JPH02199817A - High-frequency annealing - Google Patents
High-frequency annealingInfo
- Publication number
- JPH02199817A JPH02199817A JP1914189A JP1914189A JPH02199817A JP H02199817 A JPH02199817 A JP H02199817A JP 1914189 A JP1914189 A JP 1914189A JP 1914189 A JP1914189 A JP 1914189A JP H02199817 A JPH02199817 A JP H02199817A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- insulating substrate
- radio waves
- layer
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000137 annealing Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 239000004065 semiconductor Substances 0.000 claims abstract description 36
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 11
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 239000011521 glass Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、薄膜トランジスタ等を製造する際の基板とし
て用いることが可能な、絶縁性基板上に良質の半導体層
を形成した基体の製造方法、特に低耐熱性絶縁基板上に
良質の半導体層を形成した基体の製造方法に関するもの
である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a substrate in which a high-quality semiconductor layer is formed on an insulating substrate, which can be used as a substrate for manufacturing thin film transistors, etc. In particular, the present invention relates to a method of manufacturing a substrate in which a high-quality semiconductor layer is formed on a low heat-resistant insulating substrate.
薄膜トランジスタ等への応用を目的として、絶縁性基板
上に堆積させた半導体層、例えば、シリコン層などを各
種の方法によりアニールして、再結晶化させ、その膜質
を改良する試みが行なわれている。それらは、レーザー
光や電子ビーム、線状熱源を用いてアニールする方法で
ある。レーザー光アニールめ場合を考えると、シリコン
層の光吸収係数等の光学定数は、シリコン層が溶融する
前後で大きく変化する。そのなめ、シリコン層で吸収さ
れるエネルギーが大きく変化し、シリコン層の膜厚等の
分布が直接温度分布へとつながる。For the purpose of application to thin film transistors, attempts are being made to improve the film quality by annealing and recrystallizing semiconductor layers, such as silicon layers, deposited on insulating substrates using various methods. . These are methods of annealing using laser light, electron beams, or linear heat sources. Considering the case of laser light annealing, the optical constants such as the light absorption coefficient of the silicon layer change significantly before and after the silicon layer is melted. Therefore, the energy absorbed by the silicon layer changes greatly, and the distribution of the silicon layer's thickness etc. directly affects the temperature distribution.
そこで5、再現性、制御性を向上させるため、基板を数
百度から1000度程度までも加熱した状態でレーザー
光を照射している。また、電子ビームアニールの場合に
は、絶縁性基板を用いた場合や、絶縁層上に島状に形成
されたシリコン層をアニールする場合には、電子による
帯電現象が発生し、再現性の低下等を引き越こしている
。また、線状熱源を用いた場合には、加熱源の物理的大
きさが、シリコン層の厚さに比較して大きいため、シリ
コン層の選択的な加熱は困難であり、やはリ、基板を数
百度から1000度程度まで加熱した状態でアニールし
ている。このように、従来のアニール方法では絶縁性基
板上に堆積させた半導体層を、基板温度を数百度以下に
したままで、再現性・制御性良くアニールする事は困難
であった0本発明者は、上記の問題点を解決するために
特許願・昭和60−160690号によって「高周波ア
ニール方法」を発明し、絶縁性基板上に堆積させた半導
体層を選択的に加熱し、良質化することを可能にした。Therefore, in order to improve reproducibility and controllability, the substrate is heated to a temperature ranging from several hundred degrees to about 1000 degrees before being irradiated with laser light. In addition, in the case of electron beam annealing, when using an insulating substrate or when annealing a silicon layer formed in an island shape on an insulating layer, a charging phenomenon due to electrons occurs, reducing reproducibility. etc. are being moved. Furthermore, when a linear heat source is used, the physical size of the heating source is large compared to the thickness of the silicon layer, making it difficult to selectively heat the silicon layer. The material is annealed at temperatures ranging from several hundred degrees to about 1,000 degrees. As described above, with conventional annealing methods, it is difficult to anneal a semiconductor layer deposited on an insulating substrate with good reproducibility and controllability while keeping the substrate temperature below several hundred degrees. In order to solve the above problems, he invented the "high frequency annealing method" by patent application No. 160690/1983, which selectively heats the semiconductor layer deposited on an insulating substrate to improve its quality. made possible.
