JPH05190193A - Solid high polymeric electrolyte type fuel cell - Google Patents

Solid high polymeric electrolyte type fuel cell

Info

Publication number
JPH05190193A
JPH05190193A JP4006036A JP603692A JPH05190193A JP H05190193 A JPH05190193 A JP H05190193A JP 4006036 A JP4006036 A JP 4006036A JP 603692 A JP603692 A JP 603692A JP H05190193 A JPH05190193 A JP H05190193A
Authority
JP
Japan
Prior art keywords
gas supply
cooling
supply means
cooling water
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4006036A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishihara
西原  啓徳
Toshihiro Sugiyama
智弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4006036A priority Critical patent/JPH05190193A/en
Publication of JPH05190193A publication Critical patent/JPH05190193A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve reliability by preventing the condensation of the moisture in a cathode by increasing the cooling efficiency on the surface in contact with a fuel gas feeding means higher than the cooling efficiency of an oxidizing agent gas feeding means. CONSTITUTION:A single cell 1 is constituted by arranging a cathode 2 and an anode 4 on both the sides of a membrane 3. Fuel gas is supplied into the anode 4 through a fuel gas passage 5 and oxidizing agent gas is supplied into the cathode 2 through an oxidizing agent gas flow passage 10. A cooling plate 8 consists of a gas impermeable sintered carbon plate, and when the distance from the edge surface opposed to the anode in the thickness direction is set to L1 and the distance from the edge surface opposed to the cathode is set to L2, a cooling water passage 7 is formed at the position in L1<L2. Accordingly, the temperature of the cathode is raised higher than that of the anode, and the condensation of the moisture in the cathode is prevented, and the flow passage for the oxidizing agent gas is secured, and reliability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は冷却板を備えた信頼性
に優れるプロトン導電性の固体高分子電解質型燃料電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable proton conductive solid polymer electrolyte fuel cell having a cooling plate.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれアノードまたはカソ
ードおよび電極基材を配して形成される。アノードまた
はカソードの各電極は固体高分子電解質膜と電極基材と
により挟まれる。固体高分子電解質膜はスルホン酸基を
持つポリスチレン系の陽イオン交換膜をカチオン導電性
膜として使用したもの、フロロカーボンスルホン酸とポ
リビニリデンフロライドの混合膜、あるいはフロロカー
ボンマトリックスにトリフロロエチレンをグラフト化し
たものなどが知られているが最近ではパーフロロカーボ
ンスルホン酸膜を用いて燃料電池の長寿命化を図ったも
のが知られるに至った。
2. Description of the Related Art A solid polymer electrolyte fuel cell is formed by disposing an anode or a cathode and an electrode base material on each of two main surfaces of a solid polymer electrolyte membrane. Each anode or cathode electrode is sandwiched between the solid polymer electrolyte membrane and the electrode base material. The solid polymer electrolyte membrane uses a polystyrene cation exchange membrane with sulfonic acid groups as the cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or trifluoroethylene grafted to the fluorocarbon matrix. However, recently, a perfluorocarbon sulfonic acid membrane has been used to extend the life of a fuel cell.

【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノードまたはカソードの電極において
は三相界面が形成され電気化学反応が起こる。
The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, and when it is saturated to contain water, it exhibits a specific resistance of 20 Ω · cm or less at room temperature and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode base material is a porous body and functions as a reaction gas supply means or a reaction gas discharge means of the fuel cell and a current collector. At the anode or cathode electrode, a three-phase interface is formed and an electrochemical reaction occurs.

【0004】アノードでは(1)式の反応が起きる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/202 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。
At the anode, the reaction of the formula (1) occurs. H 2 = 2H + + 2e (1) At the cathode, the reaction of the formula (2) occurs. 1/20 2 + 2H + + 2e = H 2 O (2) That is, at the anode, hydrogen supplied from the outside of the system produces protons and electrons. The generated protons move in the ion exchange membrane toward the cathode, and the electrons move to the cathode through an external circuit. On the other hand, in the cathode, oxygen supplied from the outside of the system reacts with protons moving from the anode in the ion exchange membrane and electrons moving from the external circuit to generate water.

【0005】このような固体高分子電解質型燃料電池に
おいてはプロトンがアノードよりカソードに向かってイ
オン交換膜中を移動する際に水和の状態で移動するため
アノード近傍では含水量が減少しイオン交換膜が乾いて
くる。そのためにアノード近傍では水を供給しないとプ
ロトンの移動が困難になる。また酸化剤として空気を用
いる場合は理論消費量の数倍の空気を送るためイオン交
換膜中の水分が空気に持ち出されそのために膜が乾いて
くる。このために従来は適量と計算される一定量の水蒸
気を燃料ガスおよぴ/または酸化剤ガス中に混入して電
池に送り込む方法を採用している。
In such a solid polymer electrolyte fuel cell, protons move in a hydrated state as they move from the anode to the cathode in the ion exchange membrane, so that the water content near the anode decreases and the ion exchange occurs. The film is getting dry. Therefore, it becomes difficult for protons to move near the anode unless water is supplied. When air is used as the oxidant, several times the theoretical consumption of air is sent, and the moisture in the ion-exchange membrane is carried out to the air, which causes the membrane to dry. For this reason, conventionally, a method has been adopted in which a fixed amount of water vapor, which is calculated as an appropriate amount, is mixed into the fuel gas and / or the oxidant gas and sent into the battery.

