JPS6021539A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6021539A
JPS6021539A JP12798683A JP12798683A JPS6021539A JP S6021539 A JPS6021539 A JP S6021539A JP 12798683 A JP12798683 A JP 12798683A JP 12798683 A JP12798683 A JP 12798683A JP S6021539 A JPS6021539 A JP S6021539A
Authority
JP
Japan
Prior art keywords
film
groove
semiconductor substrate
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12798683A
Other languages
Japanese (ja)
Inventor
Shiro Suyama
史朗 陶山
Toshiaki Taniuchi
利明 谷内
Tadashi Serikawa
正 芹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12798683A priority Critical patent/JPS6021539A/en
Publication of JPS6021539A publication Critical patent/JPS6021539A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To realize high density loading and high speed operation by providing a process for forming a narrow and deep element isolation region having a low specific dielectricity. CONSTITUTION:A film made of Al or Al2O3 is formed on a semiconducltor substrate 20 and a resist pattern 22 is also formed on the film 21 by the electron beam exposure method. With the resist pattern 22 used as the mask, the film 21 is anisotropically etched by the dry etching method. Next, the resist pattern 22 is removed and with the film 21 used as the mask, the semiconductor substrate 20 is anisotropically etched by the reactive ion etching method. For example, since the etching selection ratio of Al and Si substrate can be set to 70 times or more in the reactive ion etching utilizing CCl2F4 and the anisotropic etching is also possible, width of groove 23 can be set as narrow as several hundreds nm as in the case of the clearance of film 21 and depth of groove 23 can be set as deep as several mum.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に係り、特に、。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device.

高密度実装かつ高速動作を可能とする半導体装置。Semiconductor devices that enable high-density packaging and high-speed operation.

の製造方法に関するものである。The present invention relates to a manufacturing method.

〔発明の背景〕1) 現在広く使用されている半導体装置は、半導体。[Background of the invention] 1) Semiconductor devices are currently widely used.

基板の上に相互に絶縁・分離された多数の半導体。A large number of semiconductors that are insulated and separated from each other on a substrate.

素子を有している。これらの素子を絶縁・分離す。It has an element. Insulate and separate these elements.

る方法(以下、これを素子分離法と呼ぶ)として。(hereinafter referred to as the element isolation method).

は、酸化膜分離法が一般的に用いられている。 2C:
酸化膜分離法は、第1図に示す工程を経て行な゛われる
。まず、半導体基板10を酸素雰囲気中で熱。
The oxide film separation method is generally used. 2C:
The oxide film separation method is carried out through the steps shown in FIG. First, the semiconductor substrate 10 is heated in an oxygen atmosphere.

処理して酸化膜11を形成し、この酸化膜11上に窒。An oxide film 11 is formed by processing, and nitride is deposited on this oxide film 11.

化シリコン膜12を堆積し、窒化シリコン膜12」ユに
゛レジストパタン13を形成する〔第1図(a)〕。次
に、”このレジストパタン13をマスクとして窒化シリ
コ。
A silicon oxide film 12 is deposited, and a resist pattern 13 is formed on the silicon nitride film 12 (FIG. 1(a)). Next, ``Silicone nitride is formed using this resist pattern 13 as a mask.

ン膜]2.酸化膜11のエツチングを行なった後、し゛
シストパタン13を除去する〔図tblL この半導体
゛基板を、温度1000℃前後の酸素雰囲気中で数時間
乃至数十時間熱処理する〔図(C)〕。この際、窒化1
゛1シリコン膜12で覆われていない半導体基板表面に
・は、酸素との反応により酸化膜14が形成される。・
しかし、窒化シリコン膜は酸素の貫通を良く防ぐ・特性
を有しているため、窒化シリコン膜が存在す・る部分の
半導体基板表面の酸化を防ぐことができ1)る。この結
果、半導体基板表面の選択的な酸化が。
membrane] 2. After etching the oxide film 11, the cyst pattern 13 is removed (Fig. tblL). This semiconductor substrate is heat treated in an oxygen atmosphere at a temperature of about 1000° C. for several hours to several tens of hours [Fig. (C)]. At this time, nitriding 1
(1) On the surface of the semiconductor substrate not covered with the silicon film 12, an oxide film 14 is formed by reaction with oxygen.・
However, since the silicon nitride film has the property of effectively preventing oxygen from penetrating, it is possible to prevent the surface of the semiconductor substrate where the silicon nitride film exists from being oxidized 1). As a result, selective oxidation of the semiconductor substrate surface occurs.

