JPS6352751B2 - - Google Patents

Info

Publication number
JPS6352751B2
JPS6352751B2 JP57045090A JP4509082A JPS6352751B2 JP S6352751 B2 JPS6352751 B2 JP S6352751B2 JP 57045090 A JP57045090 A JP 57045090A JP 4509082 A JP4509082 A JP 4509082A JP S6352751 B2 JPS6352751 B2 JP S6352751B2
Authority
JP
Japan
Prior art keywords
fuel
flow path
gas separation
oxidizer
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57045090A
Other languages
Japanese (ja)
Other versions
JPS58161270A (en
Inventor
Kenro Mitsuta
Yoichi Mizumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57045090A priority Critical patent/JPS58161270A/en
Publication of JPS58161270A publication Critical patent/JPS58161270A/en
Publication of JPS6352751B2 publication Critical patent/JPS6352751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 この発明は、積層形燃料電池に関し、特に分割
した電極とそれに対するガス分離板に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stacked fuel cell, and particularly to a divided electrode and a gas separation plate therefor.

従来この種のガス分離板としては第1図、第2
図に示すものがあつた。第1図、第2図はそれぞ
れ燃料側と酸化剤側のガス分離板の平面図であ
る。なお平面の凹凸部の凸部については、斜線を
付してその部分を示す。以下の各図においても同
様とする。第1図において1は燃料流路、2は燃
料側の電極との接触部分、3は電解質補給機構
(以後外部リザーバと呼ぶ。なお通常、ガス分離
板に設けたものは外部リザーバと呼ばれ、電極に
設けるものは内部リザーバと呼ばれる。)4a,
4b,4c,4dは電解質補給に用いる供給孔で
ある。また第2図において5は酸化剤流路、6は
酸化剤側の電極との接触部分、4a,4b,4
c,4dは電解質補給に用いる供給孔である。な
お燃料の流路1と酸化剤の流路5はそれぞれ直交
する方向に設けられている。なお7は外部リザー
バを設けることのできる箇所であり、外部リザー
バ3は燃料側には設けないで酸化剤側に設けるこ
ともある。積層形燃料電池はガス分離板とガス分
離板との間に電解質を含浸させた非導電性の多孔
質部材と、これを挾む通気性および撥水性を有す
る燃料側および酸化剤側の電極を挿入し、これを
多数個積層した構造である。この際ガス分離板と
しては端板と両溝板のいずれかを用いるが、端板
の場合には第1図、第2図のいずれかの構造を片
面に設け、両溝板の場合には第1図、第2図の構
造を表裏に設ける。第3図はガス分離板に対し
て、燃料および酸化剤を補給するマニホールドの
取り付ける位置を示した平面図である。第3図に
おいて8は燃料入口側のマニホールド、9は燃料
出口側のマニホールド、10は酸化剤入口側のマ
ニホールド、11は酸化剤出口側のマニホール
ド、12は燃料側のガス分離板の流路である。
Conventionally, this type of gas separation plate is shown in Figures 1 and 2.
I got what is shown in the figure. FIGS. 1 and 2 are plan views of the gas separation plates on the fuel side and oxidizer side, respectively. Note that the convex portions of the uneven portions on the plane are indicated by diagonal lines. The same applies to each figure below. In Fig. 1, 1 is a fuel flow path, 2 is a contact part with the electrode on the fuel side, and 3 is an electrolyte replenishment mechanism (hereinafter referred to as an external reservoir).The one provided on the gas separation plate is usually called an external reservoir. The one provided in the electrode is called an internal reservoir.) 4a,
4b, 4c, and 4d are supply holes used for electrolyte replenishment. Further, in FIG. 2, 5 is an oxidizing agent flow path, 6 is a contact portion with the electrode on the oxidizing agent side, 4a, 4b, 4
c and 4d are supply holes used for electrolyte replenishment. Note that the fuel flow path 1 and the oxidizer flow path 5 are provided in directions perpendicular to each other. Note that 7 is a location where an external reservoir can be provided, and the external reservoir 3 may not be provided on the fuel side but may be provided on the oxidizer side. A stacked fuel cell consists of a non-conductive porous member impregnated with an electrolyte between gas separation plates, and electrodes on the fuel side and oxidizer side that sandwich this material and have air permeability and water repellency. It has a structure in which a large number of these are stacked. In this case, either an end plate or a double-groove plate is used as the gas separation plate, but in the case of an end plate, either the structure shown in Figure 1 or 2 is provided on one side, and in the case of a double-groove plate, the structure shown in Figure 1 or 2 is provided on one side. The structures shown in FIGS. 1 and 2 are provided on the front and back sides. FIG. 3 is a plan view showing the mounting position of the manifold for supplying fuel and oxidizer with respect to the gas separation plate. In Fig. 3, 8 is the manifold on the fuel inlet side, 9 is the manifold on the fuel outlet side, 10 is the manifold on the oxidizer inlet side, 11 is the manifold on the oxidizer outlet side, and 12 is the flow path of the gas separation plate on the fuel side. be.

