JPH0696777A - Solid polymer electrolytic fuel cell - Google Patents

Solid polymer electrolytic fuel cell

Info

Publication number
JPH0696777A
JPH0696777A JP4245347A JP24534792A JPH0696777A JP H0696777 A JPH0696777 A JP H0696777A JP 4245347 A JP4245347 A JP 4245347A JP 24534792 A JP24534792 A JP 24534792A JP H0696777 A JPH0696777 A JP H0696777A
Authority
JP
Japan
Prior art keywords
gas
solid polymer
polymer electrolyte
water
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4245347A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugiyama
智弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4245347A priority Critical patent/JPH0696777A/en
Publication of JPH0696777A publication Critical patent/JPH0696777A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To eliminate gas block by water and improve characteristic by satisfying a determined relational expression between the water holding force head of a gas passing groove provided on a separator and a head loss at passing a reaction gas in the gas passing groove. CONSTITUTION:A solid polymer electrolytic fuel cell is provided with a solid polymer electrolytic film, electrodes and a separator. In the solid polymer electrolytic film, the electrodes are closely adhered to and arranged on its two main surfaces, the separator supports the solid polymer electrolytic film having the electrodes arranged thereon, and the solid polymer electrolytic film contains water so that protons are diffused in the film. The separator has a gas passing groove for supplying a reaction gas of fuel gas or oxidizing agent gas to the electrodes, and when the water holding force head of the gas passing groove is S, and the head loss at passing the reaction gas in the gas passing groove is L, the relational expression of L>S is satisfied. When the passing groove has a depth 0.8mm and a width of 2.0mm, for example, and the relational expression of L>S is satisfied, a stable operating state can be provided, and water can be satisfactorily drained. Thus, gas block by water is eliminated, and characteristic can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体高分子電解質型燃
料電池のセパレータに係り、特にセパレータのガス通流
溝に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell separator, and more particularly to a gas flow channel of the separator.

【0002】[0002]

【従来の技術】図3は従来の固体高分子電解質型燃料電
池の単電池を示す分解側面図である。単電池6のアノー
ド2及びカソード3は固体高分子電解質膜1の二つの主
面にそれぞれ密接して積層され、さらにその両外側に
は、反応ガスを外部より電極内に供給するとともに余剰
ガスを外部に排出するためのガス通流溝4を設けたガス
不透過性のセパレータ5が積層される。単電池は通常厚
さが10mm以下であり、又面積は大きいほどコストの低減
が図れるので、可能な限り大きく (1m2 程度) 作られ
る。
2. Description of the Related Art FIG. 3 is an exploded side view showing a conventional solid polymer electrolyte fuel cell unit cell. The anode 2 and the cathode 3 of the unit cell 6 are laminated in close contact with each other on the two main surfaces of the solid polymer electrolyte membrane 1, and on both outer sides thereof, a reaction gas is supplied from the outside into the electrode and an excess gas is supplied. A gas impermeable separator 5 provided with a gas flow groove 4 for discharging to the outside is laminated. The unit cell is usually 10 mm or less in thickness, and the larger the area, the lower the cost. Therefore, the unit cell is made as large as possible (about 1 m 2 ).

【0003】固体高分子電解質膜1はスルホン酸基を持
つポリスチレン系の陽イオン交換膜をカチオン導電性膜
として使用したもの、あるいはパ−フロロカ−ボンスル
ホン酸膜(米国、デュポン社製、商品名ナフィオン膜)
などが知られている。固体高分子電解質膜は分子中にプ
ロトン(水素イオン)交換基を有する。この膜を飽和に
含水させることで常温で20Ω・cm以下の比抵抗を示しプ
ロトン導電性電解質として機能する。膜の飽和含水量は
温度によって可逆的に変化する。
The solid polymer electrolyte membrane 1 uses a polystyrene cation exchange membrane having a sulfonic acid group as a cation conductive membrane, or a perfluorocarbon sulfonic acid membrane (trade name, manufactured by DuPont, USA). Nafion membrane)
Are known. The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule. When this membrane is saturated with water, it exhibits a specific resistance of 20 Ω · cm or less at room temperature and functions as a proton conductive electrolyte. The saturated water content of the membrane changes reversibly with temperature.

