JPH0483866A - Laser vapor deposition device - Google Patents

Laser vapor deposition device

Info

Publication number
JPH0483866A
JPH0483866A JP19803490A JP19803490A JPH0483866A JP H0483866 A JPH0483866 A JP H0483866A JP 19803490 A JP19803490 A JP 19803490A JP 19803490 A JP19803490 A JP 19803490A JP H0483866 A JPH0483866 A JP H0483866A
Authority
JP
Japan
Prior art keywords
sample
irradiated
laser
laser beam
irradiated sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19803490A
Other languages
Japanese (ja)
Inventor
Toshinori Yagi
俊憲 八木
Nobuyuki Zumoto
信行 頭本
Toshie Uchiyama
内山 淑恵
Yasuto Nai
名井 康人
Masaaki Tanaka
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19803490A priority Critical patent/JPH0483866A/en
Publication of JPH0483866A publication Critical patent/JPH0483866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the deposition rate of a thin film by irradiating a sample with a polarized light component vibrating in parallel with the plane of incidence of the linear polarized laser beam to the sample at a specified incident angle. CONSTITUTION:The linear polarized laser beam 1 emitted from a laser oscillator is condensed by a condensing lens 3, passed through a transmission window 4 and converged on the surface of a sample 7 to be irradiated arranged in a vacuum chamber 5. Consequently, the surface of the sample 7 is heated by the laser beam 1, the vaporized particles are emitted in the direction normal to the part to be irradiated and deposited on the surface of a substrate 8 opposed to the sample 7 to form a thin film. At this time, the light vibrating in parallel is used as the linear polarized light component, the incident angle theta1 to the sample 7 is controlled to 50-70 deg., hence the light is hardly reflected by the sample 7, the sample 7 is irradiated under these conditions, and the reflection loss is minimized.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、レーザを用いてセラミックス等を基材面に
蒸着するためのレーザ蒸着装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a laser vapor deposition apparatus for vapor depositing ceramics or the like onto a substrate surface using a laser.

[従来の技術1 第3図は、例えば特開昭59−116373号公報に記
載された従来のレーザ蒸着装置を示し、図において、(
10)はレーザ発振器(図示せず)から放射されるレー
ザ光、(40)はこのレーザ光(10)の光路を変換す
るための平面鏡、(3)はレーザ光を集光するための集
光しンズ、(4)は真空チャンバ(5)にレーザ光(1
0)を導入するための透過窓、(41)は真空チャンバ
(5)内てレーザ光(]0)の光路を変換するための平
面鏡、(7ンはリング状に形成された被照射試料、(8
)は薄膜を形成するための基材、(42)は蒸着時間を
調整するためのシャッタ、<43)は被照射試料(7)
を加熱するためのヒータである。
[Prior art 1] Fig. 3 shows a conventional laser evaporation apparatus described in, for example, Japanese Unexamined Patent Publication No. 59-116373.
10) is a laser beam emitted from a laser oscillator (not shown), (40) is a plane mirror for converting the optical path of this laser beam (10), and (3) is a condenser for condensing the laser beam. (4) is a laser beam (1) in a vacuum chamber (5).
(41) is a plane mirror for converting the optical path of the laser beam (20) in the vacuum chamber (5); (7) is a ring-shaped sample to be irradiated; (8
) is the base material for forming the thin film, (42) is the shutter for adjusting the deposition time, <43) is the irradiated sample (7)
This is a heater for heating.

次に動作について説明する6レ一ザ発振器から放射され
るレーザ光(10)は平面鏡(40)により光路を変換
され、集光レンズ(3)を透過した後、透過窓(4)を
通して真空チャンバ(5)内に導入され、平面鏡(41
)により再び光路変換された後に5リング状に形成され
た被照射試f4 (7)表面に集光照射される。このと
き、集光レンズ(3)は被照射試料(7)表面で焦点が
結ばれるように配置されている。
The laser beam (10) emitted from a six-laser oscillator, whose operation will be explained next, has its optical path converted by a plane mirror (40), passes through a condensing lens (3), and then passes through a transmission window (4) into a vacuum chamber. (5) and the plane mirror (41
), the light path is again changed, and then the surface of the irradiated sample f4 (7) formed in a 5-ring shape is condensed and irradiated. At this time, the condenser lens (3) is arranged so as to be focused on the surface of the irradiated sample (7).

また、被照射試料(7)はリング中心軸の回りを任意速
度で回転し、さらに、リング中心軸方向に被照射試料(
7)の長さだけ揺動運動が可能なため、被照射試料(7
)全体を均一に加熱でき、試料を一様に蒸発させること
ができる。
In addition, the irradiated sample (7) rotates around the ring center axis at an arbitrary speed, and further, the irradiated sample (7) rotates in the direction of the ring center axis.
The irradiated sample (7) can be oscillated by the length of the irradiated sample (7).
) The entire area can be heated uniformly, and the sample can be evaporated uniformly.

