JPH0885865A - Formation of thin film by laser vapor depositing method - Google Patents

Formation of thin film by laser vapor depositing method

Info

Publication number
JPH0885865A
JPH0885865A JP6248501A JP24850194A JPH0885865A JP H0885865 A JPH0885865 A JP H0885865A JP 6248501 A JP6248501 A JP 6248501A JP 24850194 A JP24850194 A JP 24850194A JP H0885865 A JPH0885865 A JP H0885865A
Authority
JP
Japan
Prior art keywords
target
substrate
thin film
laser
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6248501A
Other languages
Japanese (ja)
Inventor
Ryuki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6248501A priority Critical patent/JPH0885865A/en
Priority to US08/527,212 priority patent/US6037313A/en
Priority to CA002158490A priority patent/CA2158490A1/en
Priority to DE69516784T priority patent/DE69516784T2/en
Priority to EP95114542A priority patent/EP0702416B1/en
Priority to KR1019950030322A priority patent/KR100276963B1/en
Publication of JPH0885865A publication Critical patent/JPH0885865A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce an oxide superconducting thin film of high quality having a large area, in a laser vapor depositing method in which a substrate is arranged vertically to the face of a target to be irradiated and the substrate and target are rotated, by scanning a laser beam on the surface of the target. CONSTITUTION: A target 5 is arranged at a target holder 45 in a sealed chamber 40 in which the pressure and atmosphere can be regulated and is rotated by a motor 47. Simultaneously, a substrate 6 is disposed at a substrate holder 46 vertically to the face of the target 5 to be irradiated and is rotated by a motor 36. A laser beam 10 oscillated by a laser device 1 is reflected by a mirror 2, is transmitted through a lens 3, passes through an incident window and converges on the target 5. In this case, when the face of the substrate 6 is extended in the direction of the target 5, the mirror 2 is rotated in such a manner that the laser beam scans the surface of the diameter of the target in the case of being crossed with the face of the target 5 to grow an oxide superconducting thin film on the face of the substrate 6 to be film-formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜の作製方法に関す
る。より詳細には、本発明は、レーザ蒸着法により高品
質の薄膜を作製する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a thin film. More specifically, the present invention relates to a method of producing a high quality thin film by laser vapor deposition.

【0002】[0002]

【従来の技術】レーザ蒸着法は、減圧下でターゲットに
高エネルギのレーザビームを照射し、蒸着物を発生させ
て基板上に薄膜を成長させる方法である。レーザ蒸着法
には、薄膜の組成の制御が容易で、成膜速度が高い等の
利点がある。また、一切の電磁場を必要としないので、
蒸着物中に荷電粒子が含まれていても、それが影響を受
けることがない。従って、高品質の薄膜を作製するのに
適した方法と考えられている。
2. Description of the Related Art A laser vapor deposition method is a method of irradiating a target with a high-energy laser beam under reduced pressure to generate a deposit and grow a thin film on a substrate. The laser vapor deposition method has advantages that the composition of the thin film can be easily controlled and that the film formation rate is high. Also, since it does not require any electromagnetic field,
The presence of charged particles in the deposit will not be affected. Therefore, it is considered to be a suitable method for producing a high quality thin film.

【0003】一方、酸化物超電導体は多元系の複合酸化
物であり、組成比が僅かでも適正値から外れると超電導
特性が大幅に低下する。上記のように、レーザ蒸着法で
は、成膜する薄膜の組成の制御が容易であるので、レー
ザ蒸着法を使用して特性の優れた酸化物超電導薄膜を作
製することが研究されている。例えば、社団法人電気学
会による光・量子デバイス研究会資料(資料番号OQD
−92−53)pp.69-77(1992年10月28日)には、エキシマ
レーザを使用したレーザ蒸着法により、高品質のY−Ba
−Cu−O系酸化物超電導薄膜を成膜する方法が開示され
ている。
On the other hand, the oxide superconductor is a multi-component complex oxide, and even if the composition ratio is a little off, the superconducting properties are significantly deteriorated. As described above, since the composition of the thin film to be formed is easily controlled by the laser vapor deposition method, research has been conducted on producing an oxide superconducting thin film having excellent characteristics by using the laser vapor deposition method. For example, the material of the Optical and Quantum Device Research Group by the Institute of Electrical Engineers of Japan (Document number OQD
-92-53) pp.69-77 (October 28, 1992), a high-quality Y-Ba was produced by a laser deposition method using an excimer laser.
A method of forming a -Cu-O-based oxide superconducting thin film is disclosed.

【0004】レーザ蒸着法で薄膜を作製する場合は、上
記の文献に示されているように、内部を高真空に排気可
能で、任意の雰囲気ガスを導入できるチャンバ内に基板
およびターゲットを配置し、チャンバ外部に配置したレ
ーザ装置の発するレーザ光を光学手段により誘導し、必
要に応じて集光してターゲットに照射していた。
When a thin film is formed by the laser deposition method, as shown in the above-mentioned document, the substrate and the target are placed in a chamber which can be evacuated to a high vacuum and into which an arbitrary atmospheric gas can be introduced. A laser beam emitted from a laser device arranged outside the chamber is guided by an optical means, and is condensed as necessary to irradiate a target.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
文献でも述べられているようにレーザ蒸着法は、成膜範
囲が狭く、大きな面積の薄膜を成膜することが困難であ
る。従って、レーザ蒸着法による成膜では、成膜速度そ
のものは速くても実質的な成膜効率が低い。そこで、本
発明の目的は、レーザ蒸着法により、面積が大きい高品
質の酸化物超電導薄膜を成膜する方法を提供することに
ある。
However, as described in the above document, the laser vapor deposition method has a narrow film forming range and it is difficult to form a thin film having a large area. Therefore, in the film formation by the laser vapor deposition method, the film formation rate itself is high, but the substantial film formation efficiency is low. Therefore, an object of the present invention is to provide a method for forming a high-quality oxide superconducting thin film having a large area by a laser deposition method.