次に動作について説明する。燃料流路1および
酸化剤流路5に供給された燃料および酸化剤は、
多孔質の電極を拡散し、電解質を含浸させた非導
電性の多孔質部材との界面でイオン化し双方のイ
オンが反応して化合物を生成する。燃料が水素の
場合には水が生成され、双方の電極間に電流が生
じる。電流は電極とガス分離板の接触により、ガ
ス分離板を通じて外部回路に流れる。また電解質
は生成物である水による希釈や燃料電池の熱サイ
クルなどにより膨脹・収縮するが、外部リザーバ
3によりこの影響は緩和される。また長期間の運
転では電解質が蒸発消失するので供給孔4a,4
b,4c,4dから外部リザーバ3を通じて多孔
質部材に電解質を補給する。燃料電池は積層した
後マニホールドを取り付けて運転される。燃料は
燃料入口側のマニホールド8から燃料流路1に入
り、電池内で消費された後、残りのガスは燃料出
口側のマニホールド9を通つて外部に出る。一方
酸化剤は酸化剤入口側のマニホールド10から酸
化剤流路5に入り、電池内で消費された後、残り
のガスは燃料出口側のマニホールド9を通つて外
部に出る。一方酸化剤は酸化剤入口側のマニホー
ルド10から酸化剤流路5に入り、電池内で消費
された後、残りのガスは酸化剤出口側のマニホー
ルド11を通つて外部に出る。
Next, the operation will be explained. The fuel and oxidant supplied to the fuel flow path 1 and the oxidizer flow path 5 are as follows:
The porous electrode is diffused and ionized at the interface with a non-conductive porous member impregnated with electrolyte, and both ions react to form a compound. If the fuel is hydrogen, water is produced and an electric current is generated between both electrodes. Due to the contact between the electrode and the gas separation plate, current flows through the gas separation plate to the external circuit. Furthermore, although the electrolyte expands and contracts due to dilution with water as a product and thermal cycles of the fuel cell, this effect is alleviated by the external reservoir 3. In addition, during long-term operation, the electrolyte evaporates and disappears, so the supply holes 4a and 4
Electrolyte is supplied to the porous member through the external reservoir 3 from b, 4c, and 4d. After the fuel cells are stacked, a manifold is attached and operated. Fuel enters the fuel flow path 1 from the manifold 8 on the fuel inlet side, and after being consumed within the cell, the remaining gas exits to the outside through the manifold 9 on the fuel outlet side. On the other hand, the oxidizer enters the oxidizer channel 5 from the manifold 10 on the oxidizer inlet side, and after being consumed within the cell, the remaining gas exits through the manifold 9 on the fuel outlet side. On the other hand, the oxidizing agent enters the oxidizing agent channel 5 from the manifold 10 on the oxidizing agent inlet side, and after being consumed within the battery, the remaining gas exits through the manifold 11 on the oxidizing agent outlet side.

従来の燃料電極及び酸化剤電極はガス分離板の
ほゞ全面に及ぶ面積の電極であるので、大形の電
極になると、不均一応力が加わつて割れやすく、
大容量化の障害となつていた。
Conventional fuel electrodes and oxidizer electrodes cover almost the entire surface of the gas separation plate, so large electrodes are susceptible to uneven stress and break easily.
This was an obstacle to increasing capacity.