第2図は、上記発明を実施した例を示す模式図である。FIG. 2 is a schematic diagram showing an example of implementing the above invention.
そこでは、低耐熱性ガラス基板5にCVDにより5i0
2層6を堆積させ、その上にシリコン層7を堆積させる
。さらに薄い良質の汚染防止用5i02層6を形成し、
タングステン等の高融点金属8を堆積させた後にパルス
状電磁波9を照射してアニールする必要があった。しか
し、堆積させた高融点金属8はアニール後は除去しなけ
ればならないし、アニール中は汚染源となる可能性が高
いなどの問題点がある。There, 5i0 was applied to a low heat-resistant glass substrate 5 by CVD.
Two layers 6 are deposited and a silicon layer 7 is deposited thereon. Furthermore, a thin high-quality contamination prevention 5i02 layer 6 is formed,
After depositing the high melting point metal 8 such as tungsten, it was necessary to irradiate the metal with pulsed electromagnetic waves 9 to anneal it. However, there are problems such as the deposited high melting point metal 8 must be removed after annealing and is highly likely to become a source of contamination during annealing.
〔発明が解決しようとする課題〕
本発明は、以上述べた従来のアニール方法の問題点、及
び、特許願・昭和60−160690号「高周波アニー
ル方法」の問題点を解決し、アニール中に金属汚染の恐
れがなく、かつ、より簡単な工程で、絶縁性基板上に堆
積させた半導体層を選択的に加熱し、良質化することが
可能な高周波アニール方法を提供することを課題とする
。[Problems to be Solved by the Invention] The present invention solves the problems of the conventional annealing method described above as well as the problems of the patent application No. 160690/1982 "High frequency annealing method", and It is an object of the present invention to provide a high-frequency annealing method that can selectively heat a semiconductor layer deposited on an insulating substrate to improve its quality without fear of contamination and with a simpler process.
上記した課題を解決するなめ、本発明では、絶縁性基板
上に半導体層を設け、該絶縁性基板の耐熱温度以下の温
度に全体を加熱し、さらに、高周波数の電波を照射して
該半導体層を選択的に加熱し、アニールする。In order to solve the above-mentioned problems, the present invention provides a semiconductor layer on an insulating substrate, heats the entire structure to a temperature below the heat-resistant temperature of the insulating substrate, and then irradiates the semiconductor layer with high-frequency radio waves. The layers are selectively heated and annealed.
第1図は本発明の主構成要素による原理を説明した模式
図で、1は絶縁性基板、2は半導体層、3は加熱部、4
は高周波電波である。本発明は、半導体のキャリア濃度
が温度に対して指数関数的に増加する性質、及び、高周
波電波が選択的に低抵抗層中に吸収される性質を利用す
る。まず、半導体層2を堆積させた絶縁性基板1を加熱
部3により絶縁性基板の耐熱温度以下で加熱し、半導体
のキャリ、ア濃度が温度に対して指数関数的に増加する
性質を利用して、半導体層2中に充分なキャリアが存在
する状態にする。この場合、もしも半導体層中に室温で
充分な量のキャリアが存在している場合には加熱の必要
さえもない、この状態で高周波電波4を照射すると、絶
縁性基板1と半導体層2とでは高周波電波の吸収係数に
大きな差があるから、電波はほとんど半導体M2中で吸
収され、半導体層2のみが選択的に加熱される。半導体
のキャリア濃度は温度に対して指数関数的に増加するか
ら、正帰還がかかって、さらに電波の吸収係数が増加し
、加熱される。その結果、半導体層2の良質化・再結晶
化を行うことができる。FIG. 1 is a schematic diagram explaining the principle of the main components of the present invention, in which 1 is an insulating substrate, 2 is a semiconductor layer, 3 is a heating section, and 4 is a schematic diagram explaining the principle of the main components of the present invention.