【0006】[0006]

【課題を解決するための手段】本発明に従うと、内部の
圧力および雰囲気が調整可能な気密チャンバ内でターゲ
ットにレーザ光を照射して、ターゲットの被照射面に垂
直に配置した基板の成膜面上に酸化物超電導薄膜を成長
させる方法であって、基板を回転させ、且つレーザ光を
ターゲット上で走査して成膜を行うことを特徴とする酸
化物超電導薄膜の作製方法が提供される。
According to the present invention, a target is irradiated with laser light in an airtight chamber whose internal pressure and atmosphere can be adjusted to form a film on a substrate arranged perpendicularly to the surface to be irradiated of the target. A method for growing an oxide superconducting thin film on a surface, comprising: rotating a substrate and scanning a target with a laser beam to form a film. .

【0007】本発明の方法においては、レーザ光がター
ゲットを走査可能である最小の長さが、基板の代表長さ
の1/2よりも大きいことが好ましい。この場合、基板
の代表長さとは、基板が実質的に円形のときは基板の直
径の長さを意味し、基板が実質的に矩形のときは、基板
の対角線の長さを意味する。
In the method of the present invention, it is preferable that the minimum length by which the laser beam can scan the target is larger than 1/2 of the typical length of the substrate. In this case, the representative length of the substrate means the length of the diameter of the substrate when the substrate is substantially circular, and the length of the diagonal line of the substrate when the substrate is substantially rectangular.

【0008】一方、本発明の方法では、レーザ光の実質
的な走査速度を、基板の周辺部に対応する位置で遅く、
基板の中心部に対応する位置で速くすることが好まし
い。レーザ光の実質的な走査速度は、レーザ光の走査速
度を一定にしてレーザ光の走査を一時的に停止すること
で調整してもよい。
On the other hand, in the method of the present invention, the substantial scanning speed of the laser light is slowed at the position corresponding to the peripheral portion of the substrate,
It is preferable to increase the speed at a position corresponding to the center of the substrate. The substantial scanning speed of the laser light may be adjusted by keeping the scanning speed of the laser light constant and temporarily stopping the scanning of the laser light.

【0009】[0009]

【作用】本発明の方法は、レーザ蒸着法により酸化物超
電導薄膜を成膜する際に、基板をターゲットの被照射面
に垂直に配置し、基板およびターゲットを回転させると
ともにレーザ光をターゲット上で走査するところにその
主要な特徴がある。レーザ蒸着法において、基板をター
ゲットの被照射面に垂直に配置すると、レーザ光がター
ゲットに当たった部分から発生する、火炎状の形状のプ
ルームと呼ばれる蒸着物の発光に沿ってターゲットに近
い部分が厚く、プルームの中心線上が厚いプルームの形
状を反映した薄膜が成長する。
According to the method of the present invention, when the oxide superconducting thin film is formed by the laser vapor deposition method, the substrate is placed perpendicular to the irradiation surface of the target, the substrate and the target are rotated, and the laser beam is irradiated on the target. Where it scans is its main feature. In the laser vapor deposition method, when the substrate is placed perpendicular to the irradiation surface of the target, laser light is generated from the portion where the target hits, and a portion close to the target along the light emission of the deposit called a plume-shaped plume. A thin film grows that reflects the shape of the plume that is thick and thick on the plume centerline.

【0010】従って、本発明の方法では、膜厚分布を均
一化するために、プルームの側面が基板に均一に当たる
ようレーザ光を走査し、且つ基板を回転させる。本発明
の方法では、この目的のために、レーザ光がターゲット
を走査可能である最小の長さが、基板の代表長さ、すな
わち、基板の直径(円形の場合)、対角線(矩形の場
合)の長さの1/2よりも大きいことが好ましい。容易
に理解されるよう、ターゲットの大きさが上記の値より
も小さい場合には、プルームの側面を基板に均一に当た
るようレーザ光を走査することが不可能である。
Therefore, in the method of the present invention, in order to make the film thickness distribution uniform, the laser light is scanned so that the side surface of the plume hits the substrate uniformly, and the substrate is rotated. In the method of the present invention, for this purpose, the minimum length by which the laser light can scan the target is the representative length of the substrate, that is, the diameter of the substrate (for a circle), the diagonal line (for a rectangle). Is preferably greater than 1/2 of the length. As can be easily understood, when the size of the target is smaller than the above value, it is impossible to scan the laser light so that the side surface of the plume hits the substrate uniformly.

