JPS62119135A - Method and apparatus for drawing optical fiber - Google Patents

Method and apparatus for drawing optical fiber

Info

Publication number
JPS62119135A
JPS62119135A JP25866185A JP25866185A JPS62119135A JP S62119135 A JPS62119135 A JP S62119135A JP 25866185 A JP25866185 A JP 25866185A JP 25866185 A JP25866185 A JP 25866185A JP S62119135 A JPS62119135 A JP S62119135A
Authority
JP
Japan
Prior art keywords
optical fiber
furnace
base material
heating
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25866185A
Other languages
Japanese (ja)
Inventor
Hiroaki Hanabusa
花房 廣明
Yoshinori Hibino
善典 日比野
Fumio Yamamoto
山本 二三男
Shinzo Yamakawa
山川 進三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25866185A priority Critical patent/JPS62119135A/en
Publication of JPS62119135A publication Critical patent/JPS62119135A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/66Microwave or similar electromagnetic wave heating, e.g. resonant cavity type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/69Auxiliary thermal treatment immediately prior to drawing, e.g. pre-heaters, laser-assisted resistance heaters

Abstract

PURPOSE:To obtain an optical fiber having superior reliability for a long period by preheating a base material for an optical fiber with a preheating furnace, heating it by high frequency dielectric heating and drawing the heated base material into an optical fiber. CONSTITUTION:A base material for an optical fiber is preheated with a preheating furnace and heated to the softening point or above by high frequency dielectric heating. The base material softened uniformly by the heating is drawn into an optical fiber. Thus, an optical fiber nearly free from defects caused by drawing, preventing an increase in the transmission loss due to hydrogen or radiation and having superior reliability for a long period is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、長期間にわたって信頼性のすぐれた光ファイ
バを得るための光ファイバ線引き方法およびその装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber drawing method and apparatus for obtaining an optical fiber with excellent reliability over a long period of time.

[従来の技術] 従来の光ファイバの線引き方法は、光ファイバ母材を加
熱、軟化させるための線引き炉として抵抗加熱炉あるい
は高周波誘導加熱炉を用いて、母材を外側から加熱して
いた。しかし、光ファイバの材料として一般的な石英ガ
ラスは熱伝導率が非常に小さいので、母材中心を軟化温
度まで到達させるためには母材表面をそれ以上の高い温
度で長時間加熱する必要があった。
[Prior Art] In a conventional optical fiber drawing method, a resistance heating furnace or a high frequency induction heating furnace is used as a drawing furnace to heat and soften the optical fiber preform, and the preform is heated from the outside. However, silica glass, which is a common material for optical fibers, has very low thermal conductivity, so in order to reach the softening temperature at the center of the base material, it is necessary to heat the surface of the base material at an even higher temperature for a long time. there were.

結晶を高温に加熱すると空格子点や、格子間原子などの
欠陥が生ずるように、石英ガラスの場合においても軟化
点以上の温度に加熱した場合に類似の欠陥であるE′セ
ンタや過酸化ラジカルの増加か観測されている。その生
成量は線引き時の母材温度が高いほど、また加熱時間が
長いほど多くなる。したかって、光ファイバの線引き工
程における母材の過加熱は、光ファイバ中に余分の欠陥
を誘起することになる。最近、これらの線引き誘起欠陥
が放射線や水素による光ファイバの損失増加の原因と考
えられている。この増失増加は不可逆な変化であって、
光ケーブルの長期間にわたる信頼性を損うものである。
Just as when crystals are heated to high temperatures, defects such as vacancies and interstitial atoms occur, similar defects such as E' centers and peroxide radicals occur in silica glass when heated to temperatures above its softening point. An increase has been observed. The amount produced increases as the base material temperature during wire drawing increases and as the heating time increases. Therefore, overheating of the base material during the optical fiber drawing process will induce additional defects in the optical fiber. Recently, these drawing-induced defects are considered to be the cause of increased loss in optical fibers due to radiation and hydrogen. This increase in gain and loss is an irreversible change,
This impairs the long-term reliability of optical cables.