is a high frequency radio wave. The present invention utilizes the property that the carrier concentration of a semiconductor increases exponentially with temperature, and the property that high frequency radio waves are selectively absorbed into a low resistance layer. First, the insulating substrate 1 on which the semiconductor layer 2 has been deposited is heated by the heating section 3 below the heat-resistant temperature of the insulating substrate, taking advantage of the property that the carrier and a concentration of the semiconductor increases exponentially with temperature. Thus, a state is created in which sufficient carriers exist in the semiconductor layer 2. In this case, if a sufficient amount of carriers exist in the semiconductor layer at room temperature, there is no need for heating.If the high-frequency radio waves 4 are irradiated in this state, the insulating substrate 1 and the semiconductor layer 2 will be separated. Since there is a large difference in the absorption coefficient of high-frequency radio waves, most of the radio waves are absorbed in the semiconductor M2, and only the semiconductor layer 2 is selectively heated. Since the carrier concentration of a semiconductor increases exponentially with temperature, positive feedback occurs, which further increases the radio wave absorption coefficient and heats the semiconductor. As a result, the quality of the semiconductor layer 2 can be improved and recrystallized.
第3図は本発明の具体的な実施例を示した断面図で、加
熱部3の内部に高周波コイル10を設け、その高周波コ
イル10に高周波電源11をつなぐ、さらに、低耐熱性
ガラス基板5の上にCVD S i02層6、シリコ
ン層7、及び、CVD 5i02層6を堆積させた基
体を設置する。加熱部3によって、低耐熱性ガラス基板
5の耐熱温度まで基板を加熱する。その状態で高周波電
源11によって高周波コイル10の内部に高周波電波を
発生させる。さらに、基板上の全シリコン層が良質化・
再結晶化されるように、基体を走査する。FIG. 3 is a sectional view showing a specific embodiment of the present invention, in which a high frequency coil 10 is provided inside the heating section 3, a high frequency power source 11 is connected to the high frequency coil 10, and a low heat resistant glass substrate 5 is connected to the high frequency coil 10. A substrate is placed on top of which a CVD Si02 layer 6, a silicon layer 7, and a CVD 5i02 layer 6 are deposited. The heating unit 3 heats the substrate up to the allowable temperature limit of the low heat resistant glass substrate 5. In this state, high frequency radio waves are generated inside the high frequency coil 10 by the high frequency power supply 11. Furthermore, all silicon layers on the substrate have been improved in quality.
The substrate is scanned as it is recrystallized.
第4図は、本発明の別の実施例を示した断面図である。FIG. 4 is a sectional view showing another embodiment of the present invention.
インピーダンス整合器14を有する空胴共振器13に、
導波路12と高周波電源11をつなぐ、さらに、第3図
で説明した基体をその上に設置した状態で空胴共振器1
3の内部で走査することが可能な加熱部3を設置する。In the cavity resonator 13 having the impedance matching device 14,
The cavity resonator 1 is connected to the waveguide 12 and the high frequency power source 11, and the base explained in FIG.
A heating unit 3 that can be scanned inside is installed.
低耐熱性ガラス基板5の上にCVD 5i02層6、
シリコン層7、及びCVD 5in2層6を堆積させ
た基板を加熱部3上に設置する。以下、同様に、加熱部
3によって、低耐熱性ガラス基板らの耐熱温度まで基板
を加熱する。その状態で高周波電源11によって空胴共
振器13の内部に高周波電波を発生させる。さらに基板
上の全シリコン層が良質化・再結晶化されるように、加
熱部3と基板を走査する。CVD 5i02 layer 6 on low heat resistant glass substrate 5,
A substrate on which a silicon layer 7 and a CVD 5in2 layer 6 are deposited is placed on the heating section 3 . Thereafter, the heating unit 3 similarly heats the substrate to the allowable temperature of the low heat resistant glass substrate. In this state, high frequency radio waves are generated inside the cavity resonator 13 by the high frequency power supply 11. Furthermore, the heating unit 3 and the substrate are scanned so that the entire silicon layer on the substrate is improved in quality and recrystallized.
本発明によれば、低価格の高出力・高周波電源を用いて
、半導体層の良質化・再結晶化を行うことが可能となる
。さらに、そのような電源はレーザー光やストリップヒ
ーター等の線状熱源に比較すると制御性がよいので、ア
ニールを再現性よく行うことが可能となる。また、低価
格で入手できる低耐熱性ガラス基板を用いても、その上
に良質の半導体層を形成することが可能となるから大面
積のS OI (Sfltcon On In5ula
torンを低価格で製造することが可能となる。According to the present invention, it is possible to improve the quality and recrystallize a semiconductor layer using a low-cost, high-output, high-frequency power source. Furthermore, since such a power source has better controllability than a linear heat source such as a laser beam or a strip heater, it is possible to perform annealing with good reproducibility. In addition, even if a low heat-resistant glass substrate that is available at a low price is used, it is possible to form a high-quality semiconductor layer on it.