【0011】さらに、本発明の方法では、レーザ光の実
質的な走査速度を、基板の周辺部に対応する位置で遅
く、基板の中心部に対応する位置で速くすることによ
り、より均一な薄膜を成膜することができる。より具体
的には、回転している基板各部の線速度に反比例する
か、または負の相関関係を有するよう、対応する位置に
おけるレーザ光の実質的な走査速度を変化させることが
好ましい。
Further, in the method of the present invention, the substantial scanning speed of the laser beam is made slower at the position corresponding to the peripheral portion of the substrate and faster at the position corresponding to the central portion of the substrate, so that a more uniform thin film can be obtained. Can be formed. More specifically, it is preferable to change the substantial scanning speed of the laser light at the corresponding position so that it is inversely proportional to the linear velocity of each part of the rotating substrate or has a negative correlation.

【0012】しかしながら、実際にレーザ光の走査速度
を変化させることが困難である場合には、レーザ光の走
査を一時的に停止することで、レーザ光の実質的な走査
速度を調整してもよい。
However, when it is difficult to actually change the scanning speed of the laser light, even if the substantial scanning speed of the laser light is adjusted by temporarily stopping the scanning of the laser light. Good.

【0013】本発明の方法で使用する酸化物超電導体
は、Y1Ba2Cu37-X、Bi2Sr2Ca2Cu3x 、Tl2Ba2Ca2Cu3
x 等の高温酸化物超電導体が好ましく、また、レーザ
としてはエキシマレーザ、YAGレーザの高調波等を使
用することが好ましい。
The oxide superconductors used in the method of the present invention are Y 1 Ba 2 Cu 3 O 7-X , Bi 2 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3
A high-temperature oxide superconductor such as O x is preferable, and as the laser, it is preferable to use a harmonic wave of an excimer laser or a YAG laser.

【0014】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0015】[0015]

【実施例】図1(a)に、本発明の方法を実施するレーザ
蒸着装置の一例の概略図を示す。図1(a)のレーザ蒸着
装置は、レーザ装置1と、気密チャンバ40と、レーザ装
置1が発振したレーザ光10を集光し、チャンバ40内に誘
導するミラー2およびレンズ3とを具備する。ミラー2
およびレンズ3は、走査手段21により同期して動作し、
レーザ光を走査する。気密チャンバ40は、レーザ光10が
入射する入射窓41、排気手段42およびガス導入手段43を
備え、内部の圧力および雰囲気を任意に変更することが
可能である。また、気密チャンバ40の内部には、モータ
47により搭載したターゲット5を回転することが可能な
ターゲットホルダ45が、入射窓41から入射したレーザ光
10がターゲット5に当たるような位置に配置されてい
る。さらに、気密チャンバ40の内部には、基板6をター
ゲット5に対し垂直に搭載する基板ホルダ46が備えられ
る。基板ホルダ46は、モータ48により基板6を回転させ
ることが可能であり、且つ基板6の位置を軸方向および
軸に対し垂直な方向に移動させることも可能である。基
板ホルダ46には、ヒータ(不図示)が内蔵され、基板6
を加熱できる。
EXAMPLE FIG. 1 (a) shows a schematic view of an example of a laser vapor deposition apparatus for carrying out the method of the present invention. The laser vapor deposition apparatus shown in FIG. 1A includes a laser apparatus 1, an airtight chamber 40, a mirror 2 and a lens 3 that collect the laser light 10 oscillated by the laser apparatus 1 and guide it into the chamber 40. . Mirror 2
And the lens 3 operates in synchronization with the scanning means 21,
Scan with laser light. The airtight chamber 40 includes an entrance window 41 through which the laser light 10 is incident, an exhaust unit 42, and a gas introduction unit 43, and the internal pressure and atmosphere can be arbitrarily changed. In addition, inside the airtight chamber 40, the motor
The target holder 45, which can rotate the target 5 mounted by the 47, emits the laser light incident from the incident window 41.
The position 10 is arranged so as to hit the target 5. Further, inside the airtight chamber 40, a substrate holder 46 for mounting the substrate 6 perpendicularly to the target 5 is provided. The substrate holder 46 can rotate the substrate 6 by a motor 48, and can also move the position of the substrate 6 in the axial direction and the direction perpendicular to the axis. A heater (not shown) is built in the substrate holder 46, and the substrate 6
Can be heated.

