JPS60225459A - Semiconductor ic - Google Patents

Semiconductor ic

Info

Publication number
JPS60225459A
JPS60225459A JP59081346A JP8134684A JPS60225459A JP S60225459 A JPS60225459 A JP S60225459A JP 59081346 A JP59081346 A JP 59081346A JP 8134684 A JP8134684 A JP 8134684A JP S60225459 A JPS60225459 A JP S60225459A
Authority
JP
Japan
Prior art keywords
region
type region
transistor
terminal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081346A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakashiba
中柴 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59081346A priority Critical patent/JPS60225459A/en
Publication of JPS60225459A publication Critical patent/JPS60225459A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To contrive the prevention of latch-up by including the first reverse conductivity type region connected to an external terminal and the second reverse conductivity type region connected to a power source terminal. CONSTITUTION:An N type region 25, a P type region 26, and an N type region 27 constitute a transistor Q2 as the collector, base, and emitter, respectively. The N type region 25 is connected to an output terminal 24 via electrode 28 made of a wiring layer. A region 29 is N type and is connected to the power source terminal VDD via electrode 30 made of a wiring layer. The N type region 25 corresponds to the first region formed on one main surface of the semiconductor substrate, and the N type region 29 to the second region formed on the main surface of the substrate. When a noise signal much lower than at the GND level is impressed on the output terminal 24, most part of noise current flows by making the region 29 as the collector in the presence of this region 29 between the region 25 and the CMOS transistor, and gives no influence as the trigger current for latch-up on the part of the CMOS transistor.

Description

【発明の詳細な説明】 (技術分野) 本発明は、相補型MO8)ランジスタと、バイポーラト
ランジスタ及び拡散層によって形成された抵抗が混在す
る形の半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor integrated circuit in which complementary MO8 transistors, bipolar transistors, and resistors formed by diffusion layers coexist.

(従来技術) 近年、相補型MO8)ランジスタ(以下、0MO8とい
う。)t−用い&0MO80MO8集積その低消費電力
並びに高速性、高集積性等の優れた性能を有することに
よって、増々広範囲に用いられつつある。但し、更に高
性能化するためには、0MO8集積回路の有する次の2
つの欠点を克復する必要があるとされている。1つはう
、チア゛、プ現象であシ、他の1つは、バイボー2集積
回路等に比較して外部負荷の駆動能力が低いということ
である。
(Prior art) In recent years, complementary MO8) transistors (hereinafter referred to as 0MO8) are being used more and more widely due to their excellent performance such as low power consumption, high speed, and high integration. be. However, in order to further improve the performance, the following two features of the 0MO8 integrated circuit are required.
It is believed that it is necessary to overcome these shortcomings. One is the chirp phenomenon, and the other is that the external load driving ability is lower than that of a Bibo 2 integrated circuit or the like.

以下この2点について順次説明する。These two points will be sequentially explained below.

第1図、第2図、第3図を用いて0MO8出力回路のう
、チア、プ現象を説明する。第1図は通常の0MO8出
力回路の回路図を示す。第1図において端子1をソース
、端子2をゲート、端子3をドレインとしてPチャンネ
ルトランジスタQPが、また端子4をソース、端子2t
−ゲート、端子3をドレインとしてNチャンネルトラン
ジスタ勃が構成されている。端子2及び端子3は各々入
力及び出力端子となり、端子1は最高電位電源(以下、
VDDという。)に、端子4は接地電源(以下GNDと
いう。)に接続される。
The drop, drop, and drop phenomena of the 0MO8 output circuit will be explained using FIGS. 1, 2, and 3. FIG. 1 shows a circuit diagram of a conventional 0MO8 output circuit. In FIG. 1, a P-channel transistor QP is constructed with terminal 1 as the source, terminal 2 as the gate, and terminal 3 as the drain, and terminal 4 as the source and terminal 2t as the source.
- An N-channel transistor is constructed with the gate and terminal 3 as the drain. Terminal 2 and terminal 3 are input and output terminals, respectively, and terminal 1 is the highest potential power supply (hereinafter referred to as
It's called VDD. ), the terminal 4 is connected to a ground power source (hereinafter referred to as GND).

第2図は第1図に回路図で示したCMO8回路の断面図
である。P型基板5の一生面にN型領域6が形成され、
N型領域の中に高濃度のP型領域7゜8が各々Pチャン
ネルトランジスタQpのソース。
FIG. 2 is a cross-sectional view of the CMO8 circuit shown in the circuit diagram in FIG. An N-type region 6 is formed on the whole surface of the P-type substrate 5,
A heavily doped P-type region 7.8 within the N-type region is a source of a P-channel transistor Qp.

ドレインとして形成されている。一方、Nチャンネルト
ランジスタ拳のソース、ドレイ/としてはP型基板5の
一生面にN型領域9.10が作られている。各トランジ
スタQP、QNのソース。
It is formed as a drain. On the other hand, N-type regions 9 and 10 are formed on the whole surface of the P-type substrate 5 as the source and drain of the N-channel transistor. Source of each transistor QP, QN.

ドレイン領域には、基板表面上に形成された絶縁膜11
に設けられた開口部を介してPチャンネルトランジスタ
QPのソース電極12.ドレイン電極13.Nチャンネ
ルトランジスタQNのソース電極14.ドレイン電極1
5が金属等の配線層で形成されている。
An insulating film 11 formed on the substrate surface is provided in the drain region.
The source electrode 12. of the P-channel transistor QP is connected through the opening provided in the source electrode 12. of the P-channel transistor QP. Drain electrode 13. Source electrode 14 of N-channel transistor QN. drain electrode 1
5 is formed of a wiring layer of metal or the like.

Pfi基板5は、高濃度P型領域16と電極17を介し
て端子4(GND)に、N型領域6は高不純物濃度N型
領域18と電極19t−介して端子1(VDD )に接
続されている。PチャンネルトランジスタQpのゲート
電極20としては配線層が、Nチャンネルトランジスタ
QNのゲート電極21としては配線層が基板表面上に形
成された絶縁膜11上に各トランジスタQPT QNの
ソース及びドレイン領域をまたがる形で形成されている
。各トランジスタQpとQN間は漏れ電流が流れないよ
うに厚い絶縁層22で隔てられている。
The Pfi substrate 5 is connected to the terminal 4 (GND) through the high concentration P type region 16 and the electrode 17, and the N type region 6 is connected to the terminal 1 (VDD) through the high impurity concentration N type region 18 and the electrode 19t. ing. A wiring layer serves as the gate electrode 20 of the P-channel transistor Qp, and a wiring layer serves as the gate electrode 21 of the N-channel transistor QN on the insulating film 11 formed on the substrate surface, spanning the source and drain regions of each transistor QPTQN. formed in the shape. Each transistor Qp and QN are separated by a thick insulating layer 22 to prevent leakage current from flowing.

以上説明した第2図のOMOS集積口゛路構造において
は、必然的に第3図で示すう、チアツブ回路が組み込ま
れることになる。すなわち第3図においてPチャンネル
トランジスタQpのソース領域7をエミ、り、Nチャン
ネルトランジスタQNの基板としてのN型領域6をベー
ス、P型基板5をコレクタとしてPNP )ランジスタ
P1が、NチャンネルトランジスタQNのソース領域9
t−エミ、り、P型基板5をベース、N型領域6t″コ
レクタとしてNPN )ランジスタN1が等測的に形成
されている。
In the OMOS integrated circuit structure of FIG. 2 described above, a chip subcircuit as shown in FIG. 3 is necessarily incorporated. That is, in FIG. 3, the source region 7 of the P-channel transistor Qp is used as the emitter, the N-type region 6 as the substrate of the N-channel transistor QN is used as the base, and the P-type substrate 5 is used as the collector. source area 9
An NPN (NPN) transistor N1 is isometrically formed using the T-emitter, P-type substrate 5 as a base and the N-type region 6t'' collector.

この回路において、PNPトランジスタP1のベース電
流としての電子がN型領域6に1またはNPNトランジ
スタN1のベース電流としての正孔がP型基板5に、各
々あるしきい位置以上に注入された時に、それがトリガ
ーとなム トランジスタP1とNlが正帰還回路として
動作し、端子1(VDD)と端子4(GND)間に大電
流が流れる。一旦このう、チア、プ回路が動作するメ。
In this circuit, when electrons serving as the base current of the PNP transistor P1 are injected into the N-type region 6, or holes serving as the base current of the NPN transistor N1 are injected into the P-type substrate 5 above a certain threshold position, respectively, This is the trigger. Transistors P1 and Nl operate as a positive feedback circuit, and a large current flows between terminal 1 (VDD) and terminal 4 (GND). Once the chia/pu circuit is activated.

トリガーとなった現象が塩9除かれても電源間に電流が
流れ続け、ひいては集積回路が破壊される。
Even if the triggering phenomenon is removed, current continues to flow between the power supplies, eventually destroying the integrated circuit.

以上が0MO8回路におけるう、チア、プ現象のメカニ
ズムであるが、対策としては、う、チアツブ回路が動作
するためのトリガー電流のしきい値を高くするか、また
はラッチアップ回路にトリガー電流が流入することを防
ぐことの2つの方法が考えられる。第1のトリガー電流
のしきい値を高くする方法についてはう、チアツブ回路
のNPN。
The above is the mechanism of the chirp phenomenon in the 0MO8 circuit.As a countermeasure, either raise the threshold of the trigger current for the chirp circuit to operate, or cause the trigger current to flow into the latch-up circuit. There are two possible ways to prevent this from happening. Regarding the method of increasing the threshold of the first trigger current, please refer to the NPN of the Chiatubu circuit.

PNPI−ランジスタの電流増幅率を下げる等の各種の
努力がなされているが、0M08)ランジスタの正常動
作における性能向上方策と相反する面等が641+容易
ではない。一方、第2のう、チア、プ回路にトリガー電
流が流れることを防ぐことに関してJ、)’Jガー電流
として最も重大なものが人。
Although various efforts have been made to lower the current amplification factor of the PNPI transistor, it is not easy to do so because it conflicts with measures to improve performance in normal operation of the transistor. On the other hand, regarding preventing the trigger current from flowing into the second circuit, the most important current is the human.

出力端子における雑音電流であることを考え合わせると
、第1図で示し九〇MO8出力回路を用いる限9不可能
である。
Considering that it is a noise current at the output terminal, this is not possible as long as the MO8 output circuit shown in FIG. 1 is used.

次に外部負荷駆動能力について述べる。0MO8回路の
負荷駆動能力がバイポーラ回路のそれに比較し小さいの
はバイポーラトランジスタとMO8トランジスタの相互
コンダクタンスC’9m)の差ニよる。現在市場に流布
しているTTL集積回路においては、50PFの負荷を
l Q ns以下の速さで駆動出来るが、0MO8集積
回路においては同様の負荷を駆動するのに20 ns以
上を要する。
Next, we will discuss the external load driving capacity. The reason why the load driving capability of the 0MO8 circuit is smaller than that of the bipolar circuit is due to the difference in mutual conductance C'9m) between the bipolar transistor and the MO8 transistor. TTL integrated circuits currently available on the market can drive a 50PF load at a speed of less than l Q ns, but a 0MO8 integrated circuit requires more than 20 ns to drive a similar load.

近年、この0MO8集積回路の外部負荷駆動能力を向上
させる手段として、0MO8集積回路の外部々の回路が
提唱されている。
In recent years, circuits external to the 0MO8 integrated circuit have been proposed as means for improving the external load driving capability of the 0MO8 integrated circuit.

第4図は特願昭58−198585号に提唱されている
、0M08)ランジスタとバイポーラトランジスタの混
成形の出力バッ7アーの回路例である。
FIG. 4 shows an example of a circuit of an output buffer which is a hybrid of an 0M08) transistor and a bipolar transistor, as proposed in Japanese Patent Application No. 198585/1985.

第4図において、23は出カバ、7アの入力端子を示し
、集積回路の内部回路に接続される。24は出力端子を
示し、集積回路の外部に接続される。
In FIG. 4, 23 indicates an output cover and an input terminal of 7A, which is connected to the internal circuit of the integrated circuit. 24 indicates an output terminal, which is connected to the outside of the integrated circuit.

同回路を用いることによシ出力が低レベルから高レベル
に切シ換る時には、バイポーラトランジスタQ3.Ql
が、出力が高レベルから低レベルに切シ変る時はバイポ
ーラトランジスタQ4.Q2が各々動作することによシ
高い負荷駆動能力を得ることが可能となる。第4図は出
カバ、ファー回路にバイポーラトランジスタを導入した
例であるが、出カバ、ファー回路に限らず、内部回路、
入カバ、ファー回路等にも0M0Sトランジスタとバイ
ポーラトランジスタを混在させ、集積回路の性能を更に
上げることはもちろん可能である。
By using the same circuit, when the output is switched from a low level to a high level, the bipolar transistor Q3. Ql
However, when the output changes from high level to low level, bipolar transistor Q4. By operating each Q2, it is possible to obtain a high load driving capability. Figure 4 shows an example in which bipolar transistors are introduced in the output cover and far circuits, but they are not limited to the output cover and far circuits;
It is of course possible to further improve the performance of the integrated circuit by mixing 0M0S transistors and bipolar transistors in the input cover, far circuit, etc.

(発明の目的) 本発明の目的は上述したような0MO8,バイポーラ混
在型の半導体集積回路(以下、 Bi−CMO8工0と
いう。)において、前述したう、チア、プを防止した半
導体集積回路を提供することにある。
(Object of the Invention) The object of the present invention is to provide a semiconductor integrated circuit which prevents the above-mentioned chip and drop in the above-mentioned OMO8 and bipolar mixed type semiconductor integrated circuit (hereinafter referred to as Bi-CMO8-0). It is about providing.

(発明の構成) 本発明の半導体集積回路は、−導電型の半導体基板の一
生面に形成された0M08) 5ンジスタ領域を有する
半導体集積回路において、外部端子に接続された反対導
電型領域(あるいは該反対導電型領域内に形成された一
導電型領域)からなる前記半導体基板の一生面に形成さ
れた第1の領域と、該第1の領域と前記0M08)ラン
クる夕領域間に電源端子に接続された反対導電型領域(
あるいは高不純物濃度の一導電型領域)からなる前記半
導体基板の一生面に形成された第2の領域とを含むこと
から構成される。
(Structure of the Invention) The semiconductor integrated circuit of the present invention is a semiconductor integrated circuit having a 0M08) 5 transistor region formed on the whole surface of a -conductivity type semiconductor substrate, and an opposite conductivity type region (or a first region formed on the entire surface of the semiconductor substrate consisting of one conductivity type region formed in the opposite conductivity type region; and a power terminal between the first region and the 0M08) rank region. A region of opposite conductivity type connected to (
or a second region formed on the entire surface of the semiconductor substrate, which is formed of one conductivity type region with high impurity concentration.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第5図は本発明の第1の実施例の要部を示す模式的断面
図で、第4図で示した出カバ、77回路に本発明を適用
した場合を示す〇 第5図において、N型領域25.Pit領域26゜N型
領域27が各々コレクタ、ペース、エミ、りとして、第
4図に示したトランジスタQ2を構成している。N型領
域25は配線層による電極28を介して出力端子24に
接続されている。P凰基板5.N型領域6.高濃度P型
領域7,8.高濃度N派領域9,10で0M08)9ン
ジスタが第2図と同様に構成されている。領域29はN
型で配線層による電極30f:介して電源端子VDDに
接続されている。第5図において、NJ領域25が、上
記発明の詳細な説明で示した半導体基板の一生面に形成
された第1の領域、N型領域29が、半導体基板の一生
面に形成された第2の領域に相当する。
FIG. 5 is a schematic cross-sectional view showing the main parts of the first embodiment of the present invention, showing the case where the present invention is applied to the output cover and 77 circuit shown in FIG. Mold area 25. The pit region 26 and the N-type region 27 constitute the transistor Q2 shown in FIG. 4 as a collector, a paste, an emitter, and a resistor, respectively. The N-type region 25 is connected to the output terminal 24 via an electrode 28 formed of a wiring layer. P-o board 5. N-type region6. High concentration P type regions 7, 8. In the high concentration N group regions 9 and 10, 0M08)9 transistors are constructed in the same manner as shown in FIG. Area 29 is N
It is connected to the power supply terminal VDD through an electrode 30f formed by a wiring layer. In FIG. 5, an NJ region 25 is a first region formed on the whole surface of the semiconductor substrate shown in the detailed description of the invention, and an N-type region 29 is a second region formed on the whole surface of the semiconductor substrate. corresponds to the area of

第5図に示した構造において、出力端子24にGNDレ
ベルよシも十分に低い雑音信号が加わった場合を考えて
見る。もし、N型領域29がない場合には、N型領域2
5をエミ、り、P型基板5をペース、Pチャンネルトラ
ンジスタQpのN型領域6會コレクタとして、NPN)
ランジスタが動作し、第3図の2.チア、プ等価回路で
示した等価PNP)ランジスタP1のペース領域6にト
リガーとしての電子の注入が起シ、う、チア、プを誘起
する。ところが第5図で示すようにN型領域25と0M
O8トランジスタの中間にN型領域29が置かれると、
雑音電流の大部分はN型領域29をコレクタとして流れ
、0M08)ランジスタ部分にう、チア、プのトリガー
電流として影響を及ぼさなくなる。
In the structure shown in FIG. 5, consider the case where a noise signal that is sufficiently lower than the GND level is applied to the output terminal 24. If there is no N type region 29, the N type region 2
5 as an emitter, a P-type substrate 5 as a base, and an N-type region 6 of a P-channel transistor Qp as a collector, NPN)
The transistor operates, and 2. of FIG. (Equivalent PNP shown in the equivalent circuit) Injection of electrons as a trigger into the pace region 6 of the transistor P1 induces the trigger. However, as shown in FIG.
When an N-type region 29 is placed in the middle of the O8 transistor,
Most of the noise current flows through the N-type region 29 as a collector, and does not affect the transistor portion as a trigger current for the transistors 0M08).

第6図は本発明の第2の実施例の要部を示す模式的断面
図で、入力または出力端子がP型領域に接続している場
合に本発明を応用した場合を示す。
FIG. 6 is a schematic sectional view showing a main part of a second embodiment of the present invention, and shows a case where the present invention is applied to a case where an input or output terminal is connected to a P-type region.

第6図において、CMOSトランジスタ部分の構成は第
2図、第5図で示したものと同様である。
In FIG. 6, the configuration of the CMOS transistor portion is the same as that shown in FIGS. 2 and 5.

N型領域31内に形成された第1の領域としてのP属領
域32は、配線層による電極33を介して入力または出
力用の外部端子34に接続している。
A P region 32 as a first region formed within the N type region 31 is connected to an external terminal 34 for input or output via an electrode 33 formed of a wiring layer.

P属領域32としては、NPN)ランジスタのペースを
想定しても良いし、抵抗を想定しても良い。
As the P region 32, a pace of an NPN transistor may be assumed, or a resistance may be assumed.

0M08)ランジスタ領域とP属領域32の中間には、
第2の領域としての高不純物濃度P層領域35が置かれ
、このP型領域350表面に形成された配線層による電
極36はGND電位に接続されている。
0M08) Between the transistor area and the P genus area 32,
A high impurity concentration P layer region 35 as a second region is placed, and an electrode 36 formed by a wiring layer formed on the surface of this P type region 350 is connected to the GND potential.

第6図に示した構造において、外部端子34に、十分高
い電位レベルの雑音信号が加わった場合を考えて見る。
In the structure shown in FIG. 6, consider a case where a noise signal of a sufficiently high potential level is applied to the external terminal 34.

もし、GND電位に接続されているPfll領域35が
ない場合には、P減債域32t−エミ、り、N型領域3
1をベース、P型基板5を=レクタとして動作するPN
P )ランジスタにおいて、その電流は0M08)ラン
ジスタ領域にまで到達する。この電流は第3図のう、チ
ア、プ等価回路で示した等価NPN)ランジスタNlの
ベース領域へのトリガー電流とな9、う、チア、グを誘
起する。ところが、第6図に示すように外部端子が接続
しているFil領域32とCMOSトランジスタ領域と
の間に置かれたP属領域35をGND電位に接続するこ
とによシ、雑音電流はPfi領域35゜電極36t−介
して吸収され、0M08)ランジスタ部分にう、チア、
プのトリガー電流として働らかなくなる。
If there is no Pfll region 35 connected to the GND potential, the
1 as a base and P-type substrate 5 as a rector.
In the P) transistor, the current reaches the 0M08) transistor region. This current induces a trigger current to the base region of the equivalent NPN transistor Nl shown in the equivalent circuit of FIG. However, as shown in FIG. 6, by connecting the P region 35 placed between the Fil region 32 to which the external terminal is connected and the CMOS transistor region to the GND potential, the noise current can be reduced to the Pfi region. Absorbed through the 35° electrode 36t, 0M08)
It no longer works as a trigger current for the pump.

(発明の効果) 以上、詳細説明したとおシ、本発明によれば、上記の構
成によシ、入出力端子等の外部端子に加わった雑音電流
の大部分1kOMO8回路部に到達させることなく吸収
することが可能となシ、通常の0MO8入出力回路よシ
もう、チア、プが起シにくい入出力回路を有する0M0
8)ランジスタ、バイポーラトランジスタ混在の半導体
集積回路が得られる。
(Effects of the Invention) As described in detail above, according to the present invention, the above structure absorbs most of the noise current applied to external terminals such as input/output terminals without allowing it to reach the 1kOMO8 circuit section. The 0M0 has an input/output circuit that is less likely to cause problems than the normal 0MO8 input/output circuit.
8) A semiconductor integrated circuit including transistors and bipolar transistors can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来の0MO8出力回路の
一例の回路図及びその模式的断面図、第3図は従来の0
MO8回路におけるう、チア、プ現象を示す等価回路図
、第4図はバイボーットランジスタと0M08)ランジ
スタによって構成され九出力回路の一例の回路図、第5
図及び第6図はそれぞれ本発明の第1.第2の実施例の
要部を示す模式的断面図である。 1.2,3.4・・・・・・端子、5・・・・・・P減
基板、6・・・・・・Nll領域、7,8・・・・・・
P属領域、9.10・・・・・・N型領域、11・・・
・・・絶縁膜、12・・・・・・ソース電極、13・・
・・・・ドレイン電極、14・・・・・・ソース電極、
15・・・・・・ドレイン電極、16・・・・・・Pa
l領域、17・・・・・・電極、18・・・・・・高不
純物濃度N型領域、19・・・・・・電極、20.21
・・・・・・ゲート電極、22・・・・・・絶縁層、2
3・・・・・・入力端子、24・・・・・・出力端子、
25・・・・・・N型領域、26・・・・・・P属領域
、27・・・・・・Nll領域、28・・・・・・電極
、29・・・・・・N型領域、30・・・・・・電極、
31・・・・・・Nm領域、32・・・・・・Pal領
域、33・・・・・・電極、34・・・・・・外部端子
、35・・・・・・高不純物濃度P属領域、36・・・
・・・電極。
1 and 2 are a circuit diagram and a schematic cross-sectional view of an example of a conventional 0MO8 output circuit, respectively, and FIG. 3 is a circuit diagram of an example of a conventional 0MO8 output circuit, and FIG.
Fig. 4 is an equivalent circuit diagram illustrating the chia-pu phenomenon in the MO8 circuit.
FIG. 1 and FIG. FIG. 7 is a schematic cross-sectional view showing main parts of a second embodiment. 1.2, 3.4...terminal, 5...P reduced substrate, 6...Nll region, 7,8...
P-genus region, 9.10...N-type region, 11...
... Insulating film, 12 ... Source electrode, 13 ...
...Drain electrode, 14...Source electrode,
15...Drain electrode, 16...Pa
l region, 17...electrode, 18...high impurity concentration N-type region, 19...electrode, 20.21
......Gate electrode, 22...Insulating layer, 2
3...Input terminal, 24...Output terminal,
25...N type region, 26...P region, 27...Nll region, 28...electrode, 29...N type Area, 30... Electrode,
31...Nm region, 32...Pal region, 33...electrode, 34...external terminal, 35...high impurity concentration P Genus area, 36...
···electrode.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の一生面に形成された0M08)
ランジスタ領域を有する半導体集積回路においてさ部端
子に接続された反対導電盤領域(あるいは該反対導電型
領域内に形成された一導電型領域)からなる前記半導体
基板の一生面に形成された第1の領域と、該第1の領域
と前記0M0Sトランジスタ領域間に電源端子に接続さ
れた反対導電型領(あるいは高不純物濃度の一導電型領
域)からなる前記半導体基板の〒主面に形成された第2
の領域とを含むことを特徴とする半導体集積回路0
0M08) formed on the entire surface of a semiconductor substrate of one conductivity type.
In a semiconductor integrated circuit having a transistor region, a first semiconductor substrate formed on the entire surface of the semiconductor substrate is formed of an opposite conductivity region (or a region of one conductivity type formed within the region of the opposite conductivity type) connected to the rib terminal. and a region of an opposite conductivity type (or a region of one conductivity type with high impurity concentration) connected to a power supply terminal between the first region and the 0M0S transistor region. Second
A semiconductor integrated circuit 0 characterized in that it includes a region of
JP59081346A 1984-04-23 1984-04-23 Semiconductor ic Pending JPS60225459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081346A JPS60225459A (en) 1984-04-23 1984-04-23 Semiconductor ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081346A JPS60225459A (en) 1984-04-23 1984-04-23 Semiconductor ic