It becomes possible to manufacture torns at low cost.
る。Ru.
1・・・絶縁性基板、2.・・・半導体層、3・・・加
熱部、4・・・高周波電波、5・・・低耐熱性ガラス基
板、6・・・CVD S i02層、7・・・シリコ
ン層、8・・・タングステン層、9・・・パルス状電磁
波、10・・・高周波コイル、11・・・高周波電源、
12・・・導波路、13・・・空胴共振器、14・・・
インピーダンス整合器。1... Insulating substrate, 2. ... Semiconductor layer, 3... Heating part, 4... High frequency radio wave, 5... Low heat resistant glass substrate, 6... CVD S i02 layer, 7... Silicon layer, 8... Tungsten layer, 9... Pulsed electromagnetic waves, 10... High frequency coil, 11... High frequency power supply,
12... Waveguide, 13... Cavity resonator, 14...
Impedance matching box.
Claims (1)
度以下の温度に全体を加熱し、さらに、高周波数の電波
を照射して該半導体層を選択的に加熱することを特徴と
する高周波アニール方法。It is characterized by providing a semiconductor layer on an insulating substrate, heating the whole to a temperature below the heat resistance temperature of the insulating substrate, and further selectively heating the semiconductor layer by irradiating high-frequency radio waves. High frequency annealing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1914189A JPH02199817A (en) | 1989-01-27 | 1989-01-27 | High-frequency annealing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1914189A JPH02199817A (en) | 1989-01-27 | 1989-01-27 | High-frequency annealing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02199817A true JPH02199817A (en) | 1990-08-08 |
Family
ID=11991176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1914189A Pending JPH02199817A (en) | 1989-01-27 | 1989-01-27 | High-frequency annealing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02199817A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5416341A (en) * | 1993-02-22 | 1995-05-16 | Nec Corporation | Substrate for a semiconductor device and method for manufacturing a semiconductor device from the substrate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62229924A (en) * | 1986-03-31 | 1987-10-08 | Canon Inc | Method of reforming semiconductor |
-
1989
- 1989-01-27 JP JP1914189A patent/JPH02199817A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62229924A (en) * | 1986-03-31 | 1987-10-08 | Canon Inc | Method of reforming semiconductor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5416341A (en) * | 1993-02-22 | 1995-05-16 | Nec Corporation | Substrate for a semiconductor device and method for manufacturing a semiconductor device from the substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6408649B1 (en) | Method for the rapid thermal treatment of glass and glass-like materials using microwave radiation | |
JPS5965426A (en) | Heat treatment device for semiconductor wafer | |
US4535227A (en) | Method for heating semiconductor wafer by means of application of radiated light | |
JPS59169126A (en) | Method for heating semiconductor wafer | |
JPH07187890A (en) | Laser annealing method | |
JPH02199817A (en) | High-frequency annealing | |
JPS6221209A (en) | High-frequency annealing method | |
JPS60137027A (en) | Optical irradiation heating method | |
US20220139768A1 (en) | Method for manufacturing a semiconductor-on-insulator substrate | |
JPS60239400A (en) | Process for annealing compound semiconductor | |
JPS56129321A (en) | Manufacture of semiconductor device | |
JPS63119220A (en) | Manufacture of thin-film | |
JPS60223112A (en) | Heat treatment device for semiconductor | |
JP4094127B2 (en) | Amorphous silicon production equipment | |
JPS6347256B2 (en) | ||
JPH01212431A (en) | Manufacture of thin film semiconductor device | |
JPS62299011A (en) | Annealing of polycrystalline thin-film substrate | |
JPH025295B2 (en) | ||
JPS6242519A (en) | Manufacture of semiconductor device | |
JPH0790581A (en) | Surface layer reforming method by ion implantation and device therefor | |
JPS5835917A (en) | Manufacture of semiconductor device | |
JP3944963B2 (en) | Manufacturing method and manufacturing apparatus for oxide superconducting thin film | |
JPS60216561A (en) | Heat-treating method | |
JPH1036959A (en) | Thin coating forming device | |
JPH0136976B2 (en) |