【0016】レーザ装置1の発振したレーザ光10は、ミ
ラー2により反射され、レンズ3を透過し、入射窓41を
経てターゲット5上に集光される。本実施例において
は、基板面をターゲット方向に延長したときに、ターゲ
ット面と交わる時のターゲット直径を上をレーザ光を走
査するようにミラー2を回転動作する。レンズ3は、ミ
ラー2の回転動作に同期して、レーザ光を走査したとき
にレーザ光の光路により形成される平面上を、レーザ装
置1からレンズ3までの光路の長さをaとし、レンズ3
からターゲット5までの光路長さをbとしたときに、タ
ーゲット5上での縮小率b/aが一定となるよう二次元
動作を行う。ただし、レーザ装置1からレンズ3までの
光路の長さaがターゲット5の直径よりも十分大きい場
合は、レンズ3をターゲット5の被照射面の上記直径と
平行に一次元動作させても、上記縮小率b/aは実質的
に一定と見做せる。このような配置が可能な場合は、レ
ンズ3をターゲット5の被照射面の上記直径と平行に一
次元動作させる。レンズ3の焦点距離fは、1/f=1
/a+1/bとなるよう選択する。レーザ光10は図1
(b)に示すよう、ターゲット5上を走査する。レーザ光1
0がターゲット5に照射されると、被照射面にほぼ垂直
にプルームとよばれる発光が発生する。上記の装置で
は、基板6およびターゲット5を回転させ、レーザ光10
をターゲット5上で走査しながら照射することで、ター
ゲット5全体が使用され、且つプルームの側面が基板6
の表面に均一に当たり、均一な薄膜が成膜されるように
している。
The laser light 10 oscillated by the laser device 1 is reflected by the mirror 2, passes through the lens 3, and is focused on the target 5 through the entrance window 41. In this embodiment, when the substrate surface is extended in the target direction, the mirror 2 is rotated so that the laser beam is scanned over the target diameter when it intersects the target surface. In the lens 3, the length of the optical path from the laser device 1 to the lens 3 is a on the plane formed by the optical path of the laser light when the laser light is scanned in synchronization with the rotation operation of the mirror 2. Three
When the optical path length from the target to the target 5 is b, the two-dimensional operation is performed so that the reduction ratio b / a on the target 5 becomes constant. However, when the length a of the optical path from the laser device 1 to the lens 3 is sufficiently larger than the diameter of the target 5, even if the lens 3 is one-dimensionally operated in parallel with the diameter of the irradiated surface of the target 5, The reduction rate b / a can be regarded as substantially constant. When such an arrangement is possible, the lens 3 is one-dimensionally operated in parallel with the diameter of the irradiation surface of the target 5. The focal length f of the lens 3 is 1 / f = 1
/ A + 1 / b. Laser light 10 is shown in Figure 1.
The target 5 is scanned as shown in (b). Laser light 1
When 0 is irradiated on the target 5, light emission called a plume is generated almost perpendicularly to the surface to be irradiated. In the above apparatus, the substrate 6 and the target 5 are rotated and the laser light 10
By irradiating the target 5 while scanning the target 5, the entire target 5 is used and the side surface of the plume is the substrate 6
The film is evenly contacted with the surface of the to form a uniform thin film.

【0017】実施例1 上記のレーザ蒸着装置を使用して、ターゲット5のみを
回転させる従来の方法、ターゲット5および基板6を回
転させる従来の方法および本発明の方法で酸化物超電導
薄膜を成膜した。基板6には、直径75mm、厚さ0.4mmの
円板上のSi単結晶基板を使用し、ターゲット5には、直
径75mm、厚さ5mmの円板上のY1Ba2Cu37-X酸化物超電
導体の焼結体を使用した。以下、成膜工程を説明する。
Example 1 An oxide superconducting thin film is formed by the conventional method of rotating only the target 5, the conventional method of rotating the target 5 and the substrate 6, and the method of the present invention, using the above laser deposition apparatus. did. For the substrate 6, a Si single crystal substrate on a disk with a diameter of 75 mm and a thickness of 0.4 mm is used, and for the target 5, a Y 1 Ba 2 Cu 3 O 7- on a disk with a diameter of 75 mm and a thickness of 5 mm is used. A sintered body of X oxide superconductor was used. The film forming process will be described below.

【0018】最初に、ターゲット5をターゲットホルダ
45に、基板6を基板ホルダ46にセットした。気密チャン
バ40の内部を1×10-6Torrに排気してからO2 を導入
し、圧力を1Torrに調整した。図2に示すよう、基板6
とターゲット5とは、基板6の成膜面とターゲット5の
被照射面とが互いに垂直で、ターゲット5の被照射面の
中心に立つ法線が基板成膜面の中心を通るよう配置し
た。共通な成膜条件を以下に示す。 基板表面温度 300 ℃ 基板中心−ターゲット間距離 90 mm 酸素圧力 1 Torr レーザエネルギ(ターゲット上)330 mJ/パルス レーザ照射面積 4 × 1 mm2 レーザパルスレート 30 Hz ターゲットの回転速度 20 rpm 基板の回転速度 72 rpm 成膜時間 5 分間
First, the target 5 is attached to the target holder.
The substrate 6 was set on the substrate holder 46 at 45. The inside of the airtight chamber 40 was evacuated to 1 × 10 −6 Torr and then O 2 was introduced to adjust the pressure to 1 Torr. As shown in FIG. 2, the substrate 6
The target 5 and the target 5 are arranged such that the film formation surface of the substrate 6 and the irradiation surface of the target 5 are perpendicular to each other, and the normal line standing at the center of the irradiation surface of the target 5 passes through the center of the film formation surface of the substrate. The common film forming conditions are shown below. Substrate surface temperature 300 ° C Distance between substrate center and target 90 mm Oxygen pressure 1 Torr Laser energy (on target) 330 mJ / pulse Laser irradiation area 4 × 1 mm 2 Laser pulse rate 30 Hz Target rotation speed 20 rpm Substrate rotation speed 72 rpm Film formation time 5 minutes