【0004】アノード2及びカソード3はともに触媒活
物質を含む触媒層と、前記触媒層を支持するとともに反
応ガスを供給しさらに集電体としての機能を有する電極
基材からなる。前記触媒層を固体高分子電解質膜と密着
させ、アノード側に燃料である水素、カソード側に酸化
剤として酸素又は空気を供給すると、それぞれの電極の
触媒層と固体高分子電解質膜との界面で以下の電気化学
反応がおこる。
Each of the anode 2 and the cathode 3 is composed of a catalyst layer containing a catalyst active material, and an electrode base material which supports the catalyst layer and supplies a reaction gas and further has a function as a current collector. When the catalyst layer is brought into close contact with the solid polymer electrolyte membrane, and hydrogen, which is a fuel, is supplied to the anode side and oxygen or air is supplied to the cathode side as an oxidant, at the interface between the catalyst layer of each electrode and the solid polymer electrolyte membrane. The following electrochemical reactions occur.

【0005】 アノ−ド H2→ 2H + +2e ・・・・・・・・・・(1) カソ−ド 1/2 O2+2H+ +2e → H2O ・・・・・・・・・・(2) 即ち、水素と酸素が反応して、水を生成する。触媒層
は、一般に微小な粒子状の白金触媒と水に対してはっ水
性を有するフッ素樹脂から形成されている。
Anode H 2 → 2H + + 2e ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1) Cathode 1/2 O 2 + 2H + + 2e → H 2 O ・ ・ ・ ・ ・ ・ ・ ・ ・ ・(2) That is, hydrogen and oxygen react with each other to produce water. The catalyst layer is generally formed of a platinum catalyst in the form of fine particles and a fluororesin having water repellency to water.

【0006】セパレータは、ガスの透過を防ぐととも
に、溝により反応ガスを単電池面内に均等に供給し、発
生する電流を外部へ取り出すため集電を行う。単電池の
発生する電圧は1V以下であるので、実用上は電圧を高
めるために前記単電池を多数個直列に積層してスタック
として使用する。固体高分子電解質型燃料電池の運転温
度は、膜の比抵抗を小さくして発電効率を高く維持する
ために、通常は50ないし100℃程度で運転される。
The separator prevents the permeation of gas and supplies the reaction gas evenly in the plane of the unit cell through the groove to collect the generated current to the outside. Since the voltage generated by the unit cell is 1 V or less, in practice, in order to increase the voltage, a large number of the unit cells are stacked in series and used as a stack. The operating temperature of the solid polymer electrolyte fuel cell is usually about 50 to 100 ° C. in order to reduce the specific resistance of the membrane and maintain high power generation efficiency.

【0007】燃料電池では、一般に発生電力にほぼ相当
する熱量を熱として発生し、この熱により単電池を多数
積層したスタックにおいてはスタック内に温度の分布が
生じる。そこでスタックでは、冷却板を内蔵してスタッ
クの温度を単電池の面方向並びにスタックの積層方向に
均一になるようにする。ここで一般に冷却媒体としては
水、空気等が用いられる。
[0007] In a fuel cell, a heat quantity generally equivalent to the generated power is generated as heat, and this heat causes a temperature distribution in the stack in which a large number of unit cells are stacked. Therefore, in the stack, a cooling plate is incorporated so that the temperature of the stack becomes uniform in the plane direction of the unit cells and the stacking direction of the stack. Here, water, air or the like is generally used as the cooling medium.

【0008】図4は従来の固体高分子電解質型燃料電池
のスタックを示す側面図である。単電池6の複数個ごと
に冷却板7を交互に積層し、その両端に、集電板8、絶
縁板9、締付板10を積層し、締め付けボルト11で締め付
けて、スタック12を構成する。このスタックに外部よ
り、単電池には燃料及び酸化剤を供給することで発電
し、冷却板には冷却媒体を供給することで余剰熱を除去
して冷却をする。このように積層されたスタックでの単
電池内部でのガスの流れ方向は、供給側を重力方向に対
して上側、排出側を下側にする。
FIG. 4 is a side view showing a stack of a conventional solid polymer electrolyte fuel cell. Cooling plates 7 are alternately stacked for each plurality of unit cells 6, and a current collector plate 8, an insulating plate 9 and a tightening plate 10 are stacked on both ends of the cooling plates 7, and tightened with tightening bolts 11 to form a stack 12. . Power is supplied to the stack from the outside by supplying fuel and an oxidant to the unit cell, and a cooling medium is supplied to the cooling plate to remove excess heat for cooling. The flow direction of the gas inside the unit cell in the stack thus stacked is such that the supply side is on the upper side and the discharge side is on the lower side with respect to the gravity direction.