しかし母材の過加熱をさけ、欠陥の増大を防ぐために線
引き炉温度を低下させると、線引き張力が増大するので
、炉温度の低下には限界がある。
However, if the drawing furnace temperature is lowered in order to avoid overheating the base material and prevent an increase in defects, the drawing tension increases, so there is a limit to the reduction in the furnace temperature.

また従来のカーボン発熱体を用いた線引き炉では、光フ
ァイバ母材の外周から加熱を行うために、母材表面は必
要以上に加熱されざるを得ないという欠点を有していた
In addition, conventional drawing furnaces using carbon heating elements have the disadvantage that the surface of the optical fiber base material must be heated more than necessary because heating is performed from the outer periphery of the optical fiber base material.

さらに、母材表面の過加熱は、母材構成元素の拡散によ
る屈折率分布の変化や、母材の蒸発による線引き炉内お
よび光ファイバの汚染を引き起こし、光ファイバの伝送
特性や機械的強度を悪化させるという問題をも生じさせ
ている。
Furthermore, overheating of the base material surface causes changes in the refractive index distribution due to diffusion of base material constituent elements, contamination of the inside of the drawing furnace and the optical fiber due to evaporation of the base material, and deteriorates the transmission characteristics and mechanical strength of the optical fiber. This also causes the problem of worsening the situation.

[発明が解決しようとする問題点] 本発明は、上述した光ファイバの伝送損失増加の原因と
なる線引き誘起欠陥の生成を抑制し、光ファイバ線引き
時の光ファイバ母材の過加熱を防止し、高速線引きを可
能として長期安定性に優れた光ファイバを得ることを目
的とする。
[Problems to be Solved by the Invention] The present invention suppresses the generation of drawing-induced defects that cause an increase in the transmission loss of the optical fiber described above, and prevents overheating of the optical fiber preform during drawing of the optical fiber. The purpose of this study is to obtain an optical fiber that can be drawn at high speed and has excellent long-term stability.

[問題点を解決するための手段] かかる目的を達成するために、本発明に係る光ファイバ
の線引き方法においては、光ファイバ母材を予加熱炉を
用いて予熱し、引きつづき予熱された母材を高周波誘電
加熱によって軟化温度以上に加熱して光ファイバに線引
きする。
[Means for Solving the Problems] In order to achieve the above object, in the optical fiber drawing method according to the present invention, an optical fiber preform is preheated using a preheating furnace, and then the preheated preheated preform is heated. The material is heated to above its softening temperature using high-frequency dielectric heating and drawn into optical fiber.

また、本発明に係る光ファイバ線引き装置は、光ファイ
バ母材を線引き炉内で加熱軟化させて光ファイバに線引
きする光ファイバ線引き装置において、線引き炉が、予
加熱炉と予加熱炉の下部に直列に設けられた高周波誘電
加熱炉とからなる。
Further, an optical fiber drawing apparatus according to the present invention is an optical fiber drawing apparatus that heats and softens an optical fiber preform in a drawing furnace and draws it into an optical fiber. It consists of a high frequency dielectric heating furnace installed in series.

さらに本発明に係る光ファイバ線引き装置は光ファイバ
母材を線引き炉内で加熱軟化させて光ファイバに線引ぎ
する光ファイバ線引き装置において、線引き炉か、予加
熱炉と予加熱炉の下部に直列に設けられた高周波誘電加
熱炉と、高周波誘電加熱炉の下部に直列に設けられた加
熱炉とからなる。
Furthermore, the optical fiber drawing apparatus according to the present invention is an optical fiber drawing apparatus that heats and softens an optical fiber preform in a drawing furnace and draws it into an optical fiber. It consists of a high frequency dielectric heating furnace installed in series and a heating furnace installed in series below the high frequency dielectric heating furnace.

[作 用] 高周波誘電加熱はマイクロ波により被加熱物質の原子振
動を誘起して加熱するものであるから、光ファイバ母材
の内部において均一な加熱が得られる。従って実質的に
低い母材温度で光ファイバを線引きすることができ、ま
た高速線引きが可能となるので線引き誘起欠陥が非常に
少なく、放射線や水素による損失増加をほとんど生じな
い長期偏傾性にすぐれた光ファイバを得ることができる
[Function] Since high-frequency dielectric heating uses microwaves to induce atomic vibrations in a substance to be heated, uniform heating can be obtained inside the optical fiber base material. Therefore, optical fibers can be drawn at substantially lower base material temperatures, and high-speed drawing is possible, resulting in very few drawing-induced defects and excellent long-term eccentricity with almost no increase in loss due to radiation or hydrogen. It is possible to obtain an optical fiber.