レーザ光(10)の照射により、被照射試料(7)から
蒸発粒子が放出され、被照射試料(7)の対向部に配置
された基材(8)面に堆積する。基材(8)の前面に可
動のシャッタ(42)を設けておけば、蒸着時間を任意
に調整できる。また、被照射試料(7)が熱割れを生じ
やすい材質のものであれば、ヒタ(43)により被照射
試料(7)の外周を予熱することにより、被照射試料(
7)の破損を防止する。
By irradiation with the laser beam (10), evaporated particles are emitted from the irradiated sample (7) and deposited on the surface of the base material (8) disposed opposite to the irradiated sample (7). By providing a movable shutter (42) on the front surface of the base material (8), the deposition time can be adjusted as desired. In addition, if the irradiated sample (7) is made of a material that is prone to thermal cracking, the outer periphery of the irradiated sample (7) can be preheated by the heater (43).
7) Prevent damage.

[発明が解決しようとする課題] 従来のレーザ蒸着装置は以上のように構成されているの
で、レーザ光の被照射試料に対する吸収効率は必ずしも
最適化されておらず、したがって、蒸発粒子の堆積速度
を向上させるためにレーザパワーを上げるなどして対処
していた。しかし、この方法では、レーザ透過窓への熱
負荷を増大させ熱歪みを発生させる、被照射試料の温度
が上昇し破損を招くなどの問題点があった。
[Problems to be Solved by the Invention] Since the conventional laser evaporation apparatus is configured as described above, the absorption efficiency of the laser beam to the irradiated sample is not necessarily optimized, and therefore, the deposition rate of evaporated particles is In order to improve this, measures such as increasing the laser power were taken. However, this method has problems such as increasing the thermal load on the laser transmission window, causing thermal distortion, and increasing the temperature of the irradiated sample, leading to damage.

この発明は上記のような問題点を解消するためになされ
たもので、し−ザ光の被照射試料に対する吸収効率を最
適化し、高効率で被照射試料を加熱、蒸発できるレーザ
蒸着装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a laser evaporation apparatus that can heat and evaporate the irradiated sample with high efficiency by optimizing the absorption efficiency of laser light to the irradiated sample. The purpose is to

[課題を解決するための手段] この発明に係るレーザ蒸着装置は、ドーザ発振器から放
射される直線偏光のレーザ光を用い、しザ入射面内で振
動する光(以f! P波という)を適当な角度で被照射
試料に集光照射するようにしたものである。
[Means for Solving the Problems] A laser vapor deposition apparatus according to the present invention uses linearly polarized laser light emitted from a dozer oscillator to emit light (hereinafter referred to as f!P wave) that oscillates within the laser incidence plane. It is designed to irradiate the irradiated sample at an appropriate angle.

[作 用] この発明においては、レーザ光の被照射試料に対する吸
収効率を最適化しているのて、高効率で被照射試料を加
熱、蒸発てきる結果、レーザパワを上げることなく堆積
速度の向上が図れる。
[Function] In this invention, since the absorption efficiency of the laser beam to the irradiated sample is optimized, the irradiated sample can be heated and evaporated with high efficiency, and as a result, the deposition rate can be improved without increasing the laser power. I can figure it out.

[実施例コ 以下、この発明の一実施例を第1図、第2図について説
明する。
[Example 1] An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図において、(1)はレーザ発振器(図示せず)か
ら放射された直線偏光のレーザ光、くθ1)はレーザ光
(1)と被照射試料(7)面の垂線とのなす角(入射角
)である。
In Figure 1, (1) is a linearly polarized laser beam emitted from a laser oscillator (not shown), and θ1) is the angle ( angle of incidence).

その他、第3図と同一符号は同一ないし相当部分である
In addition, the same reference numerals as in FIG. 3 indicate the same or corresponding parts.

次に動作について説明する。レーザ発振器から放射され
た直線偏光のレーザ光(1)、たとえば直線偏光のC0
2レーザ光(波長: 10.6um)は、集光レンズ(
3)により集光されつつ、透過窓(4)、たとえばセレ
ン化亜鉛(ZnSe)製の窓を通して真空チャンバ(5
)内に配置された被照射試料(7)、例えば酸化シリコ
ン(SiO□)、アルミナ(^1203)等のセラミッ
クス試料表面に集光照射される。このとき、被照射試料
(7)表面でレーザ光(1)の焦点が結ばれるように、
集光レンズ(3)と被照射試料〈7〉の距離が前もって
調整されている。被照射試料(7)上にレーザ光(1)
が集光照射されることによって、被照射試料(7)表面
が加熱され、蒸発粒子か照射部の法線方向に放出され、
被照射試料(7)に対向して配置された基材(8)面に
堆積し、薄膜を形成する。
Next, the operation will be explained. Linearly polarized laser light (1) emitted from a laser oscillator, for example linearly polarized C0
2 laser beam (wavelength: 10.6um) is transmitted through a condensing lens (
3), the light passes through a transparent window (4), for example a window made of zinc selenide (ZnSe), into a vacuum chamber (5).
) The surface of the irradiated sample (7), for example, a ceramic sample such as silicon oxide (SiO□) or alumina (^1203), is irradiated with focused light. At this time, so that the laser beam (1) is focused on the surface of the irradiated sample (7),
The distance between the condenser lens (3) and the irradiated sample <7> is adjusted in advance. Laser light (1) on the irradiated sample (7)
As a result of the focused irradiation, the surface of the irradiated sample (7) is heated, and evaporated particles are emitted in the normal direction of the irradiated part.
It is deposited on the surface of the base material (8) placed facing the irradiated sample (7) to form a thin film.

本発明者らは、レーザ光(1)の被照射試料(7)への
照射に対してレーザ光(1)の偏光成分が被照射試料(
7)の吸収に密接に関連していることを見いだした。
The present inventors discovered that when the laser beam (1) irradiates the irradiated sample (7), the polarized component of the laser beam (1) changes to the irradiated sample (7).
7) was found to be closely related to absorption.

第2図は、例えば酸化シリコンの場合のレーザ光(1)
の偏光成分と被照射試料(7)の入射角に対する反射率
の関係を示したものである。図においてSは入射面(レ
ーザ光(1)と被照射試料(7)面の垂線から形成され
る面)に対して垂直に振動する光(以後S波という〉を
示し、Pは入射面に対して平行に振動する光(以後P波
という)を示している。
Figure 2 shows laser light (1) in the case of silicon oxide, for example.
This figure shows the relationship between the polarization component of the irradiated sample (7) and the reflectance with respect to the incident angle of the irradiated sample (7). In the figure, S indicates light (hereinafter referred to as S wave) that vibrates perpendicularly to the incident plane (the plane formed by the perpendicular line between the laser beam (1) and the surface of the irradiated sample (7)), and P indicates the incident plane. This shows light that vibrates parallel to the other side (hereinafter referred to as P wave).

またR、、RpはそれぞれS波、P波に対する反射率を
示している。この図から直線偏光成分としてP波を用い
、被照射試料(7)への入射角(θl)を50〜70度
の範囲とすれば、被照射試料(7)での反射がほとんど
ないことがわかる。すなわち入射面に対して平行に振動
するP波を被照射試料(7)に照射すると反射損失を極
力小さくできるため吸収効率を増大できる。
Further, R, and Rp indicate reflectances for S waves and P waves, respectively. This figure shows that if P waves are used as the linearly polarized component and the angle of incidence (θl) on the irradiated sample (7) is in the range of 50 to 70 degrees, there will be almost no reflection on the irradiated sample (7). Recognize. That is, by irradiating the irradiated sample (7) with P waves vibrating parallel to the plane of incidence, reflection loss can be minimized and absorption efficiency can be increased.

なお、上記実施例では、C02レーザ光を用いた場合に
ついて説明したが、Y肛し−ザ、エキシマレーザ、色素
し−ザ、ガラスレーザ等を用いた蒸着装置であってもよ
く、上記実施例と同様の効果を奏する8 「発明の効果] 以上のように、この発明によれば、直線偏光レーザを用
い、特に入射面に対して平行に振動する光(P波)を入
射角50〜70度の範囲で被照射試料に照射するように
したので、レーザ光は効率よく吸収され、蒸発速度を増
加できる結果、レーザパワーを上げることなく堆積速度
の向上が達成でき、エネルギー効率の高い装置が得られ
る効果がある。
In the above embodiments, a case was explained in which a C02 laser beam was used. However, a vapor deposition apparatus using a Y laser, an excimer laser, a dye laser, a glass laser, etc. may also be used. 8 "Effects of the Invention" As described above, according to the present invention, a linearly polarized laser is used to emit light (P waves) vibrating parallel to the incident plane at an incident angle of 50 to 70. Since the irradiated sample is irradiated within a range of There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の一部断両立面図、第2図
は同じく酸化シリコンを用いた場合の偏光成分と反射率
の関係線図、第3図は従来のし−ザ蒸着装置の一部断両
立面図である。 (1)・ 直線偏光のレーザ光、<3)   集光トン
グ、(4)   透過窓、(5)   真空チャシバ(
7)   ・被照射試料、(8)   基材。 なお、各図中、同一符号は同−又は相当部分を示す。 代  理  人     曾  我  道  照第1図 第2図 入射角 θt  (deg”3
Fig. 1 is a partial cross-sectional elevational view of an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between polarization components and reflectance when silicon oxide is used, and Fig. 3 is a diagram showing the relationship between the polarization component and the reflectance when silicon oxide is used. FIG. 2 is a partially cutaway elevational view of the device. (1) Linearly polarized laser light, <3) Focusing tongs, (4) Transmission window, (5) Vacuum chamber (
7) - Irradiated sample, (8) Base material. In each figure, the same reference numerals indicate the same or corresponding parts. Agent So Wado Teru Figure 1 Figure 2 Angle of incidence θt (deg”3

Claims (1)

【特許請求の範囲】 真空チャンバ内に配置された被照射試料にレーザ発振器
からのレーザ光をレンズおよび透過窓を介して集光照射
し、前記被照射試料からの蒸発物質を前記被照射試料に
対向して配置された基材面に堆積して薄膜を形成するレ
ーザ蒸着装置において、 前記レーザ発振器から放射される前記レーザ光を直線偏
光とし、前記レーザ光の前記被照射試料への入射面に対
して平行に振動する偏光成分を入射角50〜70度の範
囲で前記被照射試料に照射することを特徴とするレーザ
蒸着装置。
[Claims] A sample to be irradiated placed in a vacuum chamber is irradiated with focused laser light from a laser oscillator through a lens and a transmission window, and evaporated substances from the sample to be irradiated are transferred to the sample to be irradiated. In a laser evaporation apparatus that forms a thin film by depositing on substrate surfaces disposed opposite to each other, the laser beam emitted from the laser oscillator is linearly polarized, and the laser beam is incident on the incident surface of the irradiated sample. A laser evaporation apparatus characterized in that the sample to be irradiated is irradiated with a polarized light component vibrating parallel to the irradiated sample at an incident angle in the range of 50 to 70 degrees.
JP19803490A 1990-07-27 1990-07-27 Laser vapor deposition device Pending JPH0483866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19803490A JPH0483866A (en) 1990-07-27 1990-07-27 Laser vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19803490A JPH0483866A (en) 1990-07-27 1990-07-27 Laser vapor deposition device

Publications (1)

Publication Number Publication Date
JPH0483866A true JPH0483866A (en) 1992-03-17

Family

ID=16384435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19803490A Pending JPH0483866A (en) 1990-07-27 1990-07-27 Laser vapor deposition device

Country Status (1)

Country Link
JP (1) JPH0483866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622567A (en) * 1992-11-30 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Thin film forming apparatus using laser
WO2003018781A1 (en) * 2001-08-30 2003-03-06 The University Of Adelaide Regulation of cytotrophoblast cell differentiation and cell migration
JP2014133907A (en) * 2013-01-08 2014-07-24 Mitsubishi Electric Corp Film deposition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622567A (en) * 1992-11-30 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Thin film forming apparatus using laser
WO2003018781A1 (en) * 2001-08-30 2003-03-06 The University Of Adelaide Regulation of cytotrophoblast cell differentiation and cell migration
JP2014133907A (en) * 2013-01-08 2014-07-24 Mitsubishi Electric Corp Film deposition device

Similar Documents

Publication Publication Date Title
TWI303453B (en) Method for radiating laser and laser radiating system
JPH06302897A (en) Laser device, its operation method and application
JP2015092526A (en) Laser heating device
JP2919145B2 (en) Laser light irradiation device
JPH0483866A (en) Laser vapor deposition device
JPH02270962A (en) Sputtering device
JP2006272430A (en) Laser beam machining apparatus
JPH07240415A (en) Wiring repair and apparatus
JPH02272815A (en) Fine frequency adjustor for piezoelectric vibrator
JPH0368762A (en) Vapor-deposition device by laser
JP2014133907A (en) Film deposition device
JPH02301556A (en) Device for vapor deposition with laser
JP4418929B2 (en) Film formation by infrared ultrashort pulse laser
JP2518419B2 (en) Laser CVD equipment
JPH01208455A (en) Laser vacuum vapor deposition apparatus
JPH01246828A (en) Beam annealing device
JP4459409B2 (en) Vacuum deposition system
JPH0819517B2 (en) Laser vapor deposition method
JPH06226478A (en) Laser beam machine
JP2786738B2 (en) Laser processing equipment
JP2601682B2 (en) Beam annealing method and beam annealing apparatus
JPH0885865A (en) Formation of thin film by laser vapor depositing method
JPH02146000A (en) Manufacture of reflecting mirror with mutilayered membrane
JPS60216561A (en) Heat-treating method
JPH02248041A (en) Laser beam irradiation device