【0009】前述のとおり固体高分子電解質型燃料電池
では、電解質保持層である固体高分子電解質膜を飽和に
含水させることで膜の比抵抗が小さくなりプロトン導電
性電解質として機能する。従って固体高分子電解質型燃
料電池の発電効率を高く維持するためには、膜の含水状
態を飽和状態に維持することが必要である。このため
に、従来から、膜が乾燥するのを防いで発電効率を維持
するために、反応ガスに水を供給して反応ガスの湿度を
高めて燃料電池へ供給し、膜から反応ガスへの水の蒸発
を抑えて、膜が乾燥することを防ぐ方法が実施されてき
た。
As described above, in the solid polymer electrolyte fuel cell, when the solid polymer electrolyte membrane as the electrolyte holding layer is saturated with water, the specific resistance of the membrane becomes small and the membrane functions as a proton conductive electrolyte. Therefore, in order to keep the power generation efficiency of the solid polymer electrolyte fuel cell high, it is necessary to keep the water content of the membrane saturated. For this reason, conventionally, in order to prevent the membrane from drying and maintain power generation efficiency, the reaction gas is supplied with water to increase the humidity of the reaction gas and then supplied to the fuel cell. Methods have been implemented to reduce water evaporation and prevent the membrane from drying out.

【0010】前述の通り、燃料電池の発電では反応生成
物として水が生成し、この生成水は余剰の反応ガスとと
もに燃料電池の外へ排出される。このため単電池内の反
応ガスの流れ方向で、ガス中に含有される水の量に分布
ができる。即ち、反応ガスは、単電池内でのガスの流れ
の上流側(供給側)に対してガスの流れの下流側(出口
側)では反応生成水に相当する量だけ多量に水を含有す
る。従って供給するガスを飽和状態に加湿して固体高分
子電解質型燃料電池に供給すると、出口側のガス中には
過飽和な水蒸気が含まれることになる。この結果ガスの
出口側では過飽和に相当する水は液体状態の水になる。
この液体状の水はガス通流溝を塞いで、ガスの流れを阻
害する。ガスの流れが阻害されると電極へのガス供給が
不足して反応効率の低下を生ずる。そのため余剰の液体
状の水は速やかに外部に排出することが、運転上極めて
重要である。
As described above, water is generated as a reaction product in the power generation of the fuel cell, and the generated water is discharged out of the fuel cell together with the surplus reaction gas. Therefore, the amount of water contained in the gas can be distributed in the flow direction of the reaction gas in the unit cell. That is, the reaction gas contains a large amount of water in an amount corresponding to the reaction product water on the downstream side (outlet side) of the gas flow with respect to the upstream side (supply side) of the gas flow in the unit cell. Therefore, when the supplied gas is humidified to a saturated state and supplied to the solid polymer electrolyte fuel cell, the gas on the outlet side contains supersaturated water vapor. As a result, water corresponding to supersaturation on the gas outlet side becomes liquid water.
The liquid water closes the gas flow channel and hinders the gas flow. If the gas flow is obstructed, the gas supply to the electrode becomes insufficient and the reaction efficiency decreases. Therefore, it is extremely important in operation that the excess liquid water is promptly discharged to the outside.

【0011】[0011]

【発明が解決しようとする課題】しかしながら従来のガ
ス通流溝にあっては反応生成水のためにガスの流れの下
流部で反応ガス中に過飽和の水蒸気が含まれるため水の
凝縮が起こる。そのためにガス通流溝内に液体状の水が
滞留してガス通流溝を閉塞しその結果反応ガスの自由な
移動を阻害して電池の出力の不安定かを招くという問題
があった。
However, in the conventional gas flow channel, water is condensed due to the reaction product water containing supersaturated water vapor in the reaction gas at the downstream portion of the gas flow. Therefore, there is a problem that liquid water stays in the gas flow groove to block the gas flow groove, and as a result, the free movement of the reaction gas is hindered and the output of the battery becomes unstable.

【0012】またこの出力の不安定かを防止するために
供給ガス中の水分量を減らすと、膜が乾燥して電池の内
部抵抗が増大し、出力の低下を招く。さらにガス通流溝
内の水が自然流下するように溝幅や溝深さを大きくする
ことも考えられるが溝幅を広げるとセパレータと電極と
の電気的接触が悪化して電流の効率的な集電や電極で発
生する熱の除去が困難となり、溝深さを深くするとセパ
レータの厚さが増大するという問題があった。
If the amount of water in the supply gas is reduced in order to prevent the output from becoming unstable, the film will dry and the internal resistance of the battery will increase, leading to a decrease in output. It is also possible to increase the groove width and groove depth so that the water in the gas flow groove will flow down naturally, but if the groove width is increased, the electrical contact between the separator and the electrode deteriorates, and the current flow efficiency increases. There is a problem that it becomes difficult to collect current and remove heat generated in the electrodes, and increasing the groove depth increases the thickness of the separator.