【0006】一方、固体高分子電解質型燃料電池も他の
燃料電池と同様に発電に伴い熱を外部に放出するため
に、安定した運転を継続するためには、発生した熱を除
去する必要がある。冷却が必要であるということ自体
は、他のタイプの燃料電池と変わりないが、固体高分子
電解質型燃料電池の場合には運転温度そのものが他のタ
イプの燃料電池と比較して低く、しかもプロトン導電性
を示す固体高分子膜(メンブラン)そのもののプロトン
導電性が温度の影響を大きくうけるために、例えば20
0℃付近で運転するリン酸型燃料電池(PAFC)や、
約650℃で運転する溶融炭酸塩型燃料電池(MCF
C)、さらには約1000℃で運転する固体電解質型燃
料電池(SOFC)と比較して、より精密な温度制御が
必要になってくる。プロトン導電性を有する固体高分子
膜を電解質として用いる場合は、その運転温度は特別な
場合を除くと一般的に100℃以下である。
On the other hand, the solid polymer electrolyte fuel cell, like other fuel cells, radiates heat to the outside along with power generation, so that it is necessary to remove the generated heat in order to continue stable operation. is there. The fact that cooling is necessary is the same as that of other types of fuel cells, but in the case of solid polymer electrolyte fuel cells, the operating temperature itself is lower than that of other types of fuel cells, and protons are also used. The proton conductivity of the conductive solid polymer membrane itself is greatly affected by temperature.
A phosphoric acid fuel cell (PAFC) that operates near 0 ° C,
Molten carbonate fuel cell (MCF operating at about 650 ° C)
C), and more precise temperature control is required as compared with a solid oxide fuel cell (SOFC) operating at about 1000 ° C. When a solid polymer membrane having proton conductivity is used as an electrolyte, its operating temperature is generally 100 ° C. or lower except for special cases.

【0007】図9、および図10は従来の固体高分子電
解質型燃料電池を示す断面図である。図中1はカソード
−メンブラン−アノードよりなる単セルを示す。図9
は、ガスセパレータにガス供給用のリブを設けた場合を
示し、図10は電極の基材にリブを設けたいわゆるリブ
付電極基材を用いた場合の例である。また、8は冷却板
を示す。従来の技術においては、冷却板に設けられてい
る冷媒流路の位置は冷却板の厚さ方向の中央に設けられ
るのが一般的であった。
9 and 10 are sectional views showing a conventional solid polymer electrolyte fuel cell. In the figure, 1 indicates a single cell composed of a cathode-membrane-anode. Figure 9
Shows a case where gas supply ribs are provided on the gas separator, and FIG. 10 shows an example of using a so-called ribbed electrode base material in which ribs are provided on the electrode base material. Moreover, 8 shows a cooling plate. In the conventional technique, the position of the coolant passage provided on the cooling plate is generally provided at the center of the cooling plate in the thickness direction.

【0008】[0008]

【発明が解決しようとする課題】しかしながら従来の固
体高分子電解質型燃料電池にあっては経時的に電極に水
分が凝縮し燃料ガスや酸化剤ガスなどの反応ガスの拡散
性が阻害されて燃料電池の特性が徐々に低下するという
問題があった。固体高分子電解質型燃料電池において
は、前述のように常にメンブランに水を含ませておく必
要があるために、加湿したガスを電極に供給している
が、供給した水分、あるいは電極反応により発生した水
分の一部はアノードあるいはカソードの内部に凝縮させ
ている。しかしながら上述のような従来のセルにおいて
は、アノードとカソードの温度がほぼ同じであり、どち
らの電極にも同じ程度に水分が凝縮するものと考えられ
る。電極内部に水が凝縮すると、セル外部から供給され
る反応ガスの流路がなくなり、セル特性が低下する。し
かし、同程度にガスの流路が水で塞がれた場合の影響は
アノードと比較してカソードの方が大きいと言われてい
る。つまり、アノードはある程度ガス流路が水で閉塞さ
れてもセル特性に大きな影響を及ぼさないが、カソード
は大きな影響を及ぼすことになる。
However, in the conventional solid polymer electrolyte fuel cell, moisture condenses on the electrodes over time and the diffusivity of the reaction gas such as the fuel gas and the oxidant gas is hindered and the fuel is There is a problem that the characteristics of the battery gradually deteriorate. In the solid polymer electrolyte fuel cell, since it is necessary to always include water in the membrane as described above, humidified gas is supplied to the electrode, but it is generated by the supplied water or the electrode reaction. A part of the generated water is condensed inside the anode or the cathode. However, in the conventional cell as described above, the temperatures of the anode and the cathode are almost the same, and it is considered that water is condensed to both electrodes to the same degree. When water condenses inside the electrode, the flow path of the reaction gas supplied from the outside of the cell disappears, and the cell characteristics deteriorate. However, it is said that the cathode has a larger effect than the anode when the gas flow path is blocked with water to the same extent. That is, even if the gas flow path of the anode is blocked to some extent by water, the cell characteristics are not greatly affected, but the cathode is greatly affected.