この発明は、上記の問題を解消しようとするも
ので、ガス分離板は両面中央部に対向して流路が
形成されていない帯状部分を有し、燃料流路およ
び酸化剤流路は略Ω形でかつ上記帯状部分を軸に
線対称であり、しかも上記流路は燃料側と酸化剤
側で略Ω形の凸部分の方向が逆であると共に、上
記電極は上記帯状部分で2分割されており、電極
の不均一応力を緩和し、大容量化を達成するもの
である。
This invention attempts to solve the above-mentioned problem, and the gas separation plate has band-shaped parts facing each other in the center of both sides and in which no flow path is formed, and the fuel flow path and the oxidizer flow path are approximately Ω. The shape of the electrode is symmetrical about the band-shaped portion as an axis, and the direction of the substantially Ω-shaped convex portion of the flow path is opposite on the fuel side and the oxidizer side, and the electrode is divided into two by the band-shaped portion. This reduces uneven stress on the electrodes and increases capacity.

以下、この発明の一実施例を図について説明す
る。第4図、第5図はこの発明に用いるガス分離
板のそれぞれ燃料側と酸化剤側の平面図である。
第4図において、1は溝状の燃料流路、2は燃料
電極との接触部分で、斜線をもつて示すように、
ガス分離板の凹凸面の凸部である。13はガス分
離板の中央部に設けられ流路が形成されていない
帯状部分すなわち第1電極接続部で、この接続部
を対称にその両側が同形状に形成される。燃料流
路1は第1電極接続部の両側においてそれぞれ略
Ω形に形成され略Ω形の凹部が第1電極接続部側
にそれぞれなるように向合つて形成される。7は
外部リザーバを形成し得る箇所で、第1電極接続
部に平行な2辺部と、この2辺部から延長した部
分と、さらに略Ω形の凹部にそれぞれ形成され
る。破線でその配置位置を示す14はガス分離板
に当接する2つの分離した燃料電極で、ガス分離
板のほゞ全面に当接され、第1電極接続部で間隔
をあけて配置され、両燃料電極は第1電極接続部
で積層方向に加えられる挿圧力により固定され
る。燃料電極14の周囲及び両燃料電極間はガス
ケツトで取り囲まれる。第5図において、5は溝
状の酸化剤流路、6は酸化剤電極との接触部分
で、ガス分離板の凹凸面の凸部である。15はガ
ス分離板の第4図の中央部と同中央部に対向して
設けられ流路が形成されていない帯状部分すなわ
ち第2電極接続部で、この接続部を対称にその両
側が同形状に形成される。酸化剤流路5は第2電
極接続部の両側において、それぞれ略Ω形に形成
され略Ω形の凸部が第2電極接続部側にそれぞれ
なるように形成される。16は外部リザーバで、
第2電極接続部に平行な2辺部と、この2辺部か
らそれぞれ略Ω形の凹部に延長された部分と、さ
らに第2電極接続部からこれに垂直な辺部に延長
された部分に形成される。破線でその配置位置を
示す17はガス分離板に当接する2つに分離した
酸化剤電極で、ガス分離板のほゞ全面に当接さ
れ、第2電極接続部で間隔をあけて配置され、両
酸化剤電極は第2電極接続部で積層方向に加えら
れる挿圧力により固定される。酸化剤電極17の
周囲はガスケツトで取り囲まれる。なお外部リザ
ーバ16は酸化剤側に設けずに燃料側のガス分離
板に設けてもよく、第6図に燃料側に外部リザー
バ18を設けた場合の平面図を示した。第7図は
この発明に用いるガス分離板に対してマニホール
ドの取り付ける位置を示した平面図である。第7
図において19は燃料入口および酸化剤出口側の
マニホールド、20は燃料出口および酸化剤入口
側のマニホールド、21は酸化剤出口側、22は
酸化剤入口側、23は燃料入口側、24は燃料出
口側である。なお積層はガス分離板の約半分の面
積の2組の燃料側および酸化剤側の電極をガス分
離板とガス分離板の間に挿入し、第1,第2の電
極接続部13,15で接続することにより行な
う。
An embodiment of the present invention will be described below with reference to the drawings. FIGS. 4 and 5 are plan views of the fuel side and oxidizer side, respectively, of the gas separation plate used in the present invention.
In FIG. 4, 1 is a groove-shaped fuel flow path, 2 is a contact portion with the fuel electrode, and as shown by diagonal lines,
This is a convex portion on the uneven surface of the gas separation plate. Reference numeral 13 denotes a strip-shaped portion provided in the center of the gas separation plate in which no flow path is formed, that is, a first electrode connecting portion, and both sides of the connecting portion are formed in the same shape symmetrically. The fuel flow paths 1 are formed in a substantially Ω-shape on both sides of the first electrode connection portion, and are formed facing each other such that the substantially Ω-shaped recesses are on the first