JPS5870536A - Laser annealing method - Google Patents

Laser annealing method

Info

Publication number
JPS5870536A
JPS5870536A JP16953381A JP16953381A JPS5870536A JP S5870536 A JPS5870536 A JP S5870536A JP 16953381 A JP16953381 A JP 16953381A JP 16953381 A JP16953381 A JP 16953381A JP S5870536 A JPS5870536 A JP S5870536A
Authority
JP
Japan
Prior art keywords
sample
heated
temperature
gas injection
laser annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16953381A
Other languages
Japanese (ja)
Inventor
Toshihiko Osada
俊彦 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16953381A priority Critical patent/JPS5870536A/en
Publication of JPS5870536A publication Critical patent/JPS5870536A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To execute a laser annealing with less limitaiton in preheating temperature by floating a sample to be treated to a predetermined position by means of an inert gas flow and preheating the sample by a microwave heating method. CONSTITUTION:A sample 1 is placed on a gas injection board 4 with its poly-Si layer directed upward, and N2 of 100 deg.C is introduced from a port 6 and jetted out from holes 5. This causes the sample to float up to contact pawls. Next the sample 1 is heated up to approximately 400 deg.C by operating a high-frequency power source 3. If the sample 1 is heated up, the gas injection board does not absorb the microwave and its temperature is not raised up because it is a hollow flat construction which is made of glass plate etc. Furthermore, as the radiating direction of the high-frequency power source 3 can be limited only toward the sample 1 by an adequate designing, an XY table 2 is not also heated up. Anything other than the sample 1 is not heated up, and the sample 1 is under non-contact state except against the pawls 7, accordingly the sample can be heated up to any required temperature without thermal conduction from the sample. Then, the poly-Si is heated up to the order of 1,400 deg.C by irradiation of a CW laser 8, and a single crystal can be obtained without any influence onto the device.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はレーザアニール方法に関し、特にレーザビ−ム
を施こすべき被処理基板の予備加熱方法に関する。 半導体基板或いは半導体層表面をレーザビームで走査し
加熱するレーザアニール法は、酸化膜上の多結晶シリコ
ンの単結晶化やイオン注入によシ生じた半導体結晶のダ
メージの除去や、シリコン(Sl)基板表面に被着せし
め九金属層をyyサイド化するのに用いられている0例
えば上述の酸化膜上の多結晶シリコンの単結晶化等を行
なうには被処理試料表面のレーザビーム照射部分を局部
的ではあるが1100[℃]、戚いは1400[’C]
という高温に加熱しなければならない。ところが現在実
用に供されているレーザは上記目的に対して出力が不足
し、試料を所望温度まで昇温するには何らかの手段によ
シ予備加熱を施ζすことが必要である。 そこで従来は試料を搭載するX−Yステージ上に、試料
を予備加熱する丸めのヒータを設ける等の手段が用いら
れてい丸。そのためX−Yステージやその他の部分に水
冷機構を設けて、レーザアニール装置を保護していた。 かかる従来の予備加熱方法では、予備加熱により昇温し
得る試料の温度範囲が制約されるのみならず、水冷を必
要とするためレーザアニール装置が複雑となるという問
題があった。 本発明の目的は予備加熱温度に対する制約の少ないレー
ザアニール方法を提供する仁とにあシ、この目的線本発
明において、被処理試料を不活性ガス流によシ被処理試
料を所定位置に浮上せしめ、この浮上せる被処理試料を
予めマイクロ波加熱法によシ加熱外温せしめておくこと
によシ達成される。 第1図及び第2図は本発明の一実施例を説明するための
図で、第1図は一実施例に用いたレーザアニール装置の
要部正面断面図、第2図は第1図の上面図である。 両図において、1は被処理試料で例えば゛Vリコシ(S
i)基板、2はX−YX?−ジ、3はマイクロ波源、4
はガス噴射板、5はガス噴射口、6はガス導入口、7は
爪、8はレーザビームである。 上記中、マイクロ波源3は例えばマグネトロンを用いて
作成できる。ガス噴射板4はマイクロ波を吸収しない材
質、例えばガラス板等を用いて中空平板状に作成し、上
面には複数個のガス噴射口5を設けておく。爪7はガス
を噴射されてガス噴射板4上よシ浮上した試料1を所定
位置に停止させるためのス)ツバである。 次に上記装置を月いて、試料1表面に形成した晶化する
方法を一例として掲げて説明する。 先ず試料1を多結晶Fリコン層(図示せず)を上側に向
けてガス噴射板4上に載置し、ガス導入口6よシ予め1
00[”0]程度に加熱した憲素(N、)ガスを導入し
、ガス噴射口5よシ噴射させることにより、試料1は浮
上し、爪7に当って停止すムN、ガスを予め加熱してお
くのは、ガス流によって試料1からうばわれる熱量を減
少させるためである。 次いでマイクロ波源3を作動させて試料1を加熱する。 このとき、マイクロ波の周波数的2.7[GHzl、出
力的200[W]で試料1は凡そ400
The present invention relates to a laser annealing method, and more particularly to a method for preheating a substrate to be processed to which a laser beam is applied. The laser annealing method, in which the surface of a semiconductor substrate or semiconductor layer is scanned and heated with a laser beam, is used to convert polycrystalline silicon on an oxide film into a single crystal, to remove damage to semiconductor crystals caused by ion implantation, and to remove damage to semiconductor crystals caused by ion implantation. For example, to single-crystallize polycrystalline silicon on the oxide film mentioned above, the part of the surface of the sample to be processed that is irradiated with the laser beam is Although it is local, it is 1100 [°C], and its relatives are 1400 ['C]
It must be heated to a high temperature. However, the lasers currently in practical use have insufficient output for the above purpose, and it is necessary to preheat the sample by some means in order to raise the temperature to the desired temperature. Conventionally, therefore, measures such as providing a round heater to preheat the sample on the X-Y stage on which the sample is mounted have been used. Therefore, a water cooling mechanism was provided in the X-Y stage and other parts to protect the laser annealing device. Such conventional preheating methods not only limit the temperature range of the sample that can be heated by preheating, but also require water cooling, which complicates the laser annealing apparatus. An object of the present invention is to provide a laser annealing method with fewer restrictions on preheating temperature. This is achieved by heating the sample to be floated to an external temperature in advance using a microwave heating method. 1 and 2 are diagrams for explaining one embodiment of the present invention. FIG. 1 is a front cross-sectional view of the main part of a laser annealing apparatus used in one embodiment, and FIG. FIG. In both figures, 1 is a sample to be processed, for example,
i) Board, 2 is X-YX? - di, 3 is microwave source, 4
5 is a gas injection plate, 5 is a gas injection port, 6 is a gas introduction port, 7 is a claw, and 8 is a laser beam. Among the above, the microwave source 3 can be created using, for example, a magnetron. The gas injection plate 4 is formed into a hollow flat plate using a material that does not absorb microwaves, such as a glass plate, and a plurality of gas injection ports 5 are provided on the upper surface. The claw 7 is a collar for stopping the sample 1 which has been injected with gas and floated above the gas injection plate 4 at a predetermined position. Next, an example of a method of crystallization formed on the surface of the sample 1 by using the above-mentioned apparatus will be described. First, place the sample 1 on the gas injection plate 4 with the polycrystalline F silicon layer (not shown) facing upward, and place the sample 1 in advance through the gas inlet 6.
By introducing N gas heated to about 0.00 ["0] and injecting it through the gas injection port 5, the sample 1 floats up and stops when it hits the claw 7. The reason for heating is to reduce the amount of heat carried away from the sample 1 by the gas flow. Next, the microwave source 3 is activated to heat the sample 1. At this time, the microwave frequency is 2.7 [GHzl]. , sample 1 has an output of approximately 400 [W].