行なえる。その後、窒化シリコン膜12を除去し ・〔
図tdl)、そして窒化シリコン膜12が存在した半導
体基板領域に半導体素子を形成する。これらの各・素子
は酸化膜14により絶縁・分離される。その後”%1所
定の素子の間を結線し、半導体装置の製造を終。
I can do it. After that, the silicon nitride film 12 is removed.
tdl), and a semiconductor element is formed in the semiconductor substrate region where the silicon nitride film 12 was present. Each of these elements is insulated and separated by an oxide film 14. After that, wires are connected between the ``%1'' predetermined elements, and the manufacturing of the semiconductor device is completed.

る。Ru.

上記した酸化膜分離法の分離特性を改善する目゛的で、
第1図fatの工程とfblの工程の間に、レジス。
The purpose is to improve the separation characteristics of the oxide film separation method described above.
FIG. 1: Between the fat process and the fbl process, there is a resist.

ドパタン13をマスクとして所定の極性を有する不5純
物をイオン注入する工程を導入することも広く。
It is also widely possible to introduce a step of ion-implanting impurity having a predetermined polarity using the dopant 13 as a mask.

採用されている。しかしながら、これらの酸化膜゛分離
法には、(1)素子分離領域に酸化膜を用いてい゛るた
め、比誘電率が4程度と太き(、配線容量の゛増大をも
たらし、半導体装置の高速化が図れない1(:(2)窒
化シリコン膜12の端部より酸化膜11中に酸素・が拡
散し、この酸素が半導体基板10と反応し、半・導体基
板10が横方向にも酸化され、その結果、素・予分離領
域幅が著しく太き(なり、半導体装置の・高密度化が困
難となり、また、このために配線が11長尺となり、半
導体装置の動作速度の向上も図れ。
It has been adopted. However, in these oxide film isolation methods, (1) since an oxide film is used in the element isolation region, the dielectric constant is as large as about 4 (which leads to an increase in wiring capacitance, and 1 (: (2) Oxygen diffuses into the oxide film 11 from the edge of the silicon nitride film 12, and this oxygen reacts with the semiconductor substrate 10, causing the semiconductor substrate 10 to spread laterally as well. As a result, the width of the elementary/pre-isolation region becomes extremely large (which makes it difficult to increase the density of semiconductor devices, and this also makes the wiring 11 long, making it difficult to improve the operating speed of semiconductor devices). Plan.

ない、という問題があった。The problem was that there was no.

以上述べてきたように、従来の素子分離法では・。As mentioned above, conventional element isolation methods...

素子の微細化や半導体装置の高密度化ができない・ばか
りでなく、動作速度の向上が図れない問題点20があっ
た。
There is a problem 20 in that not only it is not possible to miniaturize the elements and increase the density of the semiconductor device, but also it is impossible to improve the operating speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での」−記した問題点゛を解
決し、低い比誘電率を有する9幅が小さくか゛つ深い素
子分離領域を形成する工程とすることに5より、高密度
実装と高速動作を可能とする半導体装置を製造する製造
方法を提供することにある。。
An object of the present invention is to solve the problems described in "-" in the prior art, and to form a process of forming a narrow and deep device isolation region with a low relative dielectric constant. An object of the present invention is to provide a manufacturing method for manufacturing a semiconductor device that enables mounting and high-speed operation. .

〔発明の概要〕[Summary of the invention]

本発明の特徴は、半導体基板の表面上に所望の゛パタン
を有する膜を形成する工程と、この所望パ0タンを有す
る膜をマスクとして上記半導体基板を・異方性エツチン
グし引き続(上記膜の除去により・断面形状がほぼ矩形
の溝部を上記半導体基板に形・成する工程と、この溝部
の底面と側壁面及び上記・半導体基板露出面上に第1の
絶縁膜を形成する工1)程と、この第1の絶縁膜を異方
性エツチングによ。
The present invention is characterized by a step of forming a film having a desired pattern on the surface of a semiconductor substrate, and then anisotropically etching the semiconductor substrate using the film having the desired pattern as a mask. A step of forming a trench having a substantially rectangular cross-section in the semiconductor substrate by removing the film, and a step of forming a first insulating film on the bottom and sidewall surfaces of the trench and the exposed surface of the semiconductor substrate. ) and then anisotropically etched the first insulating film.

り上記溝部の底面部と、側壁部のうちの底面に近。near the bottom of the groove and the bottom of the side wall.

い部分とだけを残存させて除去する工程と、この・溝部
を有する半導体基板上に第2の絶縁膜を堆積して上記溝
部に中空の空隙を残してその開口部ヲ((第2の絶縁膜
で埋め込み次いでこの埋め込み部以。
A second insulating film is deposited on the semiconductor substrate having the groove, a hollow gap is left in the groove, and the opening is removed ((second insulating film). Embed with a membrane and then bury this embedment.

