JPS60210871A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60210871A
JPS60210871A JP6592384A JP6592384A JPS60210871A JP S60210871 A JPS60210871 A JP S60210871A JP 6592384 A JP6592384 A JP 6592384A JP 6592384 A JP6592384 A JP 6592384A JP S60210871 A JPS60210871 A JP S60210871A
Authority
JP
Japan
Prior art keywords
large current
electrode wiring
metal layer
electrode
metallic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6592384A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumi
松見 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP6592384A priority Critical patent/JPS60210871A/en
Publication of JPS60210871A publication Critