JPS60216561A - Heat-treating method - Google Patents

Heat-treating method

Info

Publication number
JPS60216561A
JPS60216561A JP59073285A JP7328584A JPS60216561A JP S60216561 A JPS60216561 A JP S60216561A JP 59073285 A JP59073285 A JP 59073285A JP 7328584 A JP7328584 A JP 7328584A JP S60216561 A JPS60216561 A JP S60216561A
Authority
JP
Japan
Prior art keywords
substrate
heated
light
heating
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59073285A
Other languages
Japanese (ja)
Inventor
Misao Saga
佐賀 操
Akinori Shimizu
了典 清水
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59073285A priority Critical patent/JPS60216561A/en
Publication of JPS60216561A publication Critical patent/JPS60216561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To enable a required surface area and the depth of an object to be easily heated to a fixded temperature by a method wherein a surface area to be heated is scanned with a light beam with a wavelength and a light amount selected according to the heating temperature and the heating depth. CONSTITUTION:The Si substrate 1 having a film 11 of diffusion impurity source on the surface is placed in a reaction chamber 2, and N2 gas is introduced after evacuation of the chamber 2 by a vacuum pump 3. Then, a region of the substrate 1 where the impurity is to be reduced is scanned with a near infrared oscillated beam 5 of YAG laser incident onto the substrate 1. Thereby, the surface of the substrate is heated, and the impurity diffuses out of the film 11 into the substrate 1 only at the region irradiated with the beam. This manner enables only the required region to be heated to a fixed temperatue to a fixed depth by changing and controlling the light wavelength and the light amount.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、物体の一部分を所望の温度まで加熱する熱処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a heat treatment method for heating a portion of an object to a desired temperature.

〔従来技術とその問題点〕[Prior art and its problems]

物体を所望の温度まで加熱するには通常高温空−間を有
する炉内に物体を挿入するか、あるいは高温液体中に物
体を浸漬する方法がとられる。従って加熱温度はその空
間あるいは液体の温度によって規制され、加熱温度を変
更するにはその都度温度調整を行わねばならず、熱容量
に応じたかなり長い時間を必要とする。一方直接加熱方
法とじて電磁誘導により導電性物体を加熱する誘導加熱
、誘電体損によって誘電体を加熱する防電加熱、マイク
ロ波によりて非電導体を加熱するマイクロ波加熱などが
ある。しかしこれらは装置の費用がかさむこと、温度の
調節は加熱入力の調整によって行われることが多く、微
妙な温度調整は困難である。また赤外線放射によって熱
エネルギーを伝える赤外線加熱も広く行われているが、
物体表面全体が加熱され、加熱温度の微妙なaXも困難
である。一方半導体技術の発展に伴ない、半導体基板の
一部、すなわち平面的な所定の領域、あるいは表面から
の所定の厚さを不純物拡散あるいは表面歪解消のために
加熱する必要が生じている。この場合所定の区域に対し
て所定の加熱温度が満足されないと、加熱効果が達せら
れないばかりでなく半導体装置の特性をかえって害する
ことがある。
To heat an object to a desired temperature, the object is usually inserted into a furnace having a high-temperature space, or immersed in a high-temperature liquid. Therefore, the heating temperature is regulated by the temperature of the space or liquid, and in order to change the heating temperature, the temperature must be adjusted each time, which requires a considerably long time depending on the heat capacity. On the other hand, direct heating methods include induction heating in which a conductive object is heated by electromagnetic induction, electrostatic heating in which a dielectric is heated by dielectric loss, and microwave heating in which a non-conductor is heated by microwaves. However, these devices are expensive, and the temperature is often adjusted by adjusting the heating input, making delicate temperature adjustment difficult. Infrared heating, which transmits heat energy through infrared radiation, is also widely used.
The entire surface of the object is heated, and it is difficult to maintain the delicate heating temperature aX. On the other hand, with the development of semiconductor technology, it has become necessary to heat a part of a semiconductor substrate, that is, a predetermined planar region or a predetermined thickness from the surface, in order to diffuse impurities or eliminate surface strain. In this case, if a predetermined heating temperature is not satisfied for a predetermined area, not only will the heating effect not be achieved, but the characteristics of the semiconductor device may be adversely affected.

局部的に加熱する方法として電子ビーム加熱が知られて
いるが、この場合も加熱温度、加熱深さの調整も限度が
あり、また装置の高価な欠点がある。□〔発明の目的〕 本発明は、上述の欠点を除去し、物体の所定の面領域お
よび所定の深さを所定の温度に加熱することが容易にで
きる熱処理方法を提供することを目的とする。
Electron beam heating is known as a method of locally heating, but in this case as well, there are limits to the adjustment of heating temperature and heating depth, and the device is expensive. □ [Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks and provide a heat treatment method that can easily heat a predetermined surface area and a predetermined depth of an object to a predetermined temperature. .

〔発明の要点〕[Key points of the invention]

本発明によれば、所望の加熱温度、加熱深さに応じて選
ばれた波長、光量の光のビームによって加熱すべき面領
域を走査することにより上記の目的が達成される。
According to the present invention, the above object is achieved by scanning the surface area to be heated with a beam of light having a wavelength and light intensity selected according to the desired heating temperature and heating depth.

〔発明の実施例〕[Embodiments of the invention]

以下図を引用して本発明の実施例について説明する。第
1図において、気相からの析出などにより表面に拡散不
純物源膜11を有するシリコン基板lを反応室2の底部
に置き、反応室2内を真空ポンプ3によって排気したの
ち、窒素ボンベ4よりN2ガスを導入し、NdYAGレ
ーザの波長1.064mの近赤外線発振光5を鏡6、レ
ンズ7を介して基板1の上に入射させ、基板1の不純物
を導入すべき領域上を走査する。レーザ光の基板上にお
けるエネルギー密度を1.751/cIaにした場合、
基板1の表面は1400〜1500℃に加熱される。こ
れによって不純物膜11から不純物が光の照射領域にお
いてのみ基板内に拡散する。不純物拡散のための加熱に
は波長10.6μmの中間赤外線の光を発振するCOz
ガスレーザも適している。周波数が小さくなると直接格
子振動を励起して熱エネルギーへの変換効率が向上する
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a silicon substrate l having a diffused impurity source film 11 on its surface due to precipitation from the gas phase is placed at the bottom of a reaction chamber 2, and after the inside of the reaction chamber 2 is evacuated by a vacuum pump 3, a nitrogen cylinder 4 is evacuated. N2 gas is introduced, and near-infrared oscillation light 5 of a wavelength of 1.064 m from a NdYAG laser is made incident on the substrate 1 via a mirror 6 and a lens 7 to scan the region of the substrate 1 into which impurities are to be introduced. When the energy density of the laser beam on the substrate is set to 1.751/cIa,
The surface of the substrate 1 is heated to 1400-1500°C. As a result, impurities from the impurity film 11 are diffused into the substrate only in the light irradiation region. COz, which oscillates mid-infrared light with a wavelength of 10.6 μm, is used for heating for impurity diffusion.
Gas lasers are also suitable. As the frequency decreases, it directly excites lattice vibrations and improves the efficiency of conversion into thermal energy.

MO8構造においてゲート酸化膜とシリコン基板との界
面のダングリングボンドの解消のだめの熱処理、すなわ
ちアニーリングには、例えば2490Aの波長のKvF
エキシマレーザ発振光、あるいは6940 kの波長の
ルビーレーザ発振光を用いるのがよい。
In the MO8 structure, heat treatment to eliminate dangling bonds at the interface between the gate oxide film and the silicon substrate, that is, annealing, is performed using KvF with a wavelength of 2490A, for example.
It is preferable to use excimer laser oscillation light or ruby laser oscillation light with a wavelength of 6940 k.

さらに一つの光源を用いて波長の制御により適応した波
長の光を照射することもできる。これには例えば発振光
の波長の範囲か広く、回折格子、プリズム、エタロンあ
るいはフィルタなどの光学素子を共振器として用い℃狭
帯域化される色素レーザ、あるいはシンクロトロン放射
(80R光)と回折格子などの組合せを用いることが有
効である。
Furthermore, it is also possible to irradiate light with an appropriate wavelength by controlling the wavelength using one light source. Examples of this include a dye laser whose oscillation light has a wide wavelength range and whose band is narrowed by using an optical element such as a diffraction grating, prism, etalon, or filter as a resonator, or a dye laser that uses synchrotron radiation (80R light) and a diffraction grating. It is effective to use combinations such as

加熱される層の深さは、照射された光の物体への侵入距
離に依存する。侵入距離はその光に対する物体の吸収係
数に反比例する。第2図は、25℃におけるシリコン中
の光の侵入距離とシリコンの光の吸収係数の波長依存性
を示す。従って波長の長い光を用いることによって厚い
層を加熱することが可能になる。これにより、例えば不
純物の拡散深さの精密な調整ができる。
The depth of the heated layer depends on the penetration distance of the irradiated light into the object. The penetration distance is inversely proportional to the object's absorption coefficient for the light. FIG. 2 shows the wavelength dependence of the light absorption coefficient of silicon and the penetration distance of light in silicon at 25°C. It is therefore possible to heat thick layers by using light with a long wavelength. Thereby, for example, the diffusion depth of impurities can be precisely adjusted.

〔発明の効果〕〔Effect of the invention〕

本発明は、光を用いた熱放射により物体を加熱する場合
に光の照射をビームによって行い、光の波長、光量を変
更、制御することにより所定の領域のみを所定の厚さま
で所定の温度に加熱するもので、特に微妙な制御を必要
とする半導体基板の不純物拡散あるいは表面歪解消のた
めのアニーリングに極めて有効に適用することができる
When heating an object by thermal radiation using light, the present invention irradiates the object with a beam, and by changing and controlling the wavelength and intensity of the light, only a predetermined area is heated to a predetermined temperature to a predetermined thickness. It heats and can be extremely effectively applied to impurity diffusion in semiconductor substrates or annealing to eliminate surface strain, which requires particularly delicate control.

【図面の簡単な説明】[Brief explanation of the drawing]

181図は本発明の一実施例のための装置の断面図、第
2図はシリコン中の光の侵入距離およびシリコンの光の
吸収係数と波長との関係線図である。 1・・・シリコン基板、11・・・不純物源膜、2・・
・反応室、4・・・窒素ボンベ、5・・・YAGレーザ
光。 7長 (pれ)
FIG. 181 is a sectional view of a device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the penetration distance of light into silicon and the absorption coefficient of light in silicon and wavelength. 1... Silicon substrate, 11... Impurity source film, 2...
-Reaction chamber, 4...Nitrogen cylinder, 5...YAG laser light. 7 length (pre)

Claims (1)

【特許請求の範囲】[Claims] 1)物体の所定の面領域を所定の深さまで所定の温度に
加熱する方法であって、加熱温度、加熱深さに応じて選
ばれた波長、光量の光のビームによって加熱すべき面領
域を走査することを特徴とする熱処理方法。
1) A method of heating a predetermined surface area of an object to a predetermined temperature to a predetermined depth, in which the surface area to be heated is heated by a beam of light with a wavelength and light intensity selected according to the heating temperature and heating depth. A heat treatment method characterized by scanning.
JP59073285A 1984-04-12 1984-04-12 Heat-treating method Pending JPS60216561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073285A JPS60216561A (en) 1984-04-12 1984-04-12 Heat-treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073285A JPS60216561A (en) 1984-04-12 1984-04-12 Heat-treating method

Publications (1)

Publication Number Publication Date
JPS60216561A true JPS60216561A (en) 1985-10-30

Family

ID=13513718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073285A Pending JPS60216561A (en) 1984-04-12 1984-04-12 Heat-treating method

Country Status (1)

Country Link
JP (1) JPS60216561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148685A (en) * 1986-12-11 1988-06-21 Sharp Corp Manufacture of solar cell element
JPS63169024A (en) * 1987-01-05 1988-07-13 Nec Corp Impurity doping method
JP2008211177A (en) * 2007-02-27 2008-09-11 Wafermasters Inc Optical processing at selective depth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926456A (en) * 1972-07-11 1974-03-08
JPS5758363A (en) * 1980-09-26 1982-04-08 Oki Electric Ind Co Ltd Manufacture of mos type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926456A (en) * 1972-07-11 1974-03-08
JPS5758363A (en) * 1980-09-26 1982-04-08 Oki Electric Ind Co Ltd Manufacture of mos type semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148685A (en) * 1986-12-11 1988-06-21 Sharp Corp Manufacture of solar cell element
JPH0565066B2 (en) * 1986-12-11 1993-09-16 Sharp Kk
JPS63169024A (en) * 1987-01-05 1988-07-13 Nec Corp Impurity doping method
JP2008211177A (en) * 2007-02-27 2008-09-11 Wafermasters Inc Optical processing at selective depth

Similar Documents

Publication Publication Date Title
US11945045B2 (en) Annealing apparatus using two wavelengths of radiation
KR100968687B1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US4886538A (en) Process for tapering waveguides
JP2022176165A (en) Annealing system and annealing method integrated with laser and microwave
JPS60216561A (en) Heat-treating method
EP0302043B1 (en) Process of tapering waveguides
TWI843100B (en) Integrated laser and microwave annealing system and annealing method
JP3238220U (en) Annealing system that integrates laser and microwave
JPS5870536A (en) Laser annealing method
US5118923A (en) Laser annealed optical devices made by the proton exchange process
JPS60239400A (en) Process for annealing compound semiconductor
EP0216933A1 (en) Method for fabricating an insulating oxide layer on semiconductor substrate surface.
JPH0483866A (en) Laser vapor deposition device
JPS61199638A (en) Method for formation of insulating film
JPH06333871A (en) Laser beam irradiation device and heat treatment using the device
JPS60216335A (en) Preparation of shifting element of wavelength of light
JPS5892210A (en) Manufacture of semiconductor thin film
JPH02199817A (en) High-frequency annealing
JPS60216541A (en) Introducing method of impurity to semiconductor substrate
JPS62119135A (en) Method and apparatus for drawing optical fiber
JPS60216559A (en) Formation of oxide film
JPS6383268A (en) Method and apparatus for beam annealing