electrode connection portion side. Reference numeral 7 denotes a portion where an external reservoir can be formed, and is formed at two sides parallel to the first electrode connection portion, a portion extending from these two sides, and a substantially Ω-shaped recess. Reference numerals 14, whose arrangement positions are indicated by broken lines, are two separate fuel electrodes that contact the gas separation plate. The electrodes are fixed by a pressing force applied in the stacking direction at the first electrode connection portion. A gasket surrounds the fuel electrode 14 and between both fuel electrodes. In FIG. 5, reference numeral 5 indicates a groove-shaped oxidant flow path, and 6 indicates a contact portion with the oxidizer electrode, which is a convex portion of the uneven surface of the gas separation plate. Reference numeral 15 denotes a second electrode connecting portion, which is provided opposite to the central portion of the gas separation plate in FIG. is formed. The oxidant channels 5 are each formed in a substantially Ω-shape on both sides of the second electrode connection portion, with the substantially Ω-shaped convex portions facing toward the second electrode connection portion. 16 is an external reservoir,
Two sides parallel to the second electrode connection part, a part extending from these two sides into the approximately Ω-shaped recess, and a part extending from the second electrode connection part to a side perpendicular to this. It is formed. The oxidizer electrode 17, whose arrangement position is indicated by a broken line, is in contact with the gas separation plate, and is in contact with almost the entire surface of the gas separation plate, and is arranged with an interval at the second electrode connection part. Both oxidizer electrodes are fixed by a pressing force applied in the stacking direction at the second electrode connection portion. The periphery of the oxidant electrode 17 is surrounded by a gasket. Note that the external reservoir 16 may not be provided on the oxidizer side but may be provided on the gas separation plate on the fuel side, and FIG. 6 shows a plan view in the case where the external reservoir 18 is provided on the fuel side. FIG. 7 is a plan view showing the position where the manifold is attached to the gas separation plate used in the present invention. 7th
In the figure, 19 is a manifold on the fuel inlet and oxidizer outlet sides, 20 is a manifold on the fuel outlet and oxidizer inlet sides, 21 is on the oxidizer outlet side, 22 is on the oxidizer inlet side, 23 is on the fuel inlet side, and 24 is the fuel outlet It's on the side. In addition, in the stacking, two sets of electrodes on the fuel side and the oxidizer side, each having an area of about half of the gas separation plates, are inserted between the gas separation plates and connected at the first and second electrode connecting parts 13 and 15. Do it by doing this.