[実施例] まず、線引き誘起欠陥と水素が反応して損失が増加する
様子を第3図に示す。これは、石英系のガラスファイバ
母材を線引きし、紫外線硬化型のアクリル系樹脂被覆を
ほどこした光ファイバの線引き直後と、加速試験として
、室温で4気圧の水累算囲気中にiso時間さらした後
、200℃の空気中で15時間加熱処理した後の光ファ
イバの損失特性である。波長1.4μm付近の吸収ピー
クの増大およびさらに長波長側の損失増加は、水素処理
により光ファイバ中に新たに生成した水酸基によるもの
である。波長によらず、全体に損失が増加しているのは
、加熱処理により被覆中のファイバに微小な曲がりを生
じたことによるマイクロベンド損失である。波長1.4
μ山の吸収増大で代表される線引き欠陥と水素の反応に
よる損失増加(水酸基吸収増加)は、加熱処理を終えた
後に観測されることからも明らかなように、不可逆な過
程であり、光ファイバの長期安定性に対して重大な問題
となる。
[Example] First, FIG. 3 shows how the loss increases due to the reaction between the drawing-induced defects and hydrogen. This was done immediately after drawing the optical fiber, which was made from a quartz-based glass fiber base material and coated with an ultraviolet-curable acrylic resin, and as an accelerated test, it was exposed to a cumulative water atmosphere of 4 atm at room temperature for an ISO time. This is the loss characteristic of the optical fiber after heat treatment in air at 200° C. for 15 hours. The increase in the absorption peak near the wavelength of 1.4 μm and the increase in loss at longer wavelengths are due to hydroxyl groups newly generated in the optical fiber by the hydrogen treatment. The overall increase in loss, regardless of the wavelength, is due to microbend loss caused by slight bending in the coated fiber due to heat treatment. Wavelength 1.4
The increase in loss (increase in hydroxyl absorption) due to the reaction between the drawing defect and hydrogen, represented by the increase in absorption of μ peaks, is an irreversible process, as is clear from the fact that it is observed after heat treatment. This poses a serious problem for the long-term stability of

この線引き誘起欠陥の生成を抑制して、この欠陥による
損失増大を防止するための方策として、線引き炉温度を
低下させることが有効である。第4図は線引き炉温度を
変化させて作製した光ファイバの水酸基吸収増加量(マ
イクロベンド損失を除いた水素処理前後の波長1.4μ
mにおける損失増加量)を示す。第4図から明らかなよ
うに線引き速度一定で線引き炉温度を下げることにより
、水酸基吸収増加量を低減させることができる。しかし
先に述べたように、従来の光ファイバの線引き方法およ
び装置では、線引き炉温度を効果的に下げて線引きする
ことはできなかった。
As a measure to suppress the generation of these drawing-induced defects and prevent an increase in loss due to these defects, it is effective to lower the drawing furnace temperature. Figure 4 shows the increase in hydroxyl absorption of optical fibers produced by varying the drawing furnace temperature (wavelength 1.4μ before and after hydrogen treatment, excluding microbend loss).
(increase in loss in m). As is clear from FIG. 4, by lowering the drawing furnace temperature while keeping the drawing speed constant, the increase in hydroxyl group absorption can be reduced. However, as mentioned above, with the conventional optical fiber drawing method and apparatus, it has not been possible to draw the optical fiber while effectively lowering the drawing furnace temperature.

線引ぎ誘起欠陥による水酸基吸収増加を防止するもう一
つの方策としては、線引き速度の高速化が有望である。
Another promising measure to prevent the increase in hydroxyl absorption due to drawing-induced defects is to increase the drawing speed.