外の半導体基板上の第2の絶縁膜をエツチング除。Etching and removing the second insulating film on the outer semiconductor substrate.

去する工程とを含む製造法とするにある。 。The manufacturing method includes a step of removing. .

〔発明の実施例〕[Embodiments of the invention]

以下2本発明の実施例を、半導体基板としてS15を用
いる場合を例に採って、第2図により説明す。
Two embodiments of the present invention will be described below with reference to FIG. 2, taking as an example a case where S15 is used as a semiconductor substrate.

る。半導体基板20上に2MあるいはAt203より成
Ru. It is made of 2M or At203 on the semiconductor substrate 20.

る厚さ数百nmの膜2Iを形成し、膜21上に、電子。A film 2I with a thickness of several hundred nm is formed, and electrons are emitted onto the film 21.

ビーム露光法あるいはX線露光法を用いて、レジ。Registration using beam exposure method or X-ray exposure method.

ストパタン22を形成する〔第2図fal)。 レジス
ト10パタン22をマスクとして、ドライエツチング法
例・えばcct4を用いた反応性イオンエツチング法に
・より膜21を異方性エツチングする〔第2図(b)〕
。・異異方性エラチンを行うため、膜21の間隙をレジ
・ストパタン22と同じく数百nm程度にできる。次コ
に、レジストパタン22を除去し、膜21をマスクと。
A stop pattern 22 is formed (FIG. 2 fal). Using the resist 10 pattern 22 as a mask, the film 21 is anisotropically etched by a dry etching method, for example, a reactive ion etching method using CCT4 [FIG. 2(b)].
. - Since anisotropic elatinization is performed, the gap between the film 21 and the resist pattern 22 can be approximately several hundred nm. Next, the resist pattern 22 is removed and the film 21 is used as a mask.

して、半導体基板20を反応性イオンエツチング法・。Then, the semiconductor substrate 20 is subjected to a reactive ion etching method.

反応性イオンビームエツチング法、あるいはイオ・ンビ
ームエッチング法を用いて異方性エツチング・する〔第
2図fcl)。例えば、CCl2F3を用いた反I8!
1性イオンエツチング法では、 ALと81基板との工
Anisotropic etching is performed using a reactive ion beam etching method or an ion beam etching method (FIG. 2 fcl). For example, anti-I8! using CCl2F3!
The monolithic ion etching method is used to process AL and 81 substrates.

ッチング選択比を70倍以」二にでき、かつ異方性上゛
ッチングが可能なため、溝部23の幅を膜21の間隙。
Since the etching selectivity can be increased to 70 times or more and etching can be performed anisotropically, the width of the groove 23 can be set to the same width as the gap between the membranes 21.

と同じく数百nmと小さくシ、かつ溝部23の深さ。Similarly, the depth of the groove portion 23 is as small as several hundred nm.

を数μmと深くできる。また、Arと02の混合ガ″ス
を用いたイオンビームエツチング法では、AtとSi基
板とのエツチング選択比を6以上にでき、か。
The depth can be several μm. Furthermore, in the ion beam etching method using a mixed gas of Ar and 02, the etching selectivity between At and Si substrates can be increased to 6 or more.

つ異方性エツチングが可能なため、上記父応性イ゛オン
エツチング法と同様に、溝部の幅を小さく溝“部の深さ
を深くできる。次に膜21を除去した後、10半導体基
板上および溝部に溝部23に空隙を残して・第1の絶縁
膜例えば酸化膜24を形成する〔第2図・fdl)、例
えば特許請求範囲第(2)項記載の実施例と・して、半
導体基板20を水蒸気を含む酸素雰囲気中・で温度80
0〜1000℃の下で熱処理し、溝幅の1./3 +=
Since anisotropic etching is possible, the width of the groove can be made small and the depth of the groove can be increased, similarly to the above-mentioned paternal ion etching method.Next, after removing the film 21, A first insulating film, for example, an oxide film 24 is formed by leaving a gap in the groove 23 (FIG. 2/fdl), for example, as an embodiment described in claim (2), a semiconductor The substrate 20 is heated to a temperature of 80°C in an oxygen atmosphere containing water vapor.
Heat treated at 0 to 1000°C to reduce the groove width by 1. /3 +=
.