【0019】本発明の方法では、レーザ光をターゲット
の基板成膜面に平行な直径の72mmの範囲を走査速度1.9
mm/秒で走査し、両走査端で4秒、両走査端からそれぞ
れ20mmおよび30mmの位置で0.4秒停止させた。その結
果、本発明の方法で成膜されたY1Ba2Cu37-X酸化物超
電導薄膜は、180 ±7nmの厚さであったが、ターゲット
のみを回転させた従来の方法では、100 〜1400nm、ま
た、ターゲットおよび基板の両方を回転させた従来の方
法では、200〜500nmの膜厚の分布が生じた。図3(a)〜
(c)に上記のそれぞれの方法により成膜された薄膜の膜
厚分布を図示する。図3(a)は、ターゲットのみを回転
させた従来の方法、図3(b)は、ターゲットおよび基板
の両方を回転させた従来の方法、図3(c)は、ターゲッ
トおよび基板の両方を回転させ、さらにレーザ光を走査
した本発明の方法により成膜されたY1Ba2Cu37-X酸化
物超電導薄膜の膜厚分布を図示したものである。
In the method of the present invention, the laser beam is scanned at a scanning speed of 1.9 within a range of 72 mm in diameter parallel to the target substrate film formation surface.
Scanning was performed at mm / sec, and the scanning was stopped for 4 seconds at both scanning ends and 0.4 seconds at 20 mm and 30 mm positions from both scanning ends, respectively. As a result, the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film formed by the method of the present invention had a thickness of 180 ± 7 nm, but in the conventional method in which only the target was rotated, The conventional method of rotating 100 to 1400 nm and both the target and substrate resulted in a film thickness distribution of 200 to 500 nm. Figure 3 (a)-
(c) illustrates the film thickness distribution of the thin film formed by each of the above methods. 3A is a conventional method in which only the target is rotated, FIG. 3B is a conventional method in which both the target and the substrate are rotated, and FIG. 3C is in which both the target and the substrate are rotated. 2 is a diagram showing the film thickness distribution of a Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film formed by the method of the present invention which is rotated and further scanned with a laser beam.

【0020】実施例2 図1に示したレーザ蒸着装置を使用して、本発明の方法
で酸化物超電導薄膜を成膜した。基板6には、直径75m
m、厚さ0.5mmの円板上のLaAlO3単結晶基板を使用し、
ターゲット5には、直径75mm、厚さ5mmの円板上のY1B
a2Cu37-X酸化物超電導体の焼結体を使用した。
Example 2 An oxide superconducting thin film was formed by the method of the present invention using the laser deposition apparatus shown in FIG. The substrate 6 has a diameter of 75 m
m, using a 0.5 mm thick LaAlO 3 single crystal substrate on a disk,
The target 5 is Y 1 B on a disk with a diameter of 75 mm and a thickness of 5 mm.
A sintered body of a 2 Cu 3 O 7-X oxide superconductor was used.

【0021】ターゲット5および基板6を実施例1と同
様にセットし、気密チャンバ40の内部を1×10-6Torrに
排気してからO2 を導入し、圧力を1Torrに調整した。
成膜条件を以下に示す。 基板表面温度 650 〜690 ℃ 基板中心−ターゲット間距離 90 mm 酸素圧力 1 Torr レーザエネルギ(ターゲット上)330 mJ/パルス レーザ照射面積 4 × 1 mm2 レーザパルスレート 30 Hz ターゲットの回転速度 20 rpm 基板の回転速度 72 rpm 成膜時間 10 分間
The target 5 and the substrate 6 were set in the same manner as in Example 1, the inside of the hermetic chamber 40 was evacuated to 1 × 10 -6 Torr, and then O 2 was introduced to adjust the pressure to 1 Torr.
The film forming conditions are shown below. Substrate surface temperature 650 to 690 ℃ Substrate center-target distance 90 mm Oxygen pressure 1 Torr Laser energy (on target) 330 mJ / pulse Laser irradiation area 4 × 1 mm 2 Laser pulse rate 30 Hz Target rotation speed 20 rpm Rotation speed 72 rpm Film formation time 10 minutes

【0022】実施例1と同様、レーザ光をターゲットの
直径の72mmの範囲を走査速度1.9 mm/秒で走査し、両走
査端で4秒、両走査端からそれぞれ20mmおよび30mmの位
置で0.4秒停止させて成膜を行った。その結果、得られ
た薄膜は、基板全面において平滑であり、平均220nmの
厚さで、±4%の膜厚分布しか有していなかった。さら
に、臨界温度も88〜91Kの範囲であり、極めて均一性が
高い高品質の薄膜であった。図4に本実施例で得られた
薄膜の膜厚分布、図5に臨界温度の分布を示す。
Similar to the first embodiment, laser light was scanned at a scanning speed of 1.9 mm / sec over a range of the target diameter of 72 mm for 4 sec at both scanning ends, and 0.4 sec at 20 mm and 30 mm positions from both scanning ends, respectively. The film formation was performed after stopping. As a result, the obtained thin film was smooth on the entire surface of the substrate, had an average thickness of 220 nm, and had a film thickness distribution of ± 4%. Furthermore, the critical temperature was in the range of 88 to 91 K, and the film was a high quality thin film with extremely high uniformity. FIG. 4 shows the film thickness distribution of the thin film obtained in this example, and FIG. 5 shows the critical temperature distribution.

【0023】実施例3 実施例2と等しい条件で、ターゲットの大きさおよび配
置、およびレーザ光の走査方法を変えて、本発明の方法
でY1Ba2Cu37-X酸化物超電導薄膜の成膜を行った。本
実施例では、基板6には、直径75mm、厚さ0.5mmの円板
上のLaAlO3単結晶基板を使用し、ターゲット5には、
直径38mm、厚さ5mmの円板上のY1Ba2Cu37-X酸化物超
電導体の焼結体を使用した。図6に示すよう、基板6と
ターゲット5とは、基板6の成膜面とターゲット5の被
照射面とが互いに垂直で、ターゲット5の被照射面に立
つ法線が基板6の成膜面と平行で且つ基板面と重なるよ
うに配置した。さらにターゲット5の直径は基板6の直
径の1/2より大きく、その端部における法線が基板の
中心を通るよう配置した。具体的な一例として、ターゲ
ット5の端から0.5 mmにおける法線が基板6の中心を通
るよう配置した。
Example 3 Under the same conditions as in Example 2, the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film was formed by the method of the present invention by changing the size and arrangement of the target and the laser beam scanning method. Was formed. In this embodiment, a disk-shaped LaAlO 3 single crystal substrate having a diameter of 75 mm and a thickness of 0.5 mm is used as the substrate 6, and the target 5 is
A sintered body of Y 1 Ba 2 Cu 3 O 7-X oxide superconductor on a disk having a diameter of 38 mm and a thickness of 5 mm was used. As shown in FIG. 6, with respect to the substrate 6 and the target 5, the film formation surface of the substrate 6 and the irradiation surface of the target 5 are perpendicular to each other, and the normal line standing on the irradiation surface of the target 5 is the film formation surface of the substrate 6. It was arranged so as to be parallel to and overlap with the substrate surface. Further, the diameter of the target 5 was larger than ½ of the diameter of the substrate 6, and the target 5 was arranged so that the normal line at its end passes through the center of the substrate. As a specific example, the normal line at 0.5 mm from the end of the target 5 is arranged so as to pass through the center of the substrate 6.

【0024】レーザ光はターゲットの直径の36mmの範囲
を走査速度1.9 mm/秒で走査し、基板の周辺に対応する
走査端で4秒、この走査端からそれぞれ20mmおよび30mm
の位置で0.4秒停止させて成膜を行った。その結果、得
られた薄膜は、基板全面において平滑であり、平均220n
m の厚さで、±4%以下の膜厚分布しか有していなかっ
た。さらに、臨界温度も基板全面において、88〜91Kの
範囲であり、極めて均一性が高い高品質の薄膜であっ
た。
The laser light scans a range of 36 mm of the target diameter at a scanning speed of 1.9 mm / sec, and the scanning edge corresponding to the periphery of the substrate is 4 seconds, and 20 mm and 30 mm from the scanning edge, respectively.
The film was formed by stopping for 0.4 seconds at the position. As a result, the obtained thin film was smooth on the entire surface of the substrate, and had an average of 220n.
It had a thickness distribution of ± 4% or less at a thickness of m 2. Further, the critical temperature was in the range of 88 to 91 K on the entire surface of the substrate, and it was a high quality thin film with extremely high uniformity.

【0025】実施例4 実施例2と等しい条件で、ターゲットの走査方法のみを
変えて、本発明の方法でY1Ba2Cu37-X酸化物超電導薄
膜の成膜を行った。本実施例では、レーザ光はターゲッ
トの直径の74mmの範囲を両走査端で0.1秒停止し、ター
ゲットの中心で25mm/秒の走査速度で、その間の走査速
度がターゲットの回転中心からの距離の2乗に反比例す
る走査速度で、ターゲットの回転中心に対して対称的に
走査した。その結果、得られた薄膜は、基板全面におい
て平滑であり、平均220nm の厚さで、±3%膜厚分布し
か有していなかった。さらに、臨界温度も基板全面にお
いて、88〜91Kの範囲であり、極めて均一性が高い高品
質の薄膜であった。図7に本実施例で得られた薄膜の膜
厚分布、図8に臨界温度の分布を示す。
Example 4 A Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film was formed by the method of the present invention under the same conditions as in Example 2 except that only the target scanning method was changed. In this embodiment, the laser beam stops the range of 74 mm of the target diameter for 0.1 seconds at both scanning ends, and the scanning speed is 25 mm / second at the center of the target, and the scanning speed during that time is the distance from the rotation center of the target. Scanning was performed symmetrically with respect to the center of rotation of the target at a scanning speed inversely proportional to the square. As a result, the obtained thin film was smooth on the entire surface of the substrate, had an average thickness of 220 nm, and had only a ± 3% film thickness distribution. Further, the critical temperature was in the range of 88 to 91 K on the entire surface of the substrate, and it was a high quality thin film with extremely high uniformity. FIG. 7 shows the film thickness distribution of the thin film obtained in this example, and FIG. 8 shows the distribution of the critical temperature.

【0026】実施例5 実施例3と等しい条件で、ターゲットの走査方法のみを
変えて、本発明の方法でY1Ba2Cu37-X酸化物超電導薄
膜の成膜を行った。本実施例では、レーザ光はターゲッ
トの直径の37mmの範囲を基板の周辺部に対応する走査端
で0.1秒停止し、基板の回転中心に対応する走査端で25m
m/秒の走査速度で、その間の走査速度がターゲットの
回転中心からの距離の2乗に反比例する走査速度で走査
した。その結果、得られた薄膜は、基板全面において平
滑であり、平均220nm の厚さで、±3の膜厚分布しか有
していなかった。さらに、臨界温度も基板全面におい
て、88〜91Kの範囲であり、極めて均一性が高い高品質
の薄膜であった。
Example 5 A Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film was formed by the method of the present invention under the same conditions as in Example 3 except that only the target scanning method was changed. In the present embodiment, the laser light stops the range of 37 mm of the diameter of the target for 0.1 seconds at the scanning end corresponding to the peripheral portion of the substrate, and 25 m at the scanning end corresponding to the rotation center of the substrate.
Scanning was performed at a scanning speed of m / sec, during which the scanning speed was inversely proportional to the square of the distance from the center of rotation of the target. As a result, the obtained thin film was smooth on the entire surface of the substrate, had an average thickness of 220 nm, and had a film thickness distribution of ± 3. Further, the critical temperature was in the range of 88 to 91 K on the entire surface of the substrate, and it was a high quality thin film with extremely high uniformity.

【0027】[0027]

【発明の効果】以上説明したように、本発明の方法によ
れば、平滑で、膜厚分布および臨界温度の分布が小さ
く、大きな面積の高品質の酸化物超電導薄膜が、レーザ
蒸着法で成膜可能である。レーザ蒸着法は、成膜速度が
速く、装置が簡単なので、本発明に従えば、高品質な酸
化物超電導薄膜を低コストで作製することができる。
As described above, according to the method of the present invention, a high-quality oxide superconducting thin film having a smooth surface, a small film thickness distribution and a small critical temperature distribution and a large area is formed by the laser deposition method. Membrane is possible. According to the present invention, a high-quality oxide superconducting thin film can be produced at low cost because the laser deposition method has a high film forming rate and a simple apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の方法を実施する装置の概略図
であり、(b) は、(a)の装置の特徴的な部分の配置を示
す概略図である。
FIG. 1 (a) is a schematic view of an apparatus for carrying out the method of the present invention, and (b) is a schematic view showing the arrangement of characteristic parts of the apparatus of (a).

【図2】実施例1、2および4における基板とターゲッ
トとの配置を示す図である。
FIG. 2 is a diagram showing an arrangement of a substrate and a target in Examples 1, 2 and 4.

【図3】従来の方法により成膜された酸化物超電導薄膜
および本発明の方法により成膜された酸化物超電導薄膜
の膜厚分布を示す図である。(a)および(b)が従来の方法
により成膜された酸化物超電導薄膜の膜厚分布を示し、
(c)が、本発明の方法により成膜された酸化物超電導薄
膜の膜厚分布を示す。
FIG. 3 is a diagram showing film thickness distributions of an oxide superconducting thin film formed by a conventional method and an oxide superconducting thin film formed by a method of the present invention. (a) and (b) shows the film thickness distribution of the oxide superconducting thin film formed by the conventional method,
(c) shows the film thickness distribution of the oxide superconducting thin film formed by the method of the present invention.

【図4】本明細書に記載した実施例において、本発明の
方法により成膜された酸化物超電導薄膜の膜厚分布を示
す図である。
FIG. 4 is a diagram showing a film thickness distribution of an oxide superconducting thin film formed by the method of the present invention in the examples described in the present specification.

【図5】図4の結果が得られた実施例において、本発明
の方法により成膜された酸化物超電導薄膜の臨界温度の
分布を示す図である。
5 is a diagram showing a distribution of critical temperature of an oxide superconducting thin film formed by the method of the present invention in the example in which the result of FIG. 4 was obtained.

【図6】実施例3および5における基板とターゲットと
の配置を示す図である。
FIG. 6 is a diagram showing an arrangement of a substrate and a target in Examples 3 and 5.

【図7】本明細書に記載した他の実施例において、本発
明の方法により成膜された酸化物超電導薄膜の膜厚分布
を示す図である。
FIG. 7 is a diagram showing a film thickness distribution of an oxide superconducting thin film formed by the method of the present invention in another example described in the present specification.

【図8】図7の結果が得られた実施例において、本発明
の方法により成膜された酸化物超電導薄膜の臨界温度の
分布を示す図である。
8 is a diagram showing a distribution of critical temperature of an oxide superconducting thin film formed by the method of the present invention in the example in which the result of FIG. 7 was obtained.

【符号の説明】[Explanation of symbols]