第5図は線引き炉の温度を一定として線引き速度に対す
る水酸基吸収増加量の変化を示したものである。第5図
から線引き温度を一定とした時、高速で線引ぎするほど
吸収増加量が減少することがわかる。これは、光ファイ
バ母材が欠陥生成の生ずるような温度にさらされる時間
が短くなることによるものと考えられる。高速線引きに
よる吸収増加量減少の効果を得るためにも、従来の抵抗
加熱炉を用いた線引き装置では母材表面と内部に温度差
があることが障害となっていた。
FIG. 5 shows the change in the amount of increase in hydroxyl absorption with respect to the drawing speed while keeping the temperature of the drawing furnace constant. It can be seen from FIG. 5 that when the drawing temperature is kept constant, the amount of increase in absorption decreases as the drawing speed increases. This is thought to be due to the fact that the time during which the optical fiber preform is exposed to temperatures at which defects occur is shortened. In order to obtain the effect of reducing the increase in absorption by high-speed wire drawing, the difference in temperature between the surface and the inside of the base material has been an obstacle in conventional wire drawing equipment using a resistance heating furnace.

実施例1 第1図に本発明の光ファイバ線引き装置の第1の実施例
を示す。図において、1は光ファイバ母材、2は線引き
された光ファイバ、3は予加熱炉で、例としてカーボン
抵抗3Aを発熱体とするカーボン抵抗炉を示しである。
Embodiment 1 FIG. 1 shows a first embodiment of the optical fiber drawing apparatus of the present invention. In the figure, 1 is an optical fiber base material, 2 is a drawn optical fiber, and 3 is a preheating furnace. As an example, a carbon resistance furnace using a carbon resistance 3A as a heating element is shown.

4は高周波誘電加熱炉で、矩形導波管型アプリケータを
用いた例を示した。5は図示しない高周波発振器の高周
波出力を誘電加熱炉4へ導く導波管である。第2図は誘
電加熱炉4に高周波を供給する装置の1例を示したもの
である。マイクロ波発振器6内にはマグネトロン7があ
り、発生したマイクロ波は導波管5を介して高周波誘電
加熱炉4へ導かれる。アイソレータ8は反射波が発振器
6へもどらないために、整合器9は入射波を有効に熱に
変換されるために設けられたものである。
4 is a high frequency dielectric heating furnace, and an example using a rectangular waveguide type applicator is shown. 5 is a waveguide that guides the high frequency output of a high frequency oscillator (not shown) to the dielectric heating furnace 4. FIG. 2 shows an example of a device for supplying high frequency waves to the dielectric heating furnace 4. In FIG. There is a magnetron 7 within the microwave oscillator 6, and the generated microwaves are guided to the high frequency dielectric heating furnace 4 via the waveguide 5. The isolator 8 prevents reflected waves from returning to the oscillator 6, and the matching box 9 is provided to effectively convert the incident waves into heat.

第1図に示した装置の機能について説明する。The functions of the apparatus shown in FIG. 1 will be explained.

高周波誘電加熱は、誘電体がマイクロ波を吸収し発熱す
ることを利用するものであり、その発熱量は被加熱物の
誘電損失に比例する。石英ガラスの誘電損失は小さい(
室温1周波数IMllzでjanδ=1〜5XlO”’
)ので、従来石英カラスの加熱手段として高周波バ電加
熱は不適当であると考えられていた。しかし第6図(E
、B、5hand:Gn assEngineerin
gHandbook、16.McGraw−旧II (
1958)  に示すように石英ガラスの誘電損失は温
度の上昇とともに急激に増大する。したがりて、高周波
誘電加熱で石英ガラスを室温から直接加熱することはで
きないが、他の手段を用いて誘電損失が大きくなる温度
まで予知熱することによって、それ以後は、高周波誘電
加熱だけで、さらに高温まで加熱することができ、した
がって、巻き取りトラム。
High-frequency dielectric heating utilizes the fact that a dielectric absorbs microwaves and generates heat, and the amount of heat generated is proportional to the dielectric loss of the object to be heated. The dielectric loss of quartz glass is small (
janδ=1~5XlO"' at room temperature and one frequency IMllz
) Therefore, high-frequency electric heating was conventionally considered to be inappropriate as a heating means for quartz glass. However, in Figure 6 (E
, B, 5hand: Gn assEngineerin
gHandbook, 16. McGraw-Old II (
(1958), the dielectric loss of silica glass increases rapidly as the temperature rises. Therefore, it is not possible to directly heat quartz glass from room temperature using high-frequency dielectric heating, but by pre-heating it to a temperature where the dielectric loss increases using other means, from then on, high-frequency dielectric heating alone can be used. Therefore, the winding tram can be heated to even higher temperatures.