【0013】この発明は上述の点に鑑みてなされ、その
目的はセパレータのガス通流溝につきその最適化を図る
ことにより水によるガス閉塞がなく特性に優れる固体高
分子電解質型燃料電池を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a solid polymer electrolyte fuel cell having excellent characteristics without gas blockage due to water by optimizing the gas passage groove of the separator. Especially.

【0014】[0014]

【課題を解決するための手段】上述の目的はこの発明に
よれば固体高分子電解質膜と、電極と、セパレータとを
有し、固体高分子電解質膜はその二つの主面に電極が密
着して配置され、セパレータは前記電極の配置された固
体高分子電解質膜を挟持し、固体高分子電解質膜は水を
包含して膜中をプロトンが拡散し、セパレータは電極に
燃料ガスまたは酸化剤ガスの反応ガスを供給するガス通
流溝を有し、ガス通流溝の水の保持力をS、ガス通流溝
に反応ガスが通流するときのヘッドロスをLとするとき
にSとLが関係式(I)を満足するとすることにより達
成される。
According to the present invention, the above-mentioned object has a solid polymer electrolyte membrane, an electrode, and a separator, and the solid polymer electrolyte membrane has electrodes adhered to its two main surfaces. And the separator sandwiches the solid polymer electrolyte membrane on which the electrode is arranged, the solid polymer electrolyte membrane contains water and protons diffuse in the membrane, and the separator is a fuel gas or an oxidant gas on the electrode. S has a gas flow groove for supplying the reaction gas of S, and S is the holding power of water in the gas flow groove, and L is the head loss when the reaction gas flows through the gas flow groove. This is achieved by satisfying the relational expression (I).

【0015】[0015]

【数2】 ヘッドロスL>水保持力ヘッドS … (I)## EQU00002 ## Head loss L> water holding power head S ... (I)

【0016】[0016]

【作用】関係式(I)が満足されると、ガス通流溝に水
の滞留が発生しない。関係式(I)のうち水保持力ヘッ
ドSはガス通流溝の寸法と材質が決める。ヘッドロスL
はガス通流溝寸法、ガス流速、ガス性状が決める。
When the relational expression (I) is satisfied, water does not accumulate in the gas flow groove. In relational expression (I), the water retention head S determines the size and material of the gas flow groove. Head loss L
Determines the gas flow groove size, gas flow velocity, and gas properties.

【0017】[0017]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。図1はこの発明の実施例に係る固体高分子電解質型
燃料電池のセパレータを示す寸法図である。本セパレー
タは、グラファイトカーボン粒子粉末とフェノール樹脂
粉末の混合粉末をプレス用型に充填して180℃で5分
加熱プレスを行う事で容易に製作することができる。ま
た本実施例では溝の深さ0.8mm、セパレータの厚さ1.
8mm溝幅2.0mm、長さ100mmである。セパレー
タの厚さは従来よりも薄くできる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a dimensional diagram showing a separator of a solid polymer electrolyte fuel cell according to an embodiment of the present invention. The present separator can be easily manufactured by filling a pressing die with a mixed powder of graphite carbon particle powder and phenol resin powder and heating and pressing at 180 ° C. for 5 minutes. In this embodiment, the groove depth is 0.8 mm and the separator thickness is 1.
The groove width is 8 mm, the width is 2.0 mm, and the length is 100 mm. The thickness of the separator can be made thinner than before.

【0018】上述のガス通流溝に発生する水保持力ヘッ
ドは水柱で約15mmである。このガス通流溝に流速
0.5m/sで空気を流すと、水柱で約20mmのヘッ
ドロスを発生する。図2はこの発明の実施例に係る固体
高分子電解質型燃料電池の特性を示す線図である。安定
した運転状態が得られており、水の排出が良好であるこ
とがわかる。
The water retention head generated in the gas flow groove is about 15 mm in water column. When air is flown through the gas flow groove at a flow rate of 0.5 m / s, a head loss of about 20 mm is generated in the water column. FIG. 2 is a diagram showing the characteristics of the solid polymer electrolyte fuel cell according to the embodiment of the present invention. It can be seen that a stable operation state is obtained and water is discharged well.