1 レーザ装置 2 ミラー 3 レンズ 5 ターゲット 6 基板 10 レーザ光 40 気密チャンバ 41 入射窓 42 排気手段 45 ターゲットホルダ 46 基板ホルダ 1 Laser Device 2 Mirror 3 Lens 5 Target 6 Substrate 10 Laser Light 40 Airtight Chamber 41 Entrance Window 42 Exhaust Means 45 Target Holder 46 Substrate Holder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部の圧力および雰囲気が調整可能な気
密チャンバ内でターゲットにレーザ光を照射して、ター
ゲットの被照射面に垂直に配置した基板の成膜面上に薄
膜を成長させる方法であって、基板を回転させ、且つレ
ーザ光をターゲット上で走査して成膜を行うことを特徴
とするレーザ蒸着法による薄膜の作製方法。
1. A method of irradiating a target with a laser beam in an airtight chamber in which an internal pressure and an atmosphere can be adjusted to grow a thin film on a film forming surface of a substrate arranged perpendicularly to a surface to be irradiated of the target. A method of forming a thin film by a laser vapor deposition method, characterized in that the substrate is rotated, and a film is formed by scanning a laser beam on a target.
【請求項2】 レーザ光がターゲットを走査可能である
最小の長さが、基板の代表長さの1/2よりも大きいこ
とを特徴とする請求項1に記載のレーザ蒸着法による薄
膜の作製方法。
2. The production of a thin film by the laser deposition method according to claim 1, wherein the minimum length by which the laser light can scan the target is larger than 1/2 of the typical length of the substrate. Method.
【請求項3】 レーザ光の実質的な走査速度を、基板の
周辺部に対応する位置で遅く、基板の中心部に対応する
位置で速くすることを特徴とする請求項1または2に記
載のレーザ蒸着法による薄膜の作製方法。
3. The scanning speed of the laser beam is slowed at a position corresponding to the peripheral portion of the substrate and is increased at a position corresponding to the central portion of the substrate. Method of forming thin film by laser deposition method.
【請求項4】 レーザ光の実質的な走査速度を、レーザ
光の走査を一時的に停止させることで調整することを特
徴とする請求項3に記載のレーザ蒸着法による薄膜の作
製方法。
4. The method for producing a thin film by the laser vapor deposition method according to claim 3, wherein the substantial scanning speed of the laser light is adjusted by temporarily stopping the scanning of the laser light.
JP6248501A 1994-09-16 1994-09-16 Formation of thin film by laser vapor depositing method Pending JPH0885865A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6248501A JPH0885865A (en) 1994-09-16 1994-09-16 Formation of thin film by laser vapor depositing method
US08/527,212 US6037313A (en) 1994-09-16 1995-09-12 Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
CA002158490A CA2158490A1 (en) 1994-09-16 1995-09-14 Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
DE69516784T DE69516784T2 (en) 1994-09-16 1995-09-15 Method and device for applying a superconducting layer to the surface of a substrate by means of extra-axial laser ablation
EP95114542A EP0702416B1 (en) 1994-09-16 1995-09-15 Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
KR1019950030322A KR100276963B1 (en) 1994-09-16 1995-09-16 Method and apparatus for depositing superconducting layer on substrate surface by off-axis laser fusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6248501A JPH0885865A (en) 1994-09-16 1994-09-16 Formation of thin film by laser vapor depositing method

Publications (1)

Publication Number Publication Date
JPH0885865A true JPH0885865A (en) 1996-04-02

Family

ID=17179118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6248501A Pending JPH0885865A (en) 1994-09-16 1994-09-16 Formation of thin film by laser vapor depositing method

Country Status (1)

Country Link
JP (1) JPH0885865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105530A (en) * 2001-09-27 2003-04-09 Vacuum Products Kk Laser abrasion device
CN104532194A (en) * 2014-12-29 2015-04-22 深圳大学 Manufacturing device of laser depositing film
CN110144553A (en) * 2019-04-09 2019-08-20 复旦大学 Large area atom level precision laser MBE grown preparation system and method
CN114703455A (en) * 2022-02-21 2022-07-05 松山湖材料实验室 Method and device for preparing combined film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105530A (en) * 2001-09-27 2003-04-09 Vacuum Products Kk Laser abrasion device
CN104532194A (en) * 2014-12-29 2015-04-22 深圳大学 Manufacturing device of laser depositing film
CN110144553A (en) * 2019-04-09 2019-08-20 复旦大学 Large area atom level precision laser MBE grown preparation system and method
CN110144553B (en) * 2019-04-09 2024-04-23 复旦大学 Large-area atomic-level precision laser molecular beam epitaxial film preparation system and method
CN114703455A (en) * 2022-02-21 2022-07-05 松山湖材料实验室 Method and device for preparing combined film

Similar Documents

Publication Publication Date Title
JP3255469B2 (en) Laser thin film forming equipment
JPH0870144A (en) Manufacture of superconductor parts
EP0702416B1 (en) Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
US5478398A (en) Device for forming a compound oxide superconductor thin film
US5281575A (en) Laser ablation method for forming oxide superconducting films
JPH0885865A (en) Formation of thin film by laser vapor depositing method
JPH04104901A (en) Production of oxide superconducting thin film
JP3877903B2 (en) Thin film formation method
JPH01309956A (en) Production of oxide superconductor
JPH03174306A (en) Production of oxide superconductor
JP3080096B2 (en) Fabrication method of large area thin film
JP3399184B2 (en) Method of forming thin film by laser evaporation method
JPH08225931A (en) Formation of thin film by laser vapor deposition method
JPH11246965A (en) Formation of thin film by laser vapor deposition method and laser vapor deposition device used for the method
JP2001140059A (en) Film deposition method by laser evaporation
KR100393184B1 (en) Apparatus for fabricating a high-tc superconducting film using pulsed laser deposition and method thereof
JPH08333674A (en) Formation of large surface area thin film by laser deposition method and device therefor
JPH03287760A (en) Production of thin film with large area
EP0526331A2 (en) Method for preparing a superconducting thin film of compound oxide
JPH01215963A (en) Formation of thin superconducting film
JPH03174305A (en) Production of oxide superconductor
CN2245620Y (en) Laser automatic granular removing device for coating system
JPH07224376A (en) Formation of thin film by laser application method
JPH07166334A (en) Production of vapor-deposited film
JP2000319097A (en) Method for forming thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730