【℃】に加熱さ
れる。試料1がこのように加熱されても、ガス噴射板4
は前述した如くマイクロ波を吸収しないので温度は上ら
ない。またマイクロ波源5の設計を適切に行なうことに
よシマイクロ波の放射方向を試料1の方向に限定し得る
ので、X−Yステージ2等が加熱されることもない。 上述の如く本実施例においては、試料1以外は加熱され
ることがなく、また試料1は爪7を除いて非接触の状態
とされているので、試料1からの熱伝導によって他の部
分が昇温することもない。 従って他へ悪影響を及ぼすことなく試料を所望の温度に
加熱し得る。 以上の如く試料1を予め凡そ400
It is heated to [℃]. Even if the sample 1 is heated in this way, the gas injection plate 4
As mentioned above, the temperature does not rise because it does not absorb microwaves. Furthermore, by appropriately designing the microwave source 5, the radiation direction of the microwave can be limited to the direction of the sample 1, so that the XY stage 2 and the like will not be heated. As mentioned above, in this example, nothing other than sample 1 is heated, and sample 1 is in a non-contact state except for claw 7, so other parts are heated by heat conduction from sample 1. There is no rise in temperature. Therefore, the sample can be heated to a desired temperature without adversely affecting others. As mentioned above, sample 1 is prepared in advance at approximately 400 ml.

【℃】に加熱してお
けば、通常用いられる出力的20 [mX ]のCWv
−ザーを用いて前記多結晶シリコン層を走査することに
よ)、多結晶yyコン層は溶融温度の1400(”C1
程度まで昇温し、単結晶化される。 以上説明した如く本発明によれば、レーザビ−ム を及ぼすことなく、被処理試料を所望の温度に予備加熱
することが可能になる。
If heated to [℃], the normally used output power of 20 [mX] CWv
- by scanning the polycrystalline silicon layer with a
The temperature is raised to a certain degree, and it becomes a single crystal. As explained above, according to the present invention, it is possible to preheat a sample to be processed to a desired temperature without applying a laser beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示す要部正面断
面図及び要部上面図である。 図にお−て、1は被処理試料、3はマイクロ波源、4は
ガス噴射板、5はガス噴射口、8はレーザビームを示す
。 第1図 第2図
FIGS. 1 and 2 are a front sectional view and a top view of essential parts showing an embodiment of the present invention. In the figure, 1 is a sample to be processed, 3 is a microwave source, 4 is a gas injection plate, 5 is a gas injection port, and 8 is a laser beam. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 被処理試料表面にレーザアニールを施こすKWlし、前
記被処理試料背面に向けて下方より不活性ガスを噴射し
て被処理試料を所定位置に浮上せし工 め、該浮遊せる被処理試料をマイクロ波加熱法により予
め所定温度に昇温しておくことを特徴とするレーザアニ
ール方法。
[Claims] Laser annealing is performed on the surface of the sample to be processed, and inert gas is injected from below toward the back surface of the sample to be processed to levitate the sample to a predetermined position. A laser annealing method characterized by heating a floating sample to a predetermined temperature using microwave heating.
JP16953381A 1981-10-22 1981-10-22 Laser annealing method Pending JPS5870536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16953381A JPS5870536A (en) 1981-10-22 1981-10-22 Laser annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16953381A JPS5870536A (en) 1981-10-22 1981-10-22 Laser annealing method

Publications (1)

Publication Number Publication Date
JPS5870536A true JPS5870536A (en) 1983-04-27

Family

ID=15888253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16953381A Pending JPS5870536A (en) 1981-10-22 1981-10-22 Laser annealing method

Country Status (1)

Country Link
JP (1) JPS5870536A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223112A (en) * 1984-04-20 1985-11-07 Agency Of Ind Science & Technol Heat treatment device for semiconductor
US4678432A (en) * 1984-11-26 1987-07-07 Dainippon Screen Mfg. Co., Ltd. Heat treatment method
GB2406710A (en) * 2000-12-04 2005-04-06 Vortek Ind Ltd Heat-treating methods and systems
US6941063B2 (en) 2000-12-04 2005-09-06 Mattson Technology Canada, Inc. Heat-treating methods and systems
JP2009194370A (en) * 2008-01-16 2009-08-27 Semiconductor Energy Lab Co Ltd Laser treatment equipment and semiconductor substrate preparing method
WO2011096326A1 (en) * 2010-02-04 2011-08-11 富士電機システムズ株式会社 Process for production of semiconductor element, and device for production of semiconductor element
US8313989B2 (en) 2008-10-22 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing the same
US9070590B2 (en) 2008-05-16 2015-06-30 Mattson Technology, Inc. Workpiece breakage prevention method and apparatus
US9627244B2 (en) 2002-12-20 2017-04-18 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223112A (en) * 1984-04-20 1985-11-07 Agency Of Ind Science & Technol Heat treatment device for semiconductor
US4678432A (en) * 1984-11-26 1987-07-07 Dainippon Screen Mfg. Co., Ltd. Heat treatment method
GB2406710A (en) * 2000-12-04 2005-04-06 Vortek Ind Ltd Heat-treating methods and systems
GB2406710B (en) * 2000-12-04 2005-06-22 Vortek Ind Ltd Heat-treating methods and systems
US6941063B2 (en) 2000-12-04 2005-09-06 Mattson Technology Canada, Inc. Heat-treating methods and systems
US9627244B2 (en) 2002-12-20 2017-04-18 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
JP2009194370A (en) * 2008-01-16 2009-08-27 Semiconductor Energy Lab Co Ltd Laser treatment equipment and semiconductor substrate preparing method
US9070590B2 (en) 2008-05-16 2015-06-30 Mattson Technology, Inc. Workpiece breakage prevention method and apparatus
US8313989B2 (en) 2008-10-22 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing the same
CN102741982A (en) * 2010-02-04 2012-10-17 富士电机株式会社 Process for production of semiconductor element, and device for production of semiconductor element
WO2011096326A1 (en) * 2010-02-04 2011-08-11 富士電機システムズ株式会社 Process for production of semiconductor element, and device for production of semiconductor element
JPWO2011096326A1 (en) * 2010-02-04 2013-06-10 富士電機株式会社 Semiconductor element manufacturing method and semiconductor element manufacturing apparatus

Similar Documents

Publication Publication Date Title
US4571486A (en) Heating method of semiconductor wafer
US5523262A (en) Rapid thermal annealing using thermally conductive overcoat
US7764872B2 (en) Cooling device, and apparatus and method for manufacturing image display panel using cooling device
CN101369526B (en) Pulsed laser anneal system architecture
US4379727A (en) Method of laser annealing of subsurface ion implanted regions
US4659422A (en) Process for producing monocrystalline layer on insulator
US4474831A (en) Method for reflow of phosphosilicate glass
KR100272145B1 (en) Shield, apparatus for heat-treating semiconductor substrate, and method for the same
MXPA01011852A (en) Surface planarization of thin silicon films during and after processing by the sequential lateral solidification method.
JPS5870536A (en) Laser annealing method
US4525380A (en) Heating method of semiconductor wafer
JPH11340157A (en) Apparatus and method for optical irradiation heat treatment
JPS61116820A (en) Annealing method for semiconductor
JPS60239400A (en) Process for annealing compound semiconductor
US4257824A (en) Photo-induced temperature gradient zone melting
JPH07201949A (en) Continuous heat treatment apparatus
US5284795A (en) Thermal annealing of semiconductor devices
JP2002124483A (en) Heat treatment device and method therefor using the same and film forming method
JP2841438B2 (en) Short-time heat treatment method
JPS63271922A (en) Heat treatment device
JPH0848595A (en) Sheet type vapor growth device
JPH06508957A (en) Method and apparatus for doping silicon wafers using solid dopant sources and rapid thermal processing
JPH03187219A (en) Heat treatment device
KR100727890B1 (en) Method and apparatus for laser crystallization by pre-heating and post-heating
JPS6175517A (en) Compound semiconductor substrate annealing method