Publications (1)

Publication Number Publication Date
JPS60225459A true JPS60225459A (en) 1985-11-09

Family

ID=13743802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081346A Pending JPS60225459A (en) 1984-04-23 1984-04-23 Semiconductor ic

Country Status (1)

Country Link
JP (1) JPS60225459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773442B2 (en) * 2004-06-25 2010-08-10 Cypress Semiconductor Corporation Memory cell array latchup prevention
US9842629B2 (en) 2004-06-25 2017-12-12 Cypress Semiconductor Corporation Memory cell array latchup prevention

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162860A (en) * 1980-05-19 1981-12-15 Toshiba Corp Semiconductor device
JPS5848960A (en) * 1982-09-03 1983-03-23 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162860A (en) * 1980-05-19 1981-12-15 Toshiba Corp Semiconductor device
JPS5848960A (en) * 1982-09-03 1983-03-23 Hitachi Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773442B2 (en) * 2004-06-25 2010-08-10 Cypress Semiconductor Corporation Memory cell array latchup prevention
US8493804B2 (en) 2004-06-25 2013-07-23 Cypress Semiconductor Corporation Memory cell array latchup prevention
US8837245B2 (en) 2004-06-25 2014-09-16 Cypress Semiconductor Corporation Memory cell array latchup prevention
US9842629B2 (en) 2004-06-25 2017-12-12 Cypress Semiconductor Corporation Memory cell array latchup prevention

Similar Documents

Publication Publication Date Title
US4672584A (en) CMOS integrated circuit
JPS6245706B2 (en)
JP3184298B2 (en) CMOS output circuit
US4689653A (en) Complementary MOS integrated circuit including lock-up prevention parasitic transistors
JPS60225459A (en) Semiconductor ic
JPH09102551A (en) Semiconductor device
JP3184168B2 (en) Semiconductor device protection device
US5155572A (en) Vertical isolated-collector PNP transistor structure
JPS63244767A (en) Bipolar cmos type semiconductor integrated circuit
JPS6154712A (en) Semiconductor integrated circuit device
JPS6295852A (en) Semiconductor integrated circuit
JPS5944782B2 (en) semiconductor integrated circuit
JPS60231356A (en) Complementary type metal-oxide-film semiconductor integrated circuit device
JP3034531B2 (en) Semiconductor integrated circuit
JPS61208863A (en) Cmos semiconductor device
JPH0532908B2 (en)
JPS649737B2 (en)
JPS61208864A (en) C-mos integrated circuit device
KR890005033Y1 (en) Cmos accumulation of opposite electric current output circuit
JPS62150760A (en) Semiconductor integrated circuit
JP2559141B2 (en) Analog switch
KR100248341B1 (en) Array method of cmos
JP2712162B2 (en) Semiconductor device
JPS61280119A (en) Input and output circuit
JPS60111453A (en) Semiconductor device