程度の酸化膜を形成する。または、特許請求範囲第(3
)項記載の実施例として、半導体基板20上に常圧の気
相成長法により、pドープの酸化膜を溝幅の輪程度の膜
厚となるように堆積する。次に。
An oxide film of about 100% is formed. Or claim number 3
In the example described in item ), a p-doped oxide film is deposited on the semiconductor substrate 20 by vapor phase growth at normal pressure to a thickness approximately equal to the width of the groove. next.

反応性イオンエツチング法2反応性イオンビーム2(1
エツチング法、あるいはイオンビームエツチング。
Reactive ion etching method 2 Reactive ion beam 2 (1
Etching method or ion beam etching.

法を用いて酸化膜24を所望の量だけ異方性エッチ。The oxide film 24 is anisotropically etched by a desired amount using a method.

ングする〔第2図tel)o例えばCF4とH2の混合
ガ。
For example, a mixture of CF4 and H2.

スを用いる反応性イオンエツチング法では、酸化膜とS
i基板とのエツチング選択比を4倍以上とし5て異方性
エツチングができるため、溝部23の開口。
In the reactive ion etching method using
Since anisotropic etching can be performed with an etching selectivity of 4 times or more with respect to the i-substrate, the groove 23 is opened.

部25側壁の酸化膜を除去した状態で溝部23の下部“
26側壁の酸化膜を残すことができる。これにより°。
With the oxide film on the sidewall of the portion 25 removed, the lower part of the groove portion 23 “
The oxide film on the sidewalls of 26 can be left. This allows °.

溝部23の開口部25の幅を溝部23の下部26の幅よ
り。
The width of the opening 25 of the groove 23 is greater than the width of the lower part 26 of the groove 23.

広くすることができる。次に、溝部23を有する半Il
+導体基板上にスパッタ法、蒸着法、あるいは気相・成
長法を用いて第2の絶縁膜例えば酸化膜27を堆・積す
る〔第2図げ)〕。これにより溝部23の下部26・に
空隙28を残し、かつ溝部23の開口部25を埋め込・
む。例えば、常圧の気相成長法では、溝部23の酸コ化
膜24の厚さを数百nmとし、かつ溝部23の開口。
Can be made wider. Next, the half Il having the groove part 23 is
+A second insulating film, such as an oxide film 27, is deposited on the conductive substrate using a sputtering method, vapor deposition method, or vapor phase growth method [see the second figure]. As a result, a gap 28 is left in the lower part 26 of the groove 23, and the opening 25 of the groove 23 is filled.
nothing. For example, in the normal pressure vapor phase growth method, the thickness of the oxidized film 24 in the groove 23 is several hundreds of nanometers, and the opening of the groove 23 is set to several hundred nm.

部25の深さを酸化膜の厚さと同程度の場合には、・酸
化膜27を1μm程度堆積することにより、空隙を・残
し、開口部を埋込める。次に、レジスト29を酸・化膜
27上に塗布する〔第2図(g)〕。レジスト29の!
0厚さを例えば0.5μm程度と厚くすると、レジスト
29の表面は平滑となる。次にドライエツチング法゛を
用いて表面から順次レジスト29及び酸化膜27を。
When the depth of the portion 25 is approximately the same as the thickness of the oxide film, the opening can be filled by depositing the oxide film 27 to a thickness of about 1 μm, leaving a void. Next, a resist 29 is applied onto the oxide film 27 [FIG. 2(g)]. Resist 29!
If the zero thickness is increased to, for example, about 0.5 μm, the surface of the resist 29 becomes smooth. Next, a resist 29 and an oxide film 27 are sequentially removed from the surface using a dry etching method.

均一にエツチングする〔第2図(川〕。すると溝部。Etch evenly [Fig. 2 (river)]. Then, grooves will appear.

23の開口部25に酸化膜27が埋め込まれ、溝部23
以5外の半導体基板上の酸化膜が除去される。その後。
An oxide film 27 is embedded in the opening 25 of the groove 23 .
The oxide film on the semiconductor substrate other than 5 is removed. after that.

酸化膜が除去された半導体基板の領域に半導体装。A semiconductor device is placed in the area of the semiconductor substrate from which the oxide film has been removed.

子を形成する。これらの各素子は、溝部23の開口部2
5の酸化膜27および溝部23の下部26の空隙28に
form a child; Each of these elements is connected to the opening 2 of the groove 23.
5 in the oxide film 27 and the void 28 in the lower part 26 of the groove 23.