【0019】ガス通流溝とガス性状の具体例が表1に示
される。
Specific examples of the gas flow grooves and the gas properties are shown in Table 1.

【0020】[0020]

【表1】 表1に示す通り関係式(I)が満足されるときに水の滞
留がなく良好な結果が得られる。
[Table 1] As shown in Table 1, when the relational expression (I) is satisfied, no water is retained and good results are obtained.

【0021】[0021]

【発明の効果】この発明によれば固体高分子電解質膜
と、電極と、セパレータとを有し、固体高分子電解質膜
はその二つの主面に電極が密着して配置され、セパレー
タは前記電極の配置された固体高分子電解質膜を挟持
し、固体高分子電解質膜は水を包含して膜中をプロトン
が拡散し、セパレータは電極に燃料ガスまたは酸化剤ガ
スの反応ガスを供給するガス通流溝を有し、ガス通流溝
の水保持力ヘッドをS、ガス通流溝に反応ガスが通流す
るときのヘッドロスをLとするときにSとLが関係式
(I)を満足するので、ガス通流溝内に水が滞留するこ
とがなく安定性に優れる固体高分子電解質型燃料電池が
得られる。
According to the present invention, a solid polymer electrolyte membrane, an electrode, and a separator are provided, and the solid polymer electrolyte membrane has two main surfaces on which electrodes are closely attached, and the separator is the electrode. Sandwiching the solid polymer electrolyte membrane in which the solid polymer electrolyte membrane is placed, the solid polymer electrolyte membrane contains water and protons diffuse in the membrane, and the separator is a gas passage that supplies a reaction gas of fuel gas or oxidant gas to the electrode. S and L satisfy the relational expression (I), where S is the water retention head of the gas flow groove and S is the head loss when the reaction gas flows through the gas flow groove. Therefore, it is possible to obtain a solid polymer electrolyte fuel cell having excellent stability without water remaining in the gas flow channels.

【0022】[0022]

【数3】 ヘッドロスL>水保持力ヘッドS … (I)## EQU00003 ## Head loss L> water retention head S ... (I)

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体高分子電解質型燃
料電池のセパレータを示す寸法図
FIG. 1 is a dimensional diagram showing a separator of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】この発明の実施例に係る固体高分子電解質型燃
料電池の特性を示す線図
FIG. 2 is a diagram showing characteristics of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【図3】従来の固体高分子電解質型燃料電池の単電池を
示す分解側面図
FIG. 3 is an exploded side view showing a unit cell of a conventional solid polymer electrolyte fuel cell.

【図4】従来の固体高分子電解質型燃料電池のスタック
を示す側面図
FIG. 4 is a side view showing a stack of a conventional solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質膜 2 アノード 3 カソード 4 ガス通流溝 5 セパレータ 6 単電池 7 冷却板 8 集電板 9 絶縁板 10 締付板 11 締め付けボルト 12 スタック 1 Solid Polymer Electrolyte Membrane 2 Anode 3 Cathode 4 Gas Flow Groove 5 Separator 6 Single Cell 7 Cooling Plate 8 Current Collector 9 Insulating Plate 10 Tightening Plate 11 Tightening Bolt 12 Stack