キャプスタンその他の適宜な手段によって光ファイバを
線引きすることができる。
The optical fiber can be drawn using a capstan or other suitable means.

第1図に示した実施例では、予加熱炉としてカーボン抵
抗炉を用いたが、母材を高周波誘電加熱が可能な温度(
石英ガラスでは約1000℃)以上の温度に加熱保持で
きるものであればいかなる炉でも用いることができる。
In the example shown in Fig. 1, a carbon resistance furnace was used as the preheating furnace, but the base material was heated to a temperature that allowed high-frequency dielectric heating (
For quartz glass, any furnace can be used as long as it can be heated and maintained at a temperature of about 1000° C. or higher.

なお、母材が高周波誘電加熱によって定常的に線引きで
きる状態になれば、その後の予知熱は必ずしも必要でな
くなる。
Note that once the base material is in a state where it can be constantly drawn by high-frequency dielectric heating, subsequent predictive heating is not necessarily necessary.

マイクロ波発振器としては、第2図に示した例の他、タ
ライストロンや進行波管があるが、工業用としてはマグ
ネトロンが一般的に使われている。本実施例では発振周
波数2.45GHz 、出力最大5kWのマグネトロン
発振器を用いた。高周波誘電加熱炉の選択は加熱、効率
の面で重要である。矩形導波管型アプリケータ、円形導
波管型アプリケータ、オーブン型アプリケータなどが使
用可能であるが、本実施例では電界分布と母材位置との
対応が比較的良い矩形導波管型アプリケータを用いた。
In addition to the example shown in FIG. 2, microwave oscillators include talistrons and traveling wave tubes, but magnetrons are generally used for industrial purposes. In this example, a magnetron oscillator with an oscillation frequency of 2.45 GHz and a maximum output of 5 kW was used. The selection of a high frequency dielectric heating furnace is important in terms of heating efficiency. A rectangular waveguide applicator, a circular waveguide applicator, an oven-type applicator, etc. can be used, but in this example, a rectangular waveguide applicator has a relatively good correspondence between the electric field distribution and the base material position. using an applicator.

アプリケータ内の電界分布と母材位置の関係を第7図(
A) 、 (B)に示す。第7図(B)において、矢印
の密度が電界分布の強弱を示す。アプリケータの形状を
工夫することによって誘電加熱炉の効率をさらに上げる
ことができる。
The relationship between the electric field distribution in the applicator and the base material position is shown in Figure 7 (
Shown in A) and (B). In FIG. 7(B), the density of arrows indicates the strength of the electric field distribution. The efficiency of the dielectric heating furnace can be further increased by modifying the shape of the applicator.

第1図の装置を使って、直径25mmの石英ガラス棒か
ら直径125μmのファイバを線引くことを試みた。マ
グネトロンの出力を最大の5kWにしたとき、5 m/
minの速度で線引きすることができた。そのときの線
引き張力は4gであった。5m/min以上の速度では
線引き張力が急激に高くなり、安定して線引きすること
ができなかった。これは、マイク波出力、線引き速度、
温度昇温範囲の間には次式の関係があるので、線引き速
度の増加に対してこの出力のマグネトロンでは十分な温
度上昇が得られないことによる。
Using the apparatus shown in FIG. 1, an attempt was made to draw a fiber with a diameter of 125 μm from a quartz glass rod with a diameter of 25 mm. When the magnetron output is set to the maximum 5kW, 5m/
The line could be drawn at a speed of min. The drawing tension at that time was 4 g. At a speed of 5 m/min or higher, the wire drawing tension suddenly increased, making it impossible to draw the wire stably. This includes microwave output, drawing speed,
Since there is a relationship between the temperature increase ranges as shown in the following equation, this is because a magnetron of this output cannot achieve a sufficient temperature increase with respect to an increase in the drawing speed.

η・P=c・ρ・A・■・ΔT      (1)ここ
でPはマイクロ波出力、ηは効率、c、P。
η・P=c・ρ・A・■・ΔT (1) Here, P is microwave output, η is efficiency, c, P.

A、Vは光ファイバの比熱、密度、断面積、線引き速度
、ΔTは誘電加熱による温度上昇範囲である。
A and V are the specific heat, density, cross-sectional area, and drawing speed of the optical fiber, and ΔT is the temperature increase range due to dielectric heating.

実施例2 そこで、第8図に示すように高周波誘電加熱炉4の直下
にも予加熱炉3と同様の加熱炉31に直列に接続した第
2の実施例によって、温度勾配をかさ上げすることによ
り、最高温度の上昇を図った。第8図に示した装置を用
い、上下の予加熱炉3および加熱炉31の温度をそれぞ
れ1500℃としたとき20m/minまでの線引き速
度が得られた。
Embodiment 2 Therefore, as shown in FIG. 8, the temperature gradient is increased by a second embodiment in which a heating furnace 31 similar to the preheating furnace 3 is connected in series directly below the high frequency dielectric heating furnace 4. The aim was to increase the maximum temperature. Using the apparatus shown in FIG. 8, a drawing speed of up to 20 m/min was obtained when the temperatures of the upper and lower preheating furnaces 3 and heating furnaces 31 were set at 1500° C., respectively.

本発明の効果を従来例と比較して検討した。第1の実施
例の装置によって、5 m/minの速度で線引きした
光ファイバと、同じ条件で従来の抵抗加熱炉によって線
引きした光ファイバについて、先に述べた水素処理によ
る水酸基吸収増加量を比較したところ、本発明の線引き
装置により製造したファイバは従来のものよりも、水酸
基吸収増加量、すなわち、E′センタおよび過酸化ラジ
カルが著しく少なくなった。線引き誘起欠陥濃度の差か
ら光ファイバ母材表面の加熱温度は本発明の装置では従
来のものより約20Q℃低いことが推定された。
The effects of the present invention were examined by comparing them with conventional examples. Compare the amount of increase in hydroxyl group absorption due to the hydrogen treatment described above for an optical fiber drawn at a speed of 5 m/min using the apparatus of the first example and an optical fiber drawn using a conventional resistance heating furnace under the same conditions. As a result, the fiber produced by the drawing apparatus of the present invention had significantly less increase in hydroxyl group absorption, that is, E' centers and peroxide radicals, than the conventional fiber. From the difference in drawing-induced defect concentration, it was estimated that the heating temperature on the surface of the optical fiber preform was approximately 20Q°C lower in the apparatus of the present invention than in the conventional apparatus.

第9図は上下に予加熱炉3および加熱炉31を設けた第
2の実施例において、両加熱部3,31の温度を等しく
し、予知熱温度をパラメータとして線引き可能速度とマ
イクロ波出力の関係を示す。なお、計算結果は(1)幻
に従って実験結果を外挿したものである。予知熱温度の
上昇およびマイクロ波出力の上昇ともに線引き可能速度
が上昇することがわかる。実際に915M1lz帯のマ
グネトロンには出力100kWのものかあり、さらにタ
ライストロン型ではIMW(2GHz帯)が実現されて
いる。したがって、これらのマイクロ波発振器を用いる
ことによって、1000m/min以上の線引き速度が
可能となり、均一加熱の効果とあいまって長期安定性に
優れた高品質の光ファイバの製造が可能となる。
FIG. 9 shows a second embodiment in which a preheating furnace 3 and a heating furnace 31 are provided on the upper and lower sides, the temperatures of both heating parts 3 and 31 are made equal, and the drawing speed and microwave output are adjusted using the predicted heating temperature as a parameter. Show relationships. Note that the calculation results are obtained by extrapolating the experimental results according to (1) illusion. It can be seen that the drawable speed increases as the predicted thermal temperature and microwave output increase. In fact, some 915M1lz band magnetrons have an output of 100kW, and the Talaistron type has achieved IMW (2GHz band). Therefore, by using these microwave oscillators, a drawing speed of 1000 m/min or more is possible, which, in combination with the uniform heating effect, makes it possible to manufacture high-quality optical fibers with excellent long-term stability.

なお、本発明の効果は、石英系光ファイバに限定される
ものではなく、多成分系ガラスファイバやフッ化物ガラ
スファイバ等についてもそれぞれに対応する温度領域に
おいて有効である。
Note that the effects of the present invention are not limited to silica-based optical fibers, but are also effective for multi-component glass fibers, fluoride glass fibers, etc. in the corresponding temperature ranges.

[発明の効果コ 以上説明したように、本発明は、光ファイバ線引き工程
において、母材を均一に加熱、軟化させることができる
ので、従来技術のように母材表面が中心に比べて高温、
長時間の加熱を受けるということがなく、したがって線
引き誘起欠陥の少ない、すなわち、水素や放射線による
伝送損失の増加が少なく、長期偏傾性にすぐれた光ファ
イバを得ることができるという利点がある。
[Effects of the Invention] As explained above, the present invention can uniformly heat and soften the base material in the optical fiber drawing process, so that the surface of the base material is at a higher temperature than the center as in the prior art.
It has the advantage that it is not subjected to long-term heating, and therefore has fewer drawing-induced defects, that is, less increase in transmission loss due to hydrogen or radiation, and that it is possible to obtain an optical fiber with excellent long-term tiltability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の概略断面図、 第2図は高周波誘電加熱炉への高周波電力の供給系を説
明する概略断面図、 第3図は水素処理前後の光ファイバの損失スペクトル図
、 第4図は水酸基吸収増加量と線引き炉温度の関係を示す
図、 第5図は水酸基吸収増加量と線引き速度の関係を示す図
、 第6図は石英ガラスの誘電損失の温度による変化を示す
図、 第7図(^)、第7図(B)は矩形導波管型アプリケー
タ内の電界分布と母材位置の関係を示す図、 第8図は本発明の第2の実施例の概略断面図、 第9図は高周波誘電加熱による線引き可能速度を示す図
である。 1・・・光ファイバ母材、 2・・・光ファイバ、 3・・・予加熱炉、 4・・・高周波誘電加熱炉、 5・・・導波管、 6・・・マイクロ波発振器、 31・・・加熱炉。 0.7   0.8    1.f     f、3 
    f、s    f、7適長 (P屯) 第3図 線引き火1′シ呂底Tf(’C) 第4図 線引を通、度VtC乃気in) 第5図 第6図 1罫實1 で        六 第8図
Fig. 1 is a schematic cross-sectional view of the first embodiment of the present invention, Fig. 2 is a schematic cross-sectional view illustrating the high-frequency power supply system to the high-frequency dielectric heating furnace, and Fig. 3 is a schematic cross-sectional view of the optical fiber before and after hydrogen treatment. Loss spectrum diagram. Figure 4 shows the relationship between the increase in hydroxyl absorption and drawing furnace temperature. Figure 5 shows the relationship between the increase in hydroxyl absorption and drawing speed. Figure 6 shows the temperature of dielectric loss in quartz glass. 7(^) and 7(B) are diagrams showing the relationship between electric field distribution and base material position in a rectangular waveguide applicator. FIG. 9 is a schematic cross-sectional view of an embodiment of the present invention, and FIG. 9 is a diagram showing the drawing speed possible by high-frequency dielectric heating. DESCRIPTION OF SYMBOLS 1... Optical fiber base material, 2... Optical fiber, 3... Preheating furnace, 4... High frequency dielectric heating furnace, 5... Waveguide, 6... Microwave oscillator, 31 ···heating furnace. 0.7 0.8 1. f f, 3
f, s f, 7 proper length (P tun) Figure 3: Line 1' bottom Tf ('C) Figure 4: Through the line, degree VtC noki in) Figure 5: Figure 6: 1 line 1 in 6 Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバ母材を予加熱炉を用いて予熱し、引き
つづき該予熱された母材を高周波誘電加熱によって軟化
温度以上に加熱して光ファイバに線引きすることを特徴
とする光ファイバ線引き方法。
(1) Optical fiber drawing characterized by preheating an optical fiber base material using a preheating furnace, and then heating the preheated base material to a temperature higher than its softening temperature by high-frequency dielectric heating to draw an optical fiber. Method.
(2)光ファイバ母材を線引き炉内で加熱軟化させて光
ファイバに線引きする光ファイバ線引き装置において、
前記線引き炉が、予加熱炉と該予加熱炉の下部に直列に
設けられた高周波誘電加熱炉とからなることを特徴とす
る光ファイバ線引き装置。
(2) In an optical fiber drawing device that heats and softens an optical fiber preform in a drawing furnace and draws it into an optical fiber,
An optical fiber drawing apparatus characterized in that the drawing furnace comprises a preheating furnace and a high frequency dielectric heating furnace provided in series below the preheating furnace.
(3)光ファイバ母材を線引き炉内で加熱軟化させて光
ファイバに線引きする光ファイバ線引き装置において、
前記線引き炉が、予加熱炉と該予熱炉と、該高周波誘電
加熱炉の下部に直列に設けられた加熱炉とからなること
を特徴とする光ファイバ線引き装置。
(3) In an optical fiber drawing device that heats and softens an optical fiber preform in a drawing furnace and draws it into an optical fiber,
An optical fiber drawing apparatus characterized in that the drawing furnace comprises a preheating furnace, the preheating furnace, and a heating furnace provided in series below the high frequency dielectric heating furnace.
JP25866185A 1985-11-20 1985-11-20 Method and apparatus for drawing optical fiber Pending JPS62119135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25866185A JPS62119135A (en) 1985-11-20 1985-11-20 Method and apparatus for drawing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25866185A JPS62119135A (en) 1985-11-20 1985-11-20 Method and apparatus for drawing optical fiber

Publications (1)

Publication Number Publication Date
JPS62119135A true JPS62119135A (en) 1987-05-30

Family

ID=17323343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25866185A Pending JPS62119135A (en) 1985-11-20 1985-11-20 Method and apparatus for drawing optical fiber

Country Status (1)

Country Link
JP (1) JPS62119135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713272B2 (en) 2019-03-05 2023-08-01 Corning Incorporated System and methods for processing an optical fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713272B2 (en) 2019-03-05 2023-08-01 Corning Incorporated System and methods for processing an optical fiber preform

Similar Documents

Publication Publication Date Title
US9466517B2 (en) Microwave annealing apparatus and method of manufacturing a semiconductor device
NO20023819L (en) Heater with microwaves
TWI679321B (en) Carbon fiber and carbon fiber manufacturing method
JPH0469571B2 (en)
WO2015152019A1 (en) Carbon fiber manufacturing device and carbon fiber manufacturing method
KR910002396B1 (en) Heating of quartz glass tube
JPS62119135A (en) Method and apparatus for drawing optical fiber
Hsu et al. Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes
JP7149937B2 (en) Method of heat treatment of ceramic parts by microwaves
CA1323194C (en) Process for tapering waveguides
EP0437937A1 (en) Method for making a carbon-coated and polymer-coated optical fiber
JP4887342B2 (en) Dielectric waveguide and manufacturing method thereof
JPH1081536A (en) Production of erbium-doped optical fiber and apparatus therefor
JPS62119136A (en) Method and apparatus for drawing optical fiber
JPS60240094A (en) Method of continuously heating slender dielectric unit
US5247147A (en) Method and apparatus for heating a silica optical fiber in a fiber-drawing installation
JPH01183436A (en) Heating of quartz glass
JPS63195144A (en) Production of optical fiber
EP4127838B1 (en) Heating atom-vapor cell using an optical fiber
CN212357469U (en) Microwave heating fiber pre-oxidation device
JPS60216561A (en) Heat-treating method
JPS63266798A (en) Wire drawing furnace
JP2018174081A (en) Heating method and method for producing carbon fiber, and carbonization apparatus and apparatus for producing carbon fiber
JPS60112637A (en) Method and apparatus for manufacture optical fiber
JP3903720B2 (en) Dehydroxylation treatment method for polymer film for polymer optical waveguide and polymer optical waveguide using the same