より絶縁・分離される。また、溝部23の開口部251
0の酸化膜27は、素子分離領域製作工程以後におい・
て、溝部23の半導体基板へ不純物がイオン注入さ・れ
ることを防ぎ、かつ導電膜などが溝部23の空隙・28
に堆積されることを防ぐ。その後、所定の素子・間を結
線し、半導体装置の製造を終る。 1)第2図に示した
本発明の実施例では、第2図(a)。
More insulated and separated. In addition, the opening 251 of the groove 23
The 0 oxide film 27 is removed after the element isolation region fabrication process.
This prevents impurities from being ion-implanted into the semiconductor substrate in the groove 23, and the conductive film fills the gap 28 in the groove 23.
Prevent it from being deposited on the surface. Thereafter, predetermined elements and spaces are connected, and the manufacturing of the semiconductor device is completed. 1) In the embodiment of the present invention shown in FIG. 2, FIG. 2(a).

に示すように電子ビーム露光法あるいはX線露光・法を
用いている。しかし、溝部の幅をさらに小さ・くする簡
便な方法として、第2図+al〜fblに代えて・第3
図に示す工程を導入することも有効である。2・)半導
体基板30上にMあるいはAL203より成る厚。
As shown in Figure 3, electron beam exposure method or X-ray exposure method is used. However, as a simple method to further reduce the width of the groove, instead of +al to fbl in Figure 2,
It is also effective to introduce the steps shown in the figure. 2.) Thickness of M or AL203 on semiconductor substrate 30.

さ数百nmの膜31を形成し、膜31上にレジストパ。A film 31 with a thickness of several hundred nm is formed, and a resist film is applied on the film 31.

タン32を形成する〔第3図(a)〕。レジストパタン
A tongue 32 is formed (FIG. 3(a)). resist pattern.

32をマスクとしてリン酸−酢酸混合液を用いて膜。Membrane using phosphoric acid-acetic acid mixture using No. 32 as a mask.

31を所望の量例えば数百nmのサイドエッチ量を5伴
って選択的にエツチングする〔第3図(b)〕。そ゛の
後、レジストパタン32を搭載した状態でスパゲタ法あ
るいは蒸着法を用いてMあるいはAL203゜より成る
膜33を膜31の厚さより数十nm薄く形成。
31 is selectively etched with a side etching amount of a desired amount, for example, several hundred nm [FIG. 3(b)]. Thereafter, with the resist pattern 32 mounted, a film 33 made of M or AL 203° is formed several tens of nanometers thinner than the thickness of the film 31 using a spaget method or a vapor deposition method.

する〔第3図(C)〕。レジストパタン32上の膜33
をlf1リフトオフ工程によりレジストと共に除去する
 ・〔第3図(d)〕。第3図に示す工程では、エラチ
ン・グマスクとなる膜31と膜33との間隙34は、第
3図・lblの工程における膜31のサイドエッチ量に
より定・まることから、 1100n程度まで素子分離
領域の幅15を小さくできる。
[Figure 3 (C)]. Film 33 on resist pattern 32
is removed together with the resist by the lf1 lift-off process [Figure 3(d)]. In the process shown in FIG. 3, the gap 34 between the film 31 and the film 33, which serves as an erating mask, is determined by the amount of side etching of the film 31 in the process shown in FIG. The width 15 of the area can be reduced.

上記本発明実施例を採用することによる効果に・ついて
述べる。(1)素子の分離・絶縁を空隙を用い・て行う
ことから、その比誘電率を約14倍と小さ・くでき9分
離特性の向上、半導体装置の高速化が′f1可能となる
。(2)素子分離領域の幅は、第2図tal〜。
The effects of adopting the above-mentioned embodiments of the present invention will be described. (1) Since elements are separated and insulated using air gaps, the relative dielectric constant can be reduced to about 14 times, making it possible to improve isolation characteristics and increase the speed of semiconductor devices. (2) The width of the element isolation region is as shown in FIG.

tdlに示す工程、あるいは第3図fat 〜(diと
第2図(b)。
tdl or the steps shown in Figure 3 fat ~ (di and Figure 2 (b).

〜fdlで示す工程で形成される溝部の幅により定ま。Determined by the width of the groove formed in the process indicated by ~fdl.

ることから、数百nm程度の幅の素子分離領域が゛形成
でき、半導体装置の高密度化が可能となる。′(3)素
子分離領域の形成を、溝部を完全に埋め込むことな(、
かつ酸化による絶縁膜形成工程を伴わ。
Therefore, element isolation regions with a width of about several hundred nm can be formed, making it possible to increase the density of semiconductor devices. '(3) The element isolation region should be formed without completely filling the trench (,
It also involves an insulating film formation process using oxidation.