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜と、電極と、セパレー
タとを有し、 固体高分子電解質膜はその二つの主面に電極が密着して
配置され、 セパレータは前記電極の配置された固体高分子電解質膜
を挟持し、 固体高分子電解質膜は水を包含して膜中をプロトンが拡
散し、 セパレータは電極に燃料ガスまたは酸化剤ガスの反応ガ
スを供給するガス通流溝を有し、ガス通流溝の水保持力
ヘッドをS、ガス通流溝に反応ガスが通流するときのヘ
ッドロスをLとするときにSとLが関係式(I)を満足
することを特徴とする固体高分子電解質型燃料電池。 【数1】 ヘッドロスL>水保持力ヘッドS ・・・(I)
1. A solid polymer electrolyte membrane, an electrode, and a separator, wherein the solid polymer electrolyte membrane has two major surfaces on which the electrodes are in close contact, and the separator is a solid on which the electrodes are arranged. The polymer electrolyte membrane is sandwiched, the solid polymer electrolyte membrane contains water and the protons diffuse in the membrane, and the separator has a gas flow groove for supplying the reaction gas of fuel gas or oxidant gas to the electrode. , S is the water retention head of the gas flow groove, and L is the head loss when the reaction gas flows through the gas flow groove, and S and L satisfy the relational expression (I). Solid polymer electrolyte fuel cell. ## EQU00001 ## Head loss L> water holding power head S ... (I)
【請求項2】請求項1記載の燃料電池において、電極は
電極基材に電極触媒層が積層されたものであることを特
徴とする固体高分子電解質型燃料電池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the electrode comprises an electrode base material and an electrode catalyst layer laminated on the electrode base material.
【請求項3】請求項1記載の燃料電池において、セパレ
ータはグラファイトカーボン粉体とフェノール樹脂粉体
とを混合しホットプレスしてなることを特徴とする固体
高分子電解質型燃料電池。
3. The solid polyelectrolyte fuel cell according to claim 1, wherein the separator is formed by mixing graphite carbon powder and phenol resin powder and hot pressing them.
【請求項4】請求項1記載の燃料電池において、関係式
(I)を満足する場合はガス通流溝の寸法が溝幅2.0
mm、溝深さ0.8mm、溝長さ100mmで且つガス
流速が0.5m/sであることを特徴とする固体高分子
電解質型燃料電池。
4. The fuel cell according to claim 1, wherein when the relational expression (I) is satisfied, the gas flow groove has a groove width of 2.0.
mm, the groove depth is 0.8 mm, the groove length is 100 mm, and the gas flow rate is 0.5 m / s. A solid polymer electrolyte fuel cell.
JP4245347A 1992-09-16 1992-09-16 Solid polymer electrolytic fuel cell Pending JPH0696777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245347A JPH0696777A (en) 1992-09-16 1992-09-16 Solid polymer electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245347A JPH0696777A (en) 1992-09-16 1992-09-16 Solid polymer electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH0696777A true JPH0696777A (en) 1994-04-08

Family

ID=17132324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245347A Pending JPH0696777A (en) 1992-09-16 1992-09-16 Solid polymer electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH0696777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061043A1 (en) * 2001-12-27 2003-07-24 Honda Giken Kogyo Kabushiki Kaisha Fuel cell
WO2013031145A1 (en) 2011-08-31 2013-03-07 昭和電工株式会社 Heat-curable resin composition, method for producing cured article and molded article thereof, cured article, molded article, and separator for fuel cell
CN110574199A (en) * 2017-04-28 2019-12-13 Ess技术有限公司 System and method for operating a redox flow battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061043A1 (en) * 2001-12-27 2003-07-24 Honda Giken Kogyo Kabushiki Kaisha Fuel cell
WO2013031145A1 (en) 2011-08-31 2013-03-07 昭和電工株式会社 Heat-curable resin composition, method for producing cured article and molded article thereof, cured article, molded article, and separator for fuel cell
JPWO2013031145A1 (en) * 2011-08-31 2015-03-23 昭和電工株式会社 THERMOSETTING RESIN COMPOSITION, METHOD FOR PRODUCING THE CURED PRODUCT AND MOLDED BODY, CURED PRODUCT, MOLDED BODY, AND FUEL CELL SEPARATOR
CN110574199A (en) * 2017-04-28 2019-12-13 Ess技术有限公司 System and method for operating a redox flow battery
CN110574199B (en) * 2017-04-28 2024-04-19 Ess技术有限公司 System and method for operating redox flow battery

Similar Documents

Publication Publication Date Title
US6214486B1 (en) Fuel cell and method of controlling same
EP0664928B1 (en) Lightweight fuel cell membrane electrode assembly with integral reactant flow passages
US5922485A (en) Solid polymer electrolyte fuel cell
US8557466B2 (en) Fuel cell including separator with gas flow channels
JP3352716B2 (en) Solid polymer electrolyte fuel cell device
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
US7745063B2 (en) Fuel cell stack
US20020192530A1 (en) Fuel cell that can stably generate electricity with excellent characteristics
JPH1116590A (en) Fuel cell
JP4907894B2 (en) Fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2000251907A (en) Solid polymer fuel cell
US7638227B2 (en) Fuel cell having stack structure
JP2001325971A (en) Solid polymer fuel cell
JP2001015138A (en) Solid polymer type fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JPH0696789A (en) Solid polymer electrolytic fuel cell system
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JPH05144451A (en) Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte
JP2001236976A (en) Fuel cell
JPH07288133A (en) Fuel cell
JPH0696777A (en) Solid polymer electrolytic fuel cell
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JPH1021944A (en) Solid polymer electrolyte fuel cell