次に動作について説明する。第4図、第5図に
おいて燃料は燃料流路1の入口および出口付近で
は第1電極接続部13に近く中央付近では遠くを
流れ、酸化剤は酸化剤流路5の入口および出口付
近では第2電極接続部15に遠く、中央付近では
近くを流れるが、各々の流路の長さはほぼ同じで
ある。第5図、第6図において、外部リザーバ1
6,18は生成物である水による希釈や燃料電池
の熱サイクルなどによる電解質の膨脹一収縮によ
る影響を緩和するためのものであり、特に、略Ω
形流路1,5の凹部に設けた外部リザーバ16,
18は、ガス分離板の面積を大きくしても、分割
した燃料電極14又は酸化剤電極17の中央付近
における電解質量の調節が容易でしかもすみやか
に行うことができる。外部リザーバ16,18に
接触する電極の面には親水性を持たせ、電解質が
非導電性の多孔質部材と外部リザーバ16,18
を行ききできるようにする。また長期間の運転で
は電解質が蒸発消失するので、供給孔4a,4
b,4c,4dにより外部リザーバ16,18を
通じて多孔質部材に電解質を補給する。燃料電池
は積層した後、燃料入口および酸化剤出口側のマ
ニホールド19、および燃料出口および酸化剤入
口側のマニホールド20を取り付けて運転する
(第7図)。酸化剤は酸化剤入口側22から酸化剤
の流路5に入り、電池内で消費された後残りのガ
スは酸化剤出口側21を通つて外部に出る。一方
燃料は燃料入口側23から燃料の流路1に入り、
電池内で消費された後、残りのガスは燃料出口側
24を通つて外部に出る。第7図から分るように
マニホールド19,20の配置はガス分離板の2
辺部だけであるので、他の2辺部を他の用途、例
えば冷却の配置等に利用できる。
Next, the operation will be explained. In FIGS. 4 and 5, the fuel flows near the first electrode connection part 13 near the inlet and outlet of the fuel flow path 1, and flows far away near the center, and the oxidant flows near the inlet and exit of the oxidizer flow path 5. Although the flow is far from the two-electrode connecting portion 15 and close to the center, the length of each flow path is approximately the same. In Figures 5 and 6, the external reservoir 1
6 and 18 are used to alleviate the effects of expansion and contraction of the electrolyte due to dilution with the product water and thermal cycles of the fuel cell, and in particular, approximately Ω.
External reservoir 16 provided in the concave portion of shaped flow channels 1 and 5,
18, even if the area of the gas separation plate is increased, the amount of electrolyte near the center of the divided fuel electrode 14 or oxidizer electrode 17 can be easily and quickly adjusted. The surface of the electrode that contacts the external reservoirs 16, 18 is made hydrophilic, and the electrolyte is made of a non-conductive porous member and the external reservoirs 16, 18.
Make it possible to go back and forth. In addition, since the electrolyte evaporates and disappears during long-term operation, the supply holes 4a and 4
b, 4c, and 4d replenish the porous member with electrolyte through external reservoirs 16 and 18. After the fuel cell is stacked, a manifold 19 on the fuel inlet and oxidizer outlet sides and a manifold 20 on the fuel outlet and oxidizer inlet sides are attached and operated (FIG. 7). The oxidant enters the oxidant flow path 5 from the oxidant inlet side 22 and the remaining gas after being consumed within the cell exits through the oxidant outlet side 21. On the other hand, fuel enters the fuel flow path 1 from the fuel inlet side 23,
After being consumed within the cell, the remaining gas exits through the fuel outlet side 24. As can be seen from Fig. 7, the arrangement of manifolds 19 and 20 is
Since there is only one side, the other two sides can be used for other purposes, such as cooling arrangement.

なお、上記実施例では電極接続部に外部リザー
バを設けないものを示したが、電極接続部に外部
リザーバを設けてもよい。また上記実施例では
各々の流路が独立しているものを示したが第8図
のように流路の変曲点に迂回流路25を設けても
よくさらに第9図のように流路の変曲点26を流
線形にしてもよい。
In the above embodiment, the electrode connection portion is not provided with an external reservoir, but the electrode connection portion may be provided with an external reservoir. Further, in the above embodiment, each flow path is shown to be independent, but a detour flow path 25 may be provided at the inflection point of the flow path as shown in FIG. The inflection point 26 may be streamlined.

以上のようにこの発明は、ガス分離板は両面中
央部に対向して流路が形成されていない帯状部分
を有し、燃料流路および酸化剤流路は略Ω形でか
つ上記帯状部分を軸に線対称であり、しかも上記
流路は燃料側と酸化剤側で略Ω形の凸部分の方向
が逆であると共に、上記電極は上記帯状部分で2
分割されているので、電池が大形化しても電極の
一つの大きさは、分割した後の大きさで、小さく
なり、そのため、電極の不均一応力を緩和でき、
電極の亀裂の発生を少なくできるので、電池の大
容量化を達成するのに有利である。
As described above, in the present invention, the gas separation plate has band-shaped portions facing each other in the center portions of both sides and in which no flow path is formed, and the fuel flow path and the oxidizer flow path are approximately Ω-shaped and the band-shaped portion is It is line symmetrical about the axis, and the direction of the approximately Ω-shaped convex portion of the flow path is opposite on the fuel side and the oxidizer side, and the electrode is symmetrical with the band-shaped portion.
Because it is divided, even if the battery becomes larger, the size of one electrode will be smaller than the size after division, which can alleviate uneven stress on the electrode.
Since the occurrence of cracks in the electrodes can be reduced, it is advantageous for achieving a larger capacity of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料側のガス分離板の平面図、
第2図は従来の酸化剤側のガス分離板の平面図、
第3図は従来のガス分離板に対してマニホールド
の取り付ける位置を示した平面図、第4図はこの
発明の一実施例に用いる燃料側のガス分離板の平
面図、第5図はこの発明の一実施例に用いる酸化
剤側のガス分離板の平面図、第6図はこの発明の
他の実施例に用いる燃料側のガス分離板の平面
図、第7図はこの発明の一実施例に用いるガス分
離板に対してマニホールドの取り付ける位置を示
した平面図、第8図はこの発明の他の実施例に用
いる酸化剤側のガス分離板の平面図、第9図はこ
の発明の他の実施例に用いる燃料側のガス分離板
の平面図である。 1…燃料流路、4a〜4d…電解質の供給孔、
5…酸化剤流路、13…第1の電極接続部、14
…燃料電極、15…第2電極接続部、16…外部
リザーバ、17……酸化剤電極である。なお図中
同一符号は同一、又は相当部分を示す。
Figure 1 is a plan view of a conventional gas separation plate on the fuel side.
Figure 2 is a plan view of a conventional gas separation plate on the oxidizer side.
Fig. 3 is a plan view showing the mounting position of the manifold relative to a conventional gas separation plate, Fig. 4 is a plan view of a gas separation plate on the fuel side used in an embodiment of the present invention, and Fig. 5 is a plan view of the gas separation plate according to the present invention. FIG. 6 is a plan view of a gas separation plate on the oxidizer side used in one embodiment, FIG. 6 is a plan view of a gas separation plate on the fuel side used in another embodiment of the invention, and FIG. 7 is an embodiment of the invention. FIG. 8 is a plan view of a gas separation plate on the oxidizer side used in another embodiment of the present invention, and FIG. 9 is a plan view showing the mounting position of the manifold with respect to the gas separation plate used in FIG. 3 is a plan view of a gas separation plate on the fuel side used in the embodiment. 1... Fuel flow path, 4a to 4d... Electrolyte supply hole,
5... Oxidizing agent channel, 13... First electrode connection part, 14
... fuel electrode, 15 ... second electrode connection part, 16 ... external reservoir, 17 ... oxidizer electrode. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 電解質を保持する電解質マトリツクスを介在
して対向する平板状の燃料電極および酸化剤電極
を有する単電池と、一方の面に溝状の燃料流路を
有すると共に他方の面に溝状の酸化剤流路を有す
るガス分離板とを上記燃料流路および酸化剤流路
をそれぞれ上記燃料電極および酸化剤電極に対向
させて交互に複数個積層し、上記燃料流路および
酸化剤流路にそれぞれ燃料および酸化剤を供給し
て発電を行なう積層形燃料電池において、上記ガ
ス分離板は両面中央部に対向して流路が形成され
ていない帯状部分を有し、上記燃料流路および酸
化剤流路は略Ω形でかつ上記帯状部分を軸に線対
称であり、しかも上記流路は燃料側と酸化剤側で
略Ω形の凸部分の方向が逆であると共に、上記電
極は上記帯状部分で2分割されていることを特徴
とする積層形燃料電池。 2 ガス分離板の略Ω形の凹部に外部リザーバを
形成した特許請求の範囲第1項記載の積層形燃料
電池。 3 ガス分離板の帯状部分に平行な2辺部に外部
リザーバを形成した特許請求の範囲第1項または
第2項記載の積層形燃料電池。
[Scope of Claims] 1. A unit cell having a flat fuel electrode and an oxidizer electrode facing each other with an electrolyte matrix holding an electrolyte interposed therebetween, and having a groove-shaped fuel flow path on one surface and a groove-shaped fuel flow path on the other surface. A plurality of gas separation plates each having a groove-shaped oxidizer flow path are alternately stacked with the fuel flow path and the oxidizer flow path facing the fuel electrode and the oxidizer electrode, respectively. In a stacked fuel cell that generates electricity by supplying a fuel and an oxidant to the agent flow paths, the gas separation plate has band-shaped portions facing each other in the center of both sides, in which no flow path is formed, and the gas separation plate The channel and the oxidant flow path are approximately Ω-shaped and are symmetrical about the belt-shaped portion as an axis, and the direction of the approximately Ω-shaped convex portion of the flow path is opposite on the fuel side and the oxidizer side, and A stacked fuel cell characterized in that the electrode is divided into two by the strip-shaped portion. 2. The stacked fuel cell according to claim 1, wherein an external reservoir is formed in a substantially Ω-shaped recess of the gas separation plate. 3. The stacked fuel cell according to claim 1 or 2, wherein external reservoirs are formed on two sides parallel to the band-shaped portion of the gas separation plate.
JP57045090A 1982-03-19 1982-03-19 Stacked fuel cell Granted JPS58161270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045090A JPS58161270A (en) 1982-03-19 1982-03-19 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045090A JPS58161270A (en) 1982-03-19 1982-03-19 Stacked fuel cell

Publications (2)

Publication Number Publication Date
JPS58161270A JPS58161270A (en) 1983-09-24
JPS6352751B2 true JPS6352751B2 (en) 1988-10-20

Family

ID=12709612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045090A Granted JPS58161270A (en) 1982-03-19 1982-03-19 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPS58161270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359837U (en) * 1986-10-09 1988-04-21

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630253B2 (en) * 1985-03-22 1994-04-20 株式会社日立製作所 Fuel cell
JPS6240169A (en) * 1985-08-13 1987-02-21 Mitsubishi Electric Corp Fuel cell
JPS6240168A (en) * 1985-08-13 1987-02-21 Mitsubishi Electric Corp Stacked fuel cell
US4988583A (en) * 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
US5686199A (en) * 1996-05-07 1997-11-11 Alliedsignal Inc. Flow field plate for use in a proton exchange membrane fuel cell
US7687193B2 (en) * 2007-08-17 2010-03-30 Jd Holding Inc. Electrochemical battery incorporating internal manifolds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359837U (en) * 1986-10-09 1988-04-21

Also Published As

Publication number Publication date
JPS58161270A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
JP4344484B2 (en) Solid polymer cell assembly
JP4318771B2 (en) Fuel cell stack
JP2008536258A (en) Arrangement of flow field plate
JP2000231929A (en) Fuel cell
JP4585737B2 (en) Fuel cell
JP3101464B2 (en) Fuel cell
JP5111826B2 (en) Fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JPS6352751B2 (en)
JP4259041B2 (en) Fuel cell
JP2001110436A (en) Fuel cell
JP4373378B2 (en) Stack structure of planar solid oxide fuel cell
CN111989810B (en) Fuel cell
JP4723196B2 (en) Fuel cell
US20210020959A1 (en) Bipolar plate with undulating channels
JP3219600B2 (en) Solid oxide fuel cell
JPH0311058B2 (en)
JP4418013B2 (en) Stack structure of planar solid oxide fuel cell
KR100766154B1 (en) Seperator of a fuel cell
WO2008142557A2 (en) Separator and fuel cell
JP3981578B2 (en) Fuel cell
JP2000315507A (en) Solid highpolymer fuel cell
JP6690996B2 (en) Electrochemical reaction cell stack
JP7186208B2 (en) Electrochemical reaction cell stack
JP4032633B2 (en) Fuel cell