ずに行うことから、半導体基板に加わる応力が低゛減で
き、半導体基板への結晶欠陥の導入を防ぐこ゛とができ
2分離特性の向上が可能となる。この点11)で、溝部
の開口部付近を酸化による絶縁膜で覆う、工程を含む特
願昭56−179098号に開示された技術。
Since the stress applied to the semiconductor substrate can be reduced, the introduction of crystal defects into the semiconductor substrate can be prevented, and the separation characteristics can be improved. Regarding point 11), the technique disclosed in Japanese Patent Application No. 179098/1987 includes a step of covering the vicinity of the opening of the trench with an oxidized insulating film.

とは明らかに異なる。即ち、上記開示技術では、。It is clearly different. That is, in the above-mentioned disclosed technology.

体積変化が大きい酸化絶縁膜を用いることから、。This is because an oxide insulating film with a large volume change is used.

溝部及びその周辺に加わる応力が大きくなるが、1)本
発明実施例の方法ではこの問題を解決することが可能で
ある。
Although the stress applied to the groove and its surroundings increases, 1) this problem can be solved by the method of the embodiment of the present invention.

第4図は本発明をMOS )ランジスタの分離に。Figure 4 shows the present invention in the isolation of a MOS transistor.

適用した場合の実施例である。ソース41.ドレイン4
2.ゲート電極43.ゲート酸化膜44およびM?(1
配線45を含むMOS )ランジスタは素子分離領域。
This is an example of application. Source 41. drain 4
2. Gate electrode 43. Gate oxide film 44 and M? (1
MOS including wiring 45) transistor is an element isolation region.

46により分離されている。素子分離領域の誘電率゛が
小さく幅が小さい素子分離が行えるため、 MOS“ト
ランジスタから成る半導体装置の高密度化が図。
46. Since the dielectric constant of the element isolation region is small and element isolation can be performed with a small width, it is possible to increase the density of semiconductor devices made of MOS transistors.

られ、その特性向上も図れる。and its characteristics can be improved.

第5図は2本発明をバイポーラトランジスタ製゛作に適
用した場合の実施例である。エミッタ51.“ベース5
2及びコレクタ53を有するバイポーラトラ。
FIG. 5 shows an embodiment in which the present invention is applied to the production of bipolar transistors. Emitter 51. “Base 5
2 and a collector 53.

ンジスタは、素子分離領域54により分離されてい゛る
。さらに9本発明は、トランジスタ間だけでな10くベ
ース52とコレクタ53との間の分離55にも適用・で
きる。このように、バイポーラトランジスタ間・の間隔
だけでなく、トランジスタ自身の大きさも・小さくでき
る。
The transistors are separated by element isolation regions 54. Furthermore, the present invention can be applied not only to isolation 55 between transistors but also between base 52 and collector 53. In this way, not only the spacing between bipolar transistors but also the size of the transistors themselves can be reduced.

第6図は2本発明を相補型MO8半導体装置に15適用
した時の実施例である。相補型MO8半導体装置は、p
型トランジスタとn型トランジスタの。
FIG. 6 shows an embodiment in which two of the present inventions are applied to a complementary MO8 semiconductor device. The complementary MO8 semiconductor device is p
type transistor and n-type transistor.

両方から成り、これらは半導体基板60上に設けら・れ
たn型極性不純物領域61ならびにp電極性不純・物領
域62上に形成される。これらの不純物領域は211本
発明の素子分離領域63によって分離される。通。
These are formed on an n-type polar impurity region 61 and a p-polarity impurity region 62 provided on a semiconductor substrate 60. These impurity regions 211 are separated by element isolation regions 63 of the present invention. General.

常の相補型MO8半導体装置では、p電極性不純。In ordinary complementary MO8 semiconductor devices, p-electrode impurity.

物領域とn型極性不純物領域とが直接に接してい。The doped region and the n-type polar impurity region are in direct contact with each other.

る。このためにラッチアップと称される相補型。Ru. This is why the complementary type is called latch-up.

MO8半導体装置特有の問題を軽減する目的で、各5ト
ランジスタを、これらの不純物領域の境界から。
5 transistors each from the boundaries of these impurity regions in order to alleviate problems specific to MO8 semiconductor devices.

遠ざけなければならない。しかしながら9本発明。must be kept away. However, the present invention.

の分離法を使用すると、トランジスタを素子分離゛領域
に接して形成でき、半導体装置の著しい高密゛変化と特
性向上が可能となる。 10 半導体装置は、上述したようなバルク半導体装・結晶基
板上に作製されるだけでなく、絶縁基板上・に形成した
半導体単結晶膜を用いても作製される・。
By using this isolation method, transistors can be formed in contact with element isolation regions, making it possible to significantly increase the density of semiconductor devices and improve their characteristics. 10. Semiconductor devices are not only fabricated on bulk semiconductor devices or crystal substrates as described above, but also using semiconductor single crystal films formed on insulating substrates.

第7図は、絶縁基板70例えばサファイア上に、単・結
晶化した半導体膜71を用いた場合の9本発明の15適
用例である。この半導体膜71上に形成されたトランジ
スタは、素子分離領域72を介して隣接して・形成され
る。このために、半導体装置の高密度化・が容易となる
FIG. 7 shows 9 application examples of the present invention in which a single crystallized semiconductor film 71 is used on an insulating substrate 70, for example, sapphire. The transistors formed on this semiconductor film 71 are formed adjacent to each other with an element isolation region 72 in between. For this reason, it becomes easy to increase the density of semiconductor devices.

0 〔発明の効果〕 以上説明したように2本発明によれば、小さな。0 〔Effect of the invention〕 As explained above, according to the present invention, the size is small.

比誘電率を有する。微細でかつ深い素子分離領域゛が容
易に形成でき、高密度でかつ高速な半導体装置の形成が
可能となる。 5
It has a relative dielectric constant. A fine and deep element isolation region can be easily formed, and a high-density and high-speed semiconductor device can be formed. 5

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の素子分離法を説明する図、第2゛図は本
発明の一実施例の工程図、第3図は本発明。 の他の実施例の一部工程図、第4図、第5図、第。 6図、第7図はそれぞれ本発明を適用して作製し10た
半導体装置例を示す断面図である。 符号の説明 10、20.60・・・半導体基板 11、14.44・・・酸化膜 12・・・窒化シリコ
ン膜 ・13、22.32・・・レジストバタン 15
21、31.33・・・膜 23・・・溝部24・・・
第1の絶縁膜 25・・・開口部27・・・第2の絶縁
膜 28・・・空隙29・・・レジスト 41・・・ソ
ース ・42・・・ドレイン 43・・・ゲート電極 
2045・・・M配線 46.54.63.72・・・素子分離領域51・・・
エミッタ 52・・・ベース53・・・コレクタ 61
・・・n型極性不純物領域゛62・・・p型領域不純物
領域 70・・・絶縁基板 71・・・半導体膜特許出願人 
日本電信電話公社 10 代理人弁理士 中利純之助 ・ 0 .15゜ 才 1 図 第2図 才3図 矛4ツ 1’5ヴ JP6図 IP7図
FIG. 1 is a diagram explaining a conventional element isolation method, FIG. 2 is a process diagram of an embodiment of the present invention, and FIG. 3 is a diagram of the present invention. Partial process diagrams of other embodiments, FIGS. 4, 5, and 5. 6 and 7 are cross-sectional views showing ten examples of semiconductor devices manufactured by applying the present invention, respectively. Explanation of symbols 10, 20.60...Semiconductor substrate 11, 14.44...Oxide film 12...Silicon nitride film ・13, 22.32...Resist button 15
21, 31.33...Membrane 23...Groove 24...
First insulating film 25... Opening 27... Second insulating film 28... Gap 29... Resist 41... Source ・42... Drain 43... Gate electrode
2045...M wiring 46.54.63.72...Element isolation region 51...
Emitter 52... Base 53... Collector 61
... N-type polar impurity region 62 ... P-type region impurity region 70 ... Insulating substrate 71 ... Semiconductor film patent applicant
Nippon Telegraph and Telephone Public Corporation 10 Representative Patent Attorney Junnosuke Nakatoshi ・0. 15゜ years old 1 figure 2 figure 3 figure 4 spears 1'5V JP6 figure IP7 figure

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板の表面上に所望のパタンを有す5る膜
を形成する工程と、この所望パタンを有する膜をマスク
として上記半導体基板を異方性エッチ゛ングし引き続く
上記膜の除去により断面形状かは。 ぼ矩形の溝部を上記半導体基板に形成する工程と°。 この溝部の底面と側壁面及び上記半導体基板露出1()
面上に第1の絶縁膜を形成する工程と、この第1゜の絶
縁膜を異方性エツチングにより上記溝部の底。 面部と、側壁部のうちの底面に近い部分とだけを。 残存させて除去する工程と、この溝部を有する半。 導体基板上に第2の絶縁膜を堆積して上記溝部にI)中
空の空隙を残してその開口部を第2の絶縁膜で。 埋め込み次いでこの埋め込み部以外の半導体基板。 上の第2の絶縁膜をエツチング除去する工程とを。 含むことを特徴とする半導体装置の製造方法。 。
(1) A step of forming a film having a desired pattern on the surface of a semiconductor substrate, anisotropically etching the semiconductor substrate using the film having the desired pattern as a mask, and then removing the film to form a cross-sectional shape. Kaha. forming a substantially rectangular groove in the semiconductor substrate; The bottom and sidewall surfaces of this groove and the exposed semiconductor substrate 1 ()
forming a first insulating film on the surface, and anisotropically etching the first insulating film to form the bottom of the trench. Only the face part and the part of the side wall part near the bottom. A process of leaving and removing the groove, and a half having this groove. A second insulating film is deposited on the conductor substrate, and a hollow gap is left in the groove portion, and the opening is filled with the second insulating film. Embedded area and then semiconductor substrate other than this embedded area. and a step of etching away the upper second insulating film. A method of manufacturing a semiconductor device, comprising: .
(2)前記第1の絶縁膜を溝部の底面と側壁面皮(Iび
半導体基板露出面上に形成する工程が、半導体。 基板を酸素雰囲気中で熱処理して酸化膜を形成す。 る工程であることを特徴とする特許請求の範囲第。 1項記載の半導体装置の製造方法。
(2) The step of forming the first insulating film on the bottom and sidewall surfaces of the trench (I) and the exposed surface of the semiconductor substrate is a step of heat-treating the substrate in an oxygen atmosphere to form an oxide film. Claim 1: A method for manufacturing a semiconductor device according to claim 1.
(3)前記第1の絶縁膜を溝部の底面と側壁面皮1び半
導体基板露出面上に形成する工程が、気相生。 良法によって絶縁膜を堆積する工程であることを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(3) The step of forming the first insulating film on the bottom surface of the trench, the sidewall surface skin 1, and the exposed surface of the semiconductor substrate is performed by vapor deposition. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the step is to deposit an insulating film by a suitable method.
JP12798683A 1983-07-15 1983-07-15 Manufacture of semiconductor device Pending JPS6021539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12798683A JPS6021539A (en) 1983-07-15 1983-07-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12798683A JPS6021539A (en) 1983-07-15 1983-07-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6021539A true JPS6021539A (en) 1985-02-02

Family

ID=14973616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12798683A Pending JPS6021539A (en) 1983-07-15 1983-07-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6021539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127850A (en) * 1989-10-13 1991-05-30 Toshiba Corp Semiconductor device
WO2009157333A1 (en) * 2008-06-23 2009-12-30 Azエレクトロニックマテリアルズ株式会社 Shallow trench isolation structure and method for forming the shallow trench isolation structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187951A (en) * 1981-05-14 1982-11-18 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5818938A (en) * 1981-07-27 1983-02-03 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Integrated circuit structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187951A (en) * 1981-05-14 1982-11-18 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5818938A (en) * 1981-07-27 1983-02-03 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Integrated circuit structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127850A (en) * 1989-10-13 1991-05-30 Toshiba Corp Semiconductor device
WO2009157333A1 (en) * 2008-06-23 2009-12-30 Azエレクトロニックマテリアルズ株式会社 Shallow trench isolation structure and method for forming the shallow trench isolation structure

Similar Documents

Publication Publication Date Title
US4638347A (en) Gate electrode sidewall isolation spacer for field effect transistors
US4178191A (en) Process of making a planar MOS silicon-on-insulating substrate device
JPH02264437A (en) Manufacture of semiconductor device
JP2629644B2 (en) Method for manufacturing semiconductor device
US4900689A (en) Method of fabrication of isolated islands for complementary bipolar devices
US6087241A (en) Method of forming side dielectrically isolated semiconductor devices and MOS semiconductor devices fabricated by this method
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
US4497108A (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
JPH06163532A (en) Method for isolation of semiconductor element
JPS6123657B2 (en)
EP0126292B1 (en) Semiconductor device having an element isolation layer and method of manufacturing the same
JPS6021539A (en) Manufacture of semiconductor device
JPS59189677A (en) Manufacture of semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JP3349198B2 (en) Method for manufacturing bipolar transistor
JPS6347335B2 (en)
JPS5856436A (en) Manufacture of semiconductor device
JPH0298939A (en) Manufacture of semiconductor device
JPS62190847A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
KR950000138B1 (en) Manufacturing method of self-aligned bipolar transistor with double side wall
KR940005720B1 (en) Manufacturing method for elements segregation of semiconductor device
JP2906499B2 (en) Method for manufacturing semiconductor device
JP2546650B2 (en) Method of manufacturing bipolar transistor