【0009】この発明は上述の点に鑑みてなされその目
的は、単セルのカソード温度をアノードに比し相対的に
高くしてカソードにおける特性劣化がなく信頼性に優れ
る固体高分子電解質型燃料電池を提供することにある。
The present invention has been made in view of the above points, and an object thereof is a solid polymer electrolyte fuel cell in which the cathode temperature of a single cell is set relatively higher than that of the anode and the cathode is not deteriorated in characteristics and is excellent in reliability. To provide.

【0010】[0010]

【課題を解決するための手段】この発明によれば順次に
積層された第一の単セル、燃料ガス供給手段、冷却板、
酸化剤ガス供給手段、第二の単セルを有し、単セルは固
体高分子電解質からなるメンブランの両主面にアノード
とカソードを配してなり、燃料ガス供給手段は燃料ガス
流路を有して第一の単セルのアノードに燃料ガスを供給
するものであり、酸化剤ガス供給手段は酸化剤ガス流路
を有して第二の単セルのカソードに酸化剤ガスを供給す
るものであり、冷却板はその内部に冷却水流路を有し燃
料ガス供給手段と酸化剤ガス供給手段とを介して第一と
第二の単セルを冷却するもので、燃料ガス供給手段に接
する面の冷却効率は酸化剤ガス供給手段に接する面の冷
却効率よりも高いものであること、または順次に積層さ
れた第一の単セル、燃料ガス供給手段、冷却板、酸化剤
ガス供給手段、第二の単セルを有し、単セルは固体高分
子電解質からなるメンブランの両主面にアノードとカソ
ードを配してなり、燃料ガス供給手段、燃料ガス流路を
有して第一の単セルのアノードに燃料ガスを供給するも
のであり、酸化剤ガス供給手段は酸化剤ガス流路を有し
て第二の単セルのカソードに酸化剤ガをス供給するもの
であって、酸化剤ガス供給手段の積層方向の厚さが燃料
ガス供給手段の積層方向の厚さに比して大きく、冷却板
はその内部に冷却水流路を有し燃料ガス供給手段と酸化
剤ガス供給手段とを介して第一と第二の単セルを冷却す
るものであるとすることにより達成される。
According to the present invention, a first unit cell, a fuel gas supply means, a cooling plate, which are sequentially laminated,
It has an oxidant gas supply means and a second single cell, and the single cell has an anode and a cathode on both main surfaces of a membrane made of a solid polymer electrolyte, and the fuel gas supply means has a fuel gas flow path. Then, the fuel gas is supplied to the anode of the first unit cell, and the oxidant gas supply means has an oxidant gas flow path and supplies the oxidant gas to the cathode of the second unit cell. The cooling plate has a cooling water flow path inside and cools the first and second unit cells via the fuel gas supply means and the oxidant gas supply means. The cooling efficiency is higher than the cooling efficiency of the surface in contact with the oxidant gas supply means, or the first unit cell, the fuel gas supply means, the cooling plate, the oxidant gas supply means, and the second cell that are sequentially stacked. Has a single cell, and the single cell consists of a solid polymer electrolyte An anode and a cathode are arranged on both main surfaces of the membrane, and the fuel gas supply means and the fuel gas flow path are provided to supply the fuel gas to the anode of the first unit cell. The oxidant gas supply means Has an oxidant gas flow path and supplies an oxidant gas to the cathode of the second unit cell, and the thickness of the oxidant gas supply means in the stacking direction is the same as that of the fuel gas supply means. It is larger than the thickness, and the cooling plate has a cooling water flow path inside and cools the first and second unit cells via the fuel gas supply means and the oxidant gas supply means. It is achieved by

【0011】[0011]

【作用】一般に固体高分子電解質型燃料電池に使用され
るメンブランは、テフロンと似た基本構造をしておりメ
ンブラン自体の熱伝導はかなり悪い。前記の構成によれ
ばカソードはアノードより温度が高くなり従来の方法と
比較してカソード内での水の凝縮が抑制される。つま
り、カソード内での水の凝縮によるガス流路の閉塞がな
くなり、より長期にわたり安定したセル特性を得ること
ができる。
[Function] Generally, a membrane used in a solid polymer electrolyte fuel cell has a basic structure similar to that of Teflon, and the membrane itself has a considerably poor heat conduction. According to the above structure, the temperature of the cathode becomes higher than that of the anode, and the condensation of water in the cathode is suppressed as compared with the conventional method. That is, the gas flow passage is not clogged due to water condensation in the cathode, and stable cell characteristics can be obtained for a longer period of time.

【0012】[0012]

【実施例】【Example】

(実施例1)図1は請求項1で定義された発明の実施例
に係る固体高分子電解質型燃料電池を示す断面図であ
る。ここで、単セル1は、メンブラン3の両側にカソー
ド2とアノード4を配置して構成されている。一方、冷
却板8は、ガス不透過性の焼結カーボン板よりなってお
り、その厚さ方向において、アノードに対向する端面よ
り距離L1 、カソードに対向する端面より距離L2 (L
1 +L2 =冷却板の厚さ)の位置に冷媒流路7が設けら
れている。
(Example 1) FIG. 1 is a cross-sectional view showing a solid polymer electrolyte fuel cell according to an example of the invention defined in claim 1. Here, the unit cell 1 is configured by arranging the cathode 2 and the anode 4 on both sides of the membrane 3. On the other hand, the cooling plate 8 is made of a gas-impermeable sintered carbon plate, and has a distance L 1 from the end surface facing the anode and a distance L 2 (L from the end surface facing the cathode in the thickness direction thereof.
The coolant passage 7 is provided at a position of 1 + L 2 = thickness of the cooling plate.

【0013】ここでL1 <L2 の関係が成立している。
本実施例においては、冷却板の材料はガス不透過性の焼
結カーボン板を用いたが、電子伝導性およびガス不透過
性で、適用される条件下において化学的に安定な材料で
あれば何でも良い。また、本実施例において冷媒流路の
形状は矩形であるが、流路の形状にこだわるものではな
い。燃料電池は〔単セル(カソード−メンブラン−アノ
ード)〕/〔アノード用ガス不透過性支持板6〕/〔冷
却板〕/〔カソード用ガス不透過性支持板9〕/〔単セ
ル〕で構成されるが、単セルを複数個積み重ねる場合に
は、必要に応じて片面に燃料ガス、他の片面には酸化剤
ガスの流路(リブ)を設けたリブ付ガスセパレータを介
して単セルを積み重ね、数セル毎に冷却板を設ける構造
とすることができる。(本実施例においては2セル毎に
冷却板を設けている)。
Here, the relationship of L 1 <L 2 is established.
In the present example, the material of the cooling plate was a gas-impermeable sintered carbon plate, but if the material is electron-conductive and gas-impermeable, and is chemically stable under the applied conditions. anything is fine. Further, in the present embodiment, the shape of the refrigerant channel is rectangular, but the shape of the channel is not particularly limited. The fuel cell is composed of [single cell (cathode-membrane-anode)] / [anode gas impermeable support plate 6] / [cooling plate] / [cathode gas impermeable support plate 9] / [single cell] However, when stacking a plurality of unit cells, the unit cells are placed through a ribbed gas separator with a flow path (rib) of fuel gas on one side and oxidant gas on the other side as necessary. It is possible to stack and provide a cooling plate for every several cells. (In this embodiment, a cooling plate is provided for every two cells).

【0014】図2は請求項1で定義された発明の実施例
に係る固体高分子電解質型燃料電池を示す異なる断面図
である。アノード用ガス不透過性支持板6の代わりにア
ノード用多孔質リブ付基材12を、またカソード用ガス
不透過性支持板9の代わりにカソード用多孔質リブ付基
材13を用いた。図7は請求項1で定義された発明の実
施例に係る固体高分子電解質型燃料電池を示すさらに異
なる断面図である。図8は本実施例と従来の各セルにつ
きその特性低下率を比較して示す線図である。セルナン
バは図7と図8で対応する。従来のセルの場合は、特に
カソードが冷却板と接しているセルで特性の低下が大き
いが、実施例の場合にはかなり改善されていることがわ
かる。この傾向は次に述べる実施例2ないし実施例5に
おいても同じである。
FIG. 2 is a different sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 1. The anode gas impermeable support plate 6 was used in place of the anode porous ribbed substrate 12, and the cathode gas impermeable support plate 9 was used in place of the cathode porous ribbed substrate 13. FIG. 7 is a different sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 1. FIG. 8 is a diagram showing the characteristic deterioration rates of the cells of this example and the conventional cell in comparison. The cell numbers correspond in FIG. 7 and FIG. It can be seen that in the case of the conventional cell, the deterioration of the characteristics is large especially in the cell in which the cathode is in contact with the cooling plate, but in the case of the example, it is understood that it is considerably improved. This tendency is the same in the second to fifth embodiments described below.

【0015】(実施例2)図3は請求項1で定義された
発明の異なる実施例に係る固体高分子電解質型燃料電池
を示す断面図である。本実施例は実施例1のようなガス
不透過性の支持板を用いた場合にも、多孔質リブ付基材
を用いたセルの場合にも適用できる。本実施例において
は、冷媒流路7は冷却板の厚さ方向の中央に設けられて
いるが、冷却板は電子伝導性を有し、しかも熱伝導性の
異なる2種類の材料(アノード側の第一の冷却部材15
とカソード側の第二の冷却部材16)をはりあわせる形
で形成されており、アノード側の部材の方がカソード側
の部材より熱伝導率が良い材料が用いられる。
(Embodiment 2) FIG. 3 is a sectional view showing a solid polymer electrolyte fuel cell according to a different embodiment of the invention defined in claim 1. This example can be applied to the case where the gas-impermeable support plate as in Example 1 is used and the case where the cell using the porous ribbed substrate is used. In this embodiment, the coolant channel 7 is provided at the center of the cooling plate in the thickness direction, but the cooling plate has two kinds of materials having electron conductivity and different thermal conductivity (on the anode side). First cooling member 15
And the second cooling member 16) on the cathode side are bonded together, and the material on the anode side is made of a material having a higher thermal conductivity than the member on the cathode side.

【0016】なお、本実施例では、第一の冷却部材15
として銅を、また第二の冷却部材16として焼結カーボ
ンを用いた。 (実施例3)図4は請求項1で定義された発明のさらに
異なる実施例に係る固体高分子電解質型燃料電池を示す
断面図である。本実施例においては材料は焼結カーボン
板である。冷却板のアノード側、カソード側にそれぞれ
第一と第二の冷却水流路が設けられている。冷媒はまず
第一の流路に供給された後に折り返し第二の流路に再度
供給される。このような供給方法では、第一の流路を通
過する冷媒の平均温度は第二の流路を通過する冷媒の平
均温度より低いために、アノード側での熱交換量が多く
なり、結果的にカソードでの冷却が抑制される。
In this embodiment, the first cooling member 15
And copper as the second cooling member 16 were used. (Embodiment 3) FIG. 4 is a sectional view showing a solid polymer electrolyte fuel cell according to still another embodiment of the invention defined in claim 1. In this embodiment, the material is a sintered carbon plate. First and second cooling water flow paths are provided on the anode side and the cathode side of the cooling plate, respectively. The refrigerant is first supplied to the first channel and then turned back to be supplied to the second channel again. In such a supply method, since the average temperature of the refrigerant passing through the first flow path is lower than the average temperature of the refrigerant passing through the second flow path, the amount of heat exchange on the anode side increases, resulting in Moreover, cooling at the cathode is suppressed.

【0017】(実施例4)図5は請求項1で定義された
発明のさらに異なる実施例に係る固体高分子電解質型燃
料電池を示す断面図である。本実施例においては実施例
3の場合と同じように冷却板8にはアノードに対向する
第三の冷却水流路7Cとカソードに対向する第四の冷却
水流路7Dが設けられるが、冷媒の流路の断面積の合計
は第三の冷却水流路の方が大きい。冷媒は実施例3の場
合とは異なり、折り返すことなくワンパスである。本実
施例においては流路の圧力損失の関係より断面積の大き
い第三の流路に多くの冷媒が供給され、冷却板のアノー
ド側とカソード側に冷却能力の差が生じ、前述の実施例
と同様な効果が得られる。
(Embodiment 4) FIG. 5 is a sectional view showing a solid polymer electrolyte fuel cell according to still another embodiment of the invention defined in claim 1. In this embodiment, as in the case of the third embodiment, the cooling plate 8 is provided with the third cooling water passage 7C facing the anode and the fourth cooling water passage 7D facing the cathode. The total cross-sectional area of the passage is larger in the third cooling water passage. Unlike the case of Example 3, the refrigerant is one-pass without folding back. In this embodiment, a large amount of refrigerant is supplied to the third flow passage having a larger cross-sectional area than the pressure loss of the flow passage, and a difference in cooling capacity occurs between the anode side and the cathode side of the cooling plate. The same effect as can be obtained.

【0018】(実施例5)図6は請求項2で定義された
発明の実施例に係る固体高分子電解質型燃料電池を示す
断面図である。本実施例においては、アノード用ガス不
透過性支持板6の方がカソード用ガス不透過性支持板9
より厚さを薄くしてある。本実施例においては冷却水流
路は冷却板の中央に位置しているが、アノード用ガス不
透過性支持板に近接して設けてよいことは勿論である。
(Embodiment 5) FIG. 6 is a sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 2. In this embodiment, the gas impermeable support plate 6 for the anode is the gas impermeable support plate 9 for the cathode.
It is made thinner. In this embodiment, the cooling water flow path is located at the center of the cooling plate, but it goes without saying that it may be provided in the vicinity of the anode gas impermeable support plate.

【0019】[0019]

【発明の効果】この発明によれば、順次に積層された第
一の単セル、燃料ガス供給手段、冷却板、酸化剤ガス供
給手段、第二の単セルを有し、単セルは固体高分子電解
質からなるメンブランの両主面にアノードとカソードを
配してなり、燃料ガス供給手段は燃料ガス流路を有して
第一の単セルのアノードに燃料ガスを供給するものであ
り、酸化剤ガス供給手段は酸化剤ガス流路を有して第二
の単セルのカソードに酸化剤ガスを供給するものであ
り、冷却板はその内部に冷却水流路を有し燃料ガス供給
手段と酸化剤ガス供給手段とを介して第一と第二の単せ
るを冷却するもので、燃料ガス供給手段に接する面の冷
却効率が酸化剤ガス供給手段に接する面の冷却効率より
も高いものであること、または順次に積層された第一の
単セル、燃料ガス供給手段、冷却板、酸化剤ガス供給手
段、第二の単セルを有し、単セルは固体高分子電解質か
らなるメンブランの両主面にアノードとカソードを配し
てなり、燃料ガス供給手段は燃料ガス流路を有して第一
の単セルのアノードに燃料ガスを供給するものであり、
酸化剤ガス供給手段は酸化剤ガス流路を有して第二の単
セルのカソードに酸化剤ガスを供給するものであって、
酸化剤ガス供給手段の積層方向の厚さが燃料ガス供給手
段の積層方向の厚さに比して大きく、冷却板はその内部
に冷却水流路を有し燃料ガス供給手段と酸化剤ガス供給
手段とを介して第一と第二の単セルを冷却するものであ
るので、カソードの温度はアノードよりも高くなり、そ
の結果カソード内での水分の凝縮が防止され、酸化剤ガ
スの流路が確保されて長時間運転においてもセルの特性
低下がなく信頼性に優れる固体高分子電解質型燃料電池
が得られる。
According to the present invention, the first unit cell, the fuel gas supply unit, the cooling plate, the oxidant gas supply unit, and the second unit cell, which are sequentially stacked, are provided, and the unit cell has a solid height. An anode and a cathode are arranged on both main surfaces of a membrane made of a molecular electrolyte, and the fuel gas supply means has a fuel gas flow path and supplies the fuel gas to the anode of the first unit cell. The agent gas supply means has an oxidant gas flow path and supplies the oxidant gas to the cathode of the second unit cell, and the cooling plate has a cooling water flow path inside thereof and the fuel gas supply means and the oxidant gas supply means. The first and second units are cooled through the agent gas supply means, and the cooling efficiency of the surface in contact with the fuel gas supply means is higher than the cooling efficiency of the surface in contact with the oxidant gas supply means. Or the first single cell that is stacked in sequence, the fuel gas supply Means, a cooling plate, an oxidant gas supply means, and a second unit cell, and the unit cell comprises an anode and a cathode on both main surfaces of a membrane made of a solid polymer electrolyte, and the fuel gas supply means is a fuel. Has a gas flow path and supplies fuel gas to the anode of the first single cell,
The oxidant gas supply means has an oxidant gas flow path and supplies the oxidant gas to the cathode of the second single cell,
The thickness of the oxidant gas supply means in the stacking direction is larger than the thickness of the fuel gas supply means in the stacking direction, and the cooling plate has a cooling water flow path inside thereof and the fuel gas supply means and the oxidant gas supply means. The temperature of the cathode becomes higher than that of the anode as a result of cooling the first and second single cells via the, and as a result, condensation of water in the cathode is prevented and the flow path of the oxidant gas is It is possible to obtain a solid polymer electrolyte fuel cell that is secured and has excellent reliability without deterioration of cell characteristics even after long-term operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1で定義された発明の実施例に係る固体
高分子電解質型燃料電池を示す断面図
FIG. 1 is a cross-sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 1.

【図2】請求項1で定義された発明の実施例に係る固体
高分子電解質型燃料電池を示す異なる断面図
2 is a different sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 1. FIG.

【図3】請求項1で定義された発明の異なる実施例に係
る固体高分子電解質型燃料電池を示す断面図
FIG. 3 is a cross-sectional view showing a solid polymer electrolyte fuel cell according to another embodiment of the invention defined in claim 1.

【図4】請求項1で定義された発明のさらに異なる実施
例に係る固体高分子電解質型燃料電池を示す断面図
FIG. 4 is a sectional view showing a solid polymer electrolyte fuel cell according to still another embodiment of the invention defined in claim 1.

【図5】請求項1で定義された発明のさらに異なる実施
例に係る固体高分子電解質型燃料電池を示す断面図
FIG. 5 is a sectional view showing a solid polymer electrolyte fuel cell according to still another embodiment of the invention defined in claim 1.

【図6】請求項2で定義された発明の実施例に係る固体
高分子電解質型燃料電池を示す断面図
FIG. 6 is a sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 2.

【図7】請求項1で定義された発明の実施例に係る固体
高分子電解質型燃料電池を示すさらに異なる断面図
FIG. 7 is a different cross-sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the invention defined in claim 1.

【図8】本実施例と従来の各セルにつきその特性低下率
を比較して示す線図
FIG. 8 is a graph showing the characteristic deterioration rates of the cells of this example and the conventional cell in comparison.

【図9】従来の固体高分子電解質型燃料電池を示す断面
FIG. 9 is a sectional view showing a conventional solid polymer electrolyte fuel cell.

【図10】従来の固体高分子電解質型燃料電池を示す断
面図
FIG. 10 is a sectional view showing a conventional solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 単セル 2 カソード 3 メンブラン 4 アノード 5 燃料ガス流路 6 アノード用ガス不透過性支持板 7 冷却水流路 7A 第一の冷却水流路 7B 第二の冷却水流路 7C 第三の冷却水流路 7D 第四の冷却水流路 8 冷却板 9 カソード用ガス不透過性支持板 10 酸化剤ガス流路 11 リブ付ガスセパレータ 12 アノード用多孔質リブ付基材 13 カソード用多孔質リブ付基材 14 リブなしガスセパレータ 15 第一の冷却部材 16 第二の冷却部材 1 Single Cell 2 Cathode 3 Membrane 4 Anode 5 Fuel Gas Flow Path 6 Gas Impermeable Support Plate for Anode 7 Cooling Water Flow Path 7A First Cooling Water Flow Path 7B Second Cooling Water Flow Path 7C Third Cooling Water Flow Path 7D Second Four cooling water flow channels 8 Cooling plate 9 Gas impermeable support plate for cathode 10 Oxidant gas flow channel 11 Gas separator with ribs 12 Base material with porous ribs for anode 13 Base material with porous ribs for cathode 14 Gas without ribs Separator 15 First cooling member 16 Second cooling member

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】順次に積層された第一の単セル、燃料ガス
供給手段、冷却板、酸化剤ガス供給手段、第二の単セル
を有し、 単セルは固体高分子電解質からなるメンブランの両主面
にアノードとカソードを配してなり、 燃料ガス供給手段は燃料ガス流路を有して第一の単セル
のアノードに燃料ガスを供給するものであり、 酸化剤ガス供給手段は酸化剤ガス流路を有して第二の単
セルのカソードに酸化剤ガスを供給するものであり、 冷却板はその内部に冷却水流路を有し燃料ガス供給手段
と酸化剤ガス供給手段とを介して第一と第二の単セルを
冷却するもので、燃料ガス供給手段に接する面の冷却効
率が酸化剤ガス供給手段に接する面の冷却効率よりも高
いものであることを特徴とする固体高分子電解質型燃料
電池。
1. A first unit cell, a fuel gas supply unit, a cooling plate, an oxidant gas supply unit, and a second unit cell, which are sequentially stacked, each unit cell comprising a solid polymer electrolyte membrane. An anode and a cathode are arranged on both main surfaces, and the fuel gas supply means has a fuel gas flow path and supplies the fuel gas to the anode of the first unit cell. An oxidant gas is supplied to the cathode of the second single cell by having an agent gas flow path, and the cooling plate has a cooling water flow path inside thereof and has a fuel gas supply means and an oxidant gas supply means. Solid for cooling the first and second single cells via the cooling means, wherein the cooling efficiency of the surface in contact with the fuel gas supply means is higher than the cooling efficiency of the surface in contact with the oxidant gas supply means. Polymer electrolyte fuel cell.
【請求項2】請求項1記載の燃料電池において、冷却板
は単一の材料からなり且つ冷却水流路が燃料ガス供給手
段側に近接して設けられてなることを特徴とする固体高
分子電解質型燃料電池。
2. The solid polymer electrolyte according to claim 1, wherein the cooling plate is made of a single material, and the cooling water passage is provided close to the fuel gas supply means side. Type fuel cell.
【請求項3】請求項1記載の燃料電池において、冷却板
は第一の冷却部材と第二の冷却部材を接合してなるとと
もに第一の冷却部材を介して燃料ガス供給手段に積層さ
れ、ここに第一の冷却部材の熱伝導率は第二の冷却部材
の熱伝導率よりも大きいものであることを特徴とする固
体高分子電解質型燃料電池。
3. The fuel cell according to claim 1, wherein the cooling plate is formed by joining a first cooling member and a second cooling member, and is laminated on the fuel gas supply means via the first cooling member, Here, the solid polymer electrolyte fuel cell is characterized in that the thermal conductivity of the first cooling member is higher than that of the second cooling member.
【請求項4】請求項1記載の燃料電池において、冷却板
は単一の材料からなり且つ燃料ガス供給手段に近接して
設けられた第一の冷却水流路と酸化剤ガス供給手段に近
接して設けられた第二の冷却水流路とを有し、ここに第
一の冷却水流路と第二の冷却水流路には冷却水が第一の
冷却水流路から第二の冷却水流路に向かって流れるもの
であることを特徴とする固体高分子電解質型燃料電池。
4. The fuel cell according to claim 1, wherein the cooling plate is made of a single material and is adjacent to the first cooling water flow path and the oxidant gas supply means provided near the fuel gas supply means. And a second cooling water channel provided therein, in which the cooling water flows from the first cooling water channel to the second cooling water channel in the first cooling water channel and the second cooling water channel. A solid polymer electrolyte fuel cell, which is characterized in that it flows as a fluid.
【請求項5】請求項1記載の燃料電池において、冷却板
は単一の材料からなり且つ燃料ガス供給手段に近接して
設けられた第一の冷却水流路と酸化材ガス供給手段に近
接して設けられた第二の冷却水流路とを有し、ここに第
一の冷却水流路と第二の冷却水流路には冷却水が独立し
て流れるとともに第一の冷却水流路の全断面積が第二の
冷却水流路の全断面積より大きいものであることを特徴
とする固体高分子電解質型燃料電池。
5. The fuel cell according to claim 1, wherein the cooling plate is made of a single material and is adjacent to the first cooling water flow path and the oxidizing gas supplying means which are provided near the fuel gas supplying means. And a second cooling water channel provided therein, in which the cooling water independently flows in the first cooling water channel and the second cooling water channel, and the total cross-sectional area of the first cooling water channel Is larger than the total cross-sectional area of the second cooling water channel.
【請求項6】順次に積層された第一の単セル、燃料ガス
供給手段、冷却板、酸化剤ガス供給手段、第二の単セル
を有し、 単セルは固体高分子電解質からなるメンブランの両主面
にアノードとカソードを配してなり、 燃料ガス供給手段は燃料ガス流路を有して第一の単セル
のアノードに燃料ガスを供給するものであり、酸化剤ガ
ス供給手段は酸化剤ガス流路を有して第二の単セルのカ
ソードに酸化剤ガスを供給するものであって、酸化剤ガ
ス供給手段の積層方向の厚さが燃料ガス供給手段の積層
方向の厚さに比して大きく、 冷却板はその内部に冷却水流路を有し燃料ガス供給手段
と酸化剤ガス供給手段とを介して第一と第二の単セルを
冷却するものであることを特徴とする固体高分子電解質
型燃料電池。
6. A first unit cell, a fuel gas supply unit, a cooling plate, an oxidant gas supply unit, and a second unit cell, which are sequentially stacked, each unit cell comprising a membrane made of a solid polymer electrolyte. An anode and a cathode are arranged on both main surfaces, the fuel gas supply means has a fuel gas flow path and supplies the fuel gas to the anode of the first unit cell, and the oxidant gas supply means is an oxidizing gas. An oxidant gas is supplied to the cathode of the second unit cell having an agent gas flow path, and the thickness of the oxidant gas supply means in the stacking direction is equal to the thickness of the fuel gas supply means in the stacking direction. In comparison, the cooling plate has a cooling water flow path inside and cools the first and second unit cells via the fuel gas supply means and the oxidant gas supply means. Solid polymer electrolyte fuel cell.
JP4006036A 1992-01-17 1992-01-17 Solid high polymeric electrolyte type fuel cell Pending JPH05190193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4006036A JPH05190193A (en) 1992-01-17 1992-01-17 Solid high polymeric electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4006036A JPH05190193A (en) 1992-01-17 1992-01-17 Solid high polymeric electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH05190193A true JPH05190193A (en) 1993-07-30

Family

ID=11627426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006036A Pending JPH05190193A (en) 1992-01-17 1992-01-17 Solid high polymeric electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH05190193A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042955A (en) * 1995-05-25 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method of controlling same
JP2002270197A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cull
JP2006506778A (en) * 2002-11-14 2006-02-23 スリーエム イノベイティブ プロパティズ カンパニー Liquid-cooled fuel cell stack
US7018733B2 (en) * 2001-10-09 2006-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack having coolant flowing along each surface of a cooling plate
JP2007066829A (en) * 2005-09-02 2007-03-15 Honda Motor Co Ltd Fuel cell
US8603692B2 (en) 2006-07-26 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
WO2020255711A1 (en) * 2019-06-19 2020-12-24 国立大学法人東京大学 Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042955A (en) * 1995-05-25 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method of controlling same
US6214486B1 (en) 1995-05-25 2001-04-10 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method of controlling same
JP2002270197A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cull
US7018733B2 (en) * 2001-10-09 2006-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack having coolant flowing along each surface of a cooling plate
JP2006506778A (en) * 2002-11-14 2006-02-23 スリーエム イノベイティブ プロパティズ カンパニー Liquid-cooled fuel cell stack
JP2007066829A (en) * 2005-09-02 2007-03-15 Honda Motor Co Ltd Fuel cell
US8603692B2 (en) 2006-07-26 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
WO2020255711A1 (en) * 2019-06-19 2020-12-24 国立大学法人東京大学 Fuel cell system

Similar Documents

Publication Publication Date Title
US7566511B2 (en) Solid polymer cell assembly
US5922485A (en) Solid polymer electrolyte fuel cell
KR100529452B1 (en) Polyelectrolyte type fuel cell, and operation method therefor
JP4880836B2 (en) Fuel cell stack and reaction gas supply method
JP2002367655A (en) Fuel cell
US7638227B2 (en) Fuel cell having stack structure
JP3448550B2 (en) Polymer electrolyte fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JPH05144451A (en) Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JP2000277132A (en) Fuel cell
JP2005285402A (en) Fuel cell stack
JP3875612B2 (en) Fuel cell stack
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP3350260B2 (en) Solid polymer electrolyte fuel cell
JP3679789B2 (en) Fuel cell
JP2008146897A (en) Fuel cell separator, and fuel cell
JP3029416B2 (en) Polymer electrolyte fuel cell
JP2002141090A (en) Operation method of solid polymer fuel cell system
JPH06333581A (en) Solid poly electrolyte fuel cell
JPH0963623A (en) Solid polymer electrolyte fuel cell
JP2000277130A (en) Method for producing solid polymer type fuel cell and electrolyte film
JP2004185904A (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell