックスに形成された細孔に電解質を保
持させてなる電解質板1と、この電解質板1を挟持して
対向する1対の電極、すなわちアノード2及びカソード
3とによって構成された単位電池が、セパレータ4を介
して複数個積層されている。このセパレータ4にはアノ
ード2に燃料ガス5を供給するための燃料流路6及びカ
ソード3に酸化剤ガス7を供給するための酸化剤流路8
が、それぞれ両面に直交した状態で設けられている。し
かし上記の従来の構造によると、電解質板1中の電解質
が反応ガスなどによって持ち去られて不足状態となって
も、電解質の補給ができず寿命が短いという問題があっ
た。
That is, a unit battery is constituted by an electrolyte plate 1 in which an electrolyte is held in pores formed in a matrix, and a pair of electrodes, that is, an anode 2 and a cathode 3, facing each other with the electrolyte plate 1 sandwiched therebetween. , are laminated with a separator 4 in between. This separator 4 includes a fuel passage 6 for supplying fuel gas 5 to the anode 2 and an oxidant passage 8 for supplying oxidant gas 7 to the cathode 3.
are provided perpendicularly to both surfaces. However, according to the above-mentioned conventional structure, even if the electrolyte in the electrolyte plate 1 is carried away by a reaction gas or the like and becomes insufficient, the electrolyte cannot be replenished, resulting in a short life.

この問題を解決するために、特開昭57−157469
号公報及び特開昭57−63775号公報に記載された
ような提案が知られている。前者はセパレータの周辺部
に電解質をリザーブし、電解質を電解質板の周辺部から
補給する構造となっており、後者はガス供給用の溝に電
解液保持部材を挿入してこの保持部材に電解液を含浸さ
せ、マトリッマスの電解液が不足した場合には毛管現象
で保持部材から電解液が自動的に補充されるようにした
ものである。
In order to solve this problem, Japanese Patent Application Laid-Open No. 57-157469
Proposals such as those described in Japanese Patent Application Laid-Open No. 57-63775 are known. The former has a structure in which electrolyte is reserved around the separator and refilled from the periphery of the electrolyte plate, while the latter has an electrolyte holding member inserted into the gas supply groove and the electrolyte is supplied to this holding member. The electrolyte is impregnated with the matrices, and when the electrolyte in the matrices becomes insufficient, the electrolyte is automatically replenished from the holding member by capillary action.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら前者の提案によると電解質のリザーブ量に
よって電池の大きさが大きくなり、さらに電解質板の外
周部への補給性はよいが、中央部まで均等に補給するこ
とは困理であるという問題があった。また後者ではガス
供給用の溝にリザーブされる電解質の量を多くすると電
極の無効面積が増え、同等の出力を得るためには電池サ
イズを拡大する必要があり、製造コストが高くなるとい
う問題があった。また熱容量が大きいことによる起動時
の供給熱量が増大し、さらに放熱損失の増大に伴う熱効
率の低下という問題があった。
However, according to the former proposal, the size of the battery increases depending on the amount of electrolyte reserved, and although replenishment to the outer periphery of the electrolyte plate is good, it is difficult to replenish evenly to the center. Ta. In addition, in the latter case, increasing the amount of electrolyte reserved in the gas supply groove increases the effective area of the electrode, and in order to obtain the same output, it is necessary to increase the battery size, which increases manufacturing costs. there were. Further, due to the large heat capacity, the amount of heat supplied at startup increases, and there is also a problem of a decrease in thermal efficiency due to an increase in heat dissipation loss.

本発明は上記事情に鑑みてなされたものであり、小形で
寿命の長い高性能な燃料電池を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a compact, high-performance fuel cell with a long life.

〔問題点を解決するための手段〕[Means for solving problems]

一ヒ記の目的は、アノード及びカソードの少くとも一方
と対向していない波形集電板の面とセパレータとの間に
形成された空間に、電解質が保持された多孔質体を充填
し、前記波形集電板の電極との接触面に複数個の孔部を
設けて燃料電池を構成することによって達成される。
The purpose of the above is to fill the space formed between the separator and the surface of the corrugated current collector plate that does not face at least one of the anode and the cathode with a porous body holding an electrolyte; This is achieved by constructing a fuel cell by providing a plurality of holes in the surface of the corrugated current collector plate that contacts the electrodes.

〔作用〕[Effect]

上記の構成によると1反応ガスが流れても電池反応に関
与しない、波形集電板の電極と対向しない面とセパレー
タとによって形成される空間に、リザーブ用電解質が保
持された多孔質体を充填して閉塞しているので、リザー
ブ空間を別に設ける必要がなく燃料電池を小形化するこ
とができる。
According to the above configuration, a porous body holding a reserve electrolyte is filled in the space formed by the separator and the surface of the corrugated current collector plate that does not participate in the battery reaction even when a reaction gas flows. Since the fuel cell is closed, there is no need to provide a separate reserve space, and the fuel cell can be made smaller.

またリザーブ空間に電池のほぼ全面にわたって存在する
ため、電極を介して電解質板のすべての部分に均質に電
解質を補給することができる。また電解質は多孔質体に
保持されているため、リザーブされた電解質の流出が防
止でき、リザーブ空間に反応ガスが流れることも防止で
きる。さらに電解質が毛管力によって移動するため重力
を利用するものと異なり、リザーバを電解質板のE下い
ずれにも設けることができ、リザーブ量を多くして長寿
命化を図ることができる。
Furthermore, since the reserve space is present over almost the entire surface of the battery, the electrolyte can be uniformly replenished to all parts of the electrolyte plate via the electrodes. Furthermore, since the electrolyte is held in the porous body, it is possible to prevent the reserved electrolyte from flowing out, and it is also possible to prevent the reaction gas from flowing into the reserve space. Furthermore, since the electrolyte moves by capillary force, unlike those that use gravity, a reservoir can be provided anywhere below E of the electrolyte plate, making it possible to increase the amount of reserve and extend the life.

〔実施例〕〔Example〕

以下、本発明に係る燃料電池の一実施例を図面を参照し
て説明する。
Hereinafter, one embodiment of a fuel cell according to the present invention will be described with reference to the drawings.

第1図及び第2図に本発明の第1の実施例を示す、これ
らの図において、第7図に示す従来例と同一または同等
部分には同一符号を付して示し、説明を省略する。セパ
レータ4の上面と下面にはそれぞれ波形集電板9,10
が設けられており、アノード2に接する波形集電板9に
はアノード2に燃料ガス5を供給するための燃料流路6
が、またカソード3に接する波形集電板1oにはカソー
ド3に酸化剤ガスを供給するための酸化剤流路8が、そ
れぞれ互に直交するように形成されている。
A first embodiment of the present invention is shown in FIGS. 1 and 2. In these figures, the same or equivalent parts as in the conventional example shown in FIG. . Corrugated current collector plates 9 and 10 are provided on the upper and lower surfaces of the separator 4, respectively.
The corrugated current collector plate 9 in contact with the anode 2 is provided with a fuel flow path 6 for supplying fuel gas 5 to the anode 2.
However, in the corrugated current collector plate 1o in contact with the cathode 3, oxidant channels 8 for supplying oxidant gas to the cathode 3 are formed so as to be orthogonal to each other.

さらに波形集電板9,10の電極と対向しない面とセパ
レータ4とによって形成された空間には、補給用の電解
質を貯蔵している電解質リザーバ11が設けられ、波形
集電板9,10の電極2゜3と接する面には多数の電解
質補給孔12が形成されている。この電解質リザーバ1
1はNi。
Furthermore, an electrolyte reservoir 11 storing electrolyte for replenishment is provided in the space formed by the separator 4 and the surfaces of the corrugated current collector plates 9 and 10 that do not face the electrodes. A large number of electrolyte replenishment holes 12 are formed on the surface in contact with the electrode 2.3. This electrolyte reservoir 1
1 is Ni.

Cu、AQなどの電解質に対して化学的に安定な金属の
多孔質体で成形され、この多孔質体の細孔中に電解質が
保持されている。この電解質リザーバ11はアルシン酸
リチウム、チタン酸ストロンチウム、ジルコン酸ストロ
ンチウムなどの電解質に対して安定な材料や、アルミナ
などの電解質と反応はするが反応生成物が電解質に対し
て安定な材料を使用してもよい、また電解質りf−/<
11に形成された細孔径は電極2,3及び電解質板1に
形成された細孔径より大きくなっており、電解質板中の
電解質が不足した場合、毛管現象で自動的にリザーバか
ら電極2,3を介して電解質板1に電解質が補給される
ようになっている。さらに電解質リザーバ11は導電性
を有しており、アノード2及びカソード3の両電極とセ
パレータ4を電気的に接続する働きも併せ持っている。
It is formed of a porous body of a metal such as Cu or AQ that is chemically stable to electrolytes, and the electrolyte is held in the pores of this porous body. This electrolyte reservoir 11 is made of a material that is stable against the electrolyte, such as lithium arsinate, strontium titanate, or strontium zirconate, or a material that reacts with the electrolyte, such as alumina, but whose reaction product is stable against the electrolyte. Also, the electrolyte f-/<
The pore diameter formed in electrode 11 is larger than the pore diameter formed in electrodes 2 and 3 and electrolyte plate 1, and when the electrolyte in the electrolyte plate is insufficient, capillary action automatically removes the electrolyte from the reservoir to electrodes 2 and 3. Electrolyte is supplied to the electrolyte plate 1 via the electrolyte plate 1. Further, the electrolyte reservoir 11 has conductivity and also has the function of electrically connecting both the anode 2 and cathode 3 and the separator 4.

本実施例によれば、電解質板1中の電解質が不足すると
電解質リザーバ11中の電解質が電解質補給孔12を通
り、さらに7ノード2またはカソード3を通って上下方
向より電解質板1に供給され、電解質板1の中の電解質
の消耗を補うことができ、電池寿命を延す効果がある。
According to this embodiment, when the electrolyte in the electrolyte plate 1 is insufficient, the electrolyte in the electrolyte reservoir 11 is supplied to the electrolyte plate 1 from above and below through the electrolyte replenishment hole 12 and further through the 7 nodes 2 or cathodes 3, It is possible to compensate for the consumption of the electrolyte in the electrolyte plate 1, which has the effect of extending the battery life.

また電解質リザーバ11は導電性を有するため、電極2
,3とセパレータ4とを電気的に接続する波形集電板9
゜10の働きも補い、電池内部抵抗を減少させて電池性
能を向上させる効果もある。さらに電解質リザーバ11
を構成している空間は、反応ガスが流れても電池反応に
関与しないためガスが流れないように閉止板などを設け
て塞ぐべき空間であるので、電解質リザーバ11はこの
空間のガス流を止める閉止板の動きもしている。その上
リザーブ空間を設けることによる電池寸法の拡大もなく
、コンパクトとなり、製造コストの低減及び熱放散低減
による熱効率向上の効果もある。
Furthermore, since the electrolyte reservoir 11 has conductivity, the electrode 2
, 3 and the separator 4 electrically.
It also compensates for the function of ゜10 and has the effect of reducing battery internal resistance and improving battery performance. Furthermore, electrolyte reservoir 11
The space constituting the reactor gas does not participate in the cell reaction even if the reaction gas flows, so it should be closed by installing a closing plate or the like to prevent the gas from flowing. Therefore, the electrolyte reservoir 11 stops the gas flow in this space. The closing plate is also moving. Furthermore, the battery size is not increased due to the provision of a reserve space, and the battery is compact, reducing manufacturing costs and improving thermal efficiency by reducing heat dissipation.

第3図、第4図及び第5図に本発明の第2の実施例を示
す、この実施例では電解質リザーバ11と電池外部とを
連通させる連通路13,14゜15を設けて、この連通
路に外部から圧力をかけることによって電解質リザーバ
11から電解質を押し出し、電解質板1に電解質を補給
するようにしたものである。この場合、第5図に示すよ
うに電池の4方向の側面には反応ガスの給徘用としてそ
れぞれ燃料入口マニホルド16、酸化剤入口マニホルド
17、燃料出口マニホルド18、酸化剤出口マニホルド
19が設けられている。それに加えて電解質補給量をコ
ントロールするための圧力用のマニホルド20が対向す
る二辺に設けられており、それぞれ連通路13.14を
介して連通路15に接続されている。
A second embodiment of the present invention is shown in FIGS. 3, 4, and 5. In this embodiment, communication passages 13, 14, and 15 are provided to communicate the electrolyte reservoir 11 with the outside of the battery. The electrolyte is pushed out from the electrolyte reservoir 11 by applying pressure to the passageway from the outside, and the electrolyte is replenished into the electrolyte plate 1. In this case, as shown in FIG. 5, a fuel inlet manifold 16, an oxidizer inlet manifold 17, a fuel outlet manifold 18, and an oxidizer outlet manifold 19 are provided on the four side surfaces of the cell for supplying the reactant gas, respectively. ing. In addition, pressure manifolds 20 for controlling the amount of electrolyte replenishment are provided on two opposing sides and are connected to the communication path 15 via communication paths 13, 14, respectively.

上記第2の実施例によれば、前述したように連通路13
,14.15を介して各電解質リザーバ11に外部から
電解質補給のための圧力が伝達されるとともに、リザー
ブ用の電解質がなくなった場合にマニホルド20から連
通路13,14゜15を介して電解質リザーバ11に電
解質を補給することができる。また電解質リザーバ11
を形成する多孔質体の細孔径は電極2,3の細孔径より
小さくなっているので、加圧しない状態でリザーバの電
解質が電極1,2の方に吸い出されることはない。
According to the second embodiment, as described above, the communication path 13
, 14, 15 to each electrolyte reservoir 11 from the outside, and when the reserve electrolyte runs out, it is transmitted from the manifold 20 to the electrolyte reservoir 11 via communication passages 13, 14, 15. 11 can be replenished with electrolytes. Also, the electrolyte reservoir 11
Since the pore diameter of the porous body forming the electrodes 2 and 3 is smaller than that of the electrodes 2 and 3, the electrolyte in the reservoir will not be sucked out toward the electrodes 1 and 2 without pressurization.

第6図に本発明の第3の実施例を示す、この実施例では
電解質リザーバ11をアノード2側にのみ設け、カソー
ド3側には設けずに酸化剤ガスを流して電池を冷却する
冷却ガス流路21を形成したものである。一般にガス組
成と利用率の関係でアノード側を流れる燃料ガスに比べ
て、カソード側を流れる酸化剤ガスの方が流量が多くな
っている。また電池より低い温度の反応ガスを電池に供
給して電池を冷却しようとする冷却方式の場合。
FIG. 6 shows a third embodiment of the present invention. In this embodiment, an electrolyte reservoir 11 is provided only on the anode 2 side, and is not provided on the cathode 3 side, and an oxidant gas is passed through the cooling gas to cool the battery. A flow path 21 is formed therein. Generally, due to the relationship between gas composition and utilization rate, the flow rate of the oxidant gas flowing through the cathode side is higher than that of the fuel gas flowing through the anode side. Also, in the case of a cooling method that attempts to cool the battery by supplying a reactive gas with a temperature lower than that of the battery.

一般に酸化剤ガスの方を利用するため、酸化剤ガスの流
量はさらに増加してしまう。従って酸化剤流路のガス流
速が燃料流路のガス流速より大きくなり、電池内で燃料
側と酸化剤側の圧力差が発生して電解質板1を通して燃
料と酸化剤が混合するガスクロスオーバの原因となる。
Since the oxidant gas is generally used, the flow rate of the oxidant gas increases further. Therefore, the gas flow rate in the oxidizer flow path becomes higher than the gas flow rate in the fuel flow path, and a pressure difference occurs between the fuel side and the oxidizer side in the cell, resulting in a gas crossover in which the fuel and oxidizer mix through the electrolyte plate 1. Cause.

このためカソード3側のリザーバ空間を冷却ガス流路2
1として用い、そこに酸化剤ガスを流すことにより酸化
剤ガスの流路断面積が倍増し、圧力損失が低減されて燃
料ガスと酸化剤ガスとの圧力差が少くなる。
Therefore, the reservoir space on the cathode 3 side is used as the cooling gas flow path 2.
1, and by flowing the oxidizing gas there, the cross-sectional area of the oxidizing gas flow path is doubled, the pressure loss is reduced, and the pressure difference between the fuel gas and the oxidizing gas is reduced.

この結果ガスクロスオーバの危険性が減少し電池の信頼
性が向上した。
As a result, the risk of gas crossover is reduced and battery reliability is improved.

この実施例によると、前記第1及び第2の実施例より電
解質のリザーブ量は減少する欠点はあるが、燃料ガスと
酸化剤ガスとの差圧を少くすることができ、ガスクロス
オーバを防止して電池を安全に運転することができる。
According to this embodiment, although there is a drawback that the amount of electrolyte reserve is reduced compared to the first and second embodiments, it is possible to reduce the differential pressure between the fuel gas and the oxidant gas, and prevent gas crossover. The battery can be operated safely.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、燃料電池のアノード及
びカソードの少くとも一方と対向していない波形集電板
の面とセパレータとの間に形成された空間に、電解質が
保持された多孔質体と充填し、前記波形集電板の電極と
の接触面に複数個の孔部を設けたので、電池寸法を大き
くすることなく電解質をリザーブすることができ、また
電解質板全体にわたって電解質を補給することができる
ので、電池寿命の延長及び製造コストの低減、さらには
熱効率の向上などの効果がある。
As described above, according to the present invention, a porous material holding an electrolyte is formed in the space formed between the separator and the surface of the corrugated current collector plate that does not face at least one of the anode and cathode of the fuel cell. Since multiple holes are provided in the contact surface of the corrugated current collector plate with the electrode, electrolyte can be stored without increasing the battery size, and electrolyte can be replenished throughout the electrolyte plate. This has the effect of extending battery life, reducing manufacturing costs, and improving thermal efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃料電池の第1の実施例を示す分
解斜視図、第2図は第1図の縦断面図、第:3図は本発
明の第2の実施例を示す縦断面図、第4図は第3図の波
形集電極と電解質リザーバを示す斜視図、第5図は第3
図の平面図、第6図は本発明の第3の実施例を示す縦断
面図、第7図は従来の燃料電池を示す分解斜視図である
。 1・・・電解質板、2・・・アノード、3・・・カソー
ド、4・・セパレータ、5・・・燃料ガス、6・・・燃
料流路、7・・・酸化剤ガス、8・・・酸化剤流路、9
,10・・・波形集電板、11・・・電解質リザーバ(
多孔質体)、12・・・電解質補給孔(孔部)、13,
14.15・・・連通路、7−  、 代理人 弁理士 小川勝男゛・1.・、・・;′−j′
帛4−図 墓−′I図
FIG. 1 is an exploded perspective view showing a first embodiment of a fuel cell according to the present invention, FIG. 2 is a longitudinal cross-sectional view of FIG. 1, and FIG. 3 is a longitudinal cross-sectional view showing a second embodiment of the present invention. 4 is a perspective view showing the corrugated collector electrode and electrolyte reservoir of FIG. 3, and FIG.
6 is a longitudinal sectional view showing a third embodiment of the present invention, and FIG. 7 is an exploded perspective view showing a conventional fuel cell. DESCRIPTION OF SYMBOLS 1... Electrolyte plate, 2... Anode, 3... Cathode, 4... Separator, 5... Fuel gas, 6... Fuel channel, 7... Oxidizing gas, 8...・Oxidizer channel, 9
, 10... Corrugated current collector plate, 11... Electrolyte reservoir (
porous body), 12...electrolyte replenishment hole (hole), 13,
14.15...Communication path, 7-, Agent Patent attorney Katsuo Ogawa゛・1.・、・;′−j′
Scroll 4-Illustrated tomb-'I

Claims (1)

【特許請求の範囲】 1、電解質板を挟持して相対向するアノード及びカソー
ドの2つの電極と、これらの電極に反応ガスを供給する
ためのガス流路がそれぞれ形成された波形導電板とから
なる単位電池を、セパレータを介して積層してなる燃料
電池において、前記アノード及びカソードの少くとも一
方と対向していない前記波形集電板の面と前記セパレー
タとの間に形成された空間に、電解質が保持された多孔
質体を充填するとともに、前記波形集電板の前記電極と
の接触面に複数個の孔部を設けたことを特徴とする燃料
電池。 2、特許請求の範囲第1項において、電解質を保持する
多孔質体は導電性を有する部材からなることを特徴とす
る燃料電池。 3、特許請求の範囲第1項または第2項において、電解
質を保持する多孔質体の細孔径は電極の細孔径より大き
く形成されたことを特徴とする燃料電池。 4、特許請求の範囲第1項または第2項または第3項に
おいて、電解質を保持する多孔質体が充填された空間は
連通路を介して電池外部と連通されたことを特徴とする
燃料電池。
[Claims] 1. Two electrodes, an anode and a cathode, facing each other with an electrolyte plate sandwiched therebetween, and a corrugated conductive plate each having a gas flow path for supplying a reactive gas to these electrodes. In a fuel cell formed by stacking unit cells such as A fuel cell characterized in that a porous body holding an electrolyte is filled and a plurality of holes are provided in a contact surface of the corrugated current collector plate with the electrode. 2. The fuel cell according to claim 1, wherein the porous body holding the electrolyte is made of a conductive member. 3. A fuel cell according to claim 1 or 2, characterized in that the pore diameter of the porous body holding the electrolyte is larger than the pore diameter of the electrode. 4. A fuel cell according to claim 1, 2, or 3, characterized in that the space filled with the porous material holding the electrolyte is communicated with the outside of the cell via a communication path. .
JP61201441A 1986-08-29 1986-08-29 Fuel cell Granted JPS6358768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201441A JPS6358768A (en) 1986-08-29 1986-08-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201441A JPS6358768A (en) 1986-08-29 1986-08-29 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6358768A true JPS6358768A (en) 1988-03-14
JPH0577152B2 JPH0577152B2 (en) 1993-10-26

Family

ID=16441139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201441A Granted JPS6358768A (en) 1986-08-29 1986-08-29 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6358768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489150A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Molten carbonate fuel cell
NL9400430A (en) * 1993-03-18 1994-10-17 Hitachi Ltd Fuel cell and additional electrolyte holder and method of replenishing the fuel cell with electrolyte.
US6833214B2 (en) * 1998-08-03 2004-12-21 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate and separator using multiple uneven plate
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165866A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Electrolyte supply construction of fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165866A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Electrolyte supply construction of fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489150A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Molten carbonate fuel cell
NL9400430A (en) * 1993-03-18 1994-10-17 Hitachi Ltd Fuel cell and additional electrolyte holder and method of replenishing the fuel cell with electrolyte.
US5563003A (en) * 1993-03-18 1996-10-08 Hitachi, Ltd. Fuel cell and supplementary electrolyte container and method for supplementing fuel cell with electrolyte
US6833214B2 (en) * 1998-08-03 2004-12-21 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate and separator using multiple uneven plate
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells

Also Published As

Publication number Publication date
JPH0577152B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
EP0736226B1 (en) Electrochemical fuel cell employing ambient air as the oxidant and coolant
US4678724A (en) Fuel cell battery with improved membrane cooling
JPS6130385B2 (en)
US4649091A (en) Fuel cell battery with improved membrane cooling
JPS5837669B2 (en) Fuel cell and its manufacturing method
US6551735B2 (en) Honeycomb electrode fuel cells
US7648789B2 (en) Fuel cell gas separator plate with paths of electrically conductive material of a silver-glass composite
JP2001506399A (en) Integrated Reactant and Coolant Fluid Region Layer for Fuel Cell with Membrane Electrode Assembly
JPS5931568A (en) Film cooling type fuel battery
JPS61227370A (en) Fuel battery assembly
CA2693522C (en) Fuel cell with non-uniform catalyst
JPS6358768A (en) Fuel cell
JPS63119166A (en) Fuel battery
JPH0355764A (en) Solid electrolytic type fuel cell
JPS6352751B2 (en)
JP3603871B2 (en) Polymer electrolyte fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JPH0992309A (en) Solid polymer electrolyte fuel cell
JPS6160547B2 (en)
JP3774443B2 (en) Fuel cell container and fuel cell
JP2633522B2 (en) Fuel cell
JPH06101338B2 (en) Fuel cell
JP3046859B2 (en) Phosphoric acid fuel cell
JPH077671B2 (en) Fuel cell
JP2952966B2 (en) Stack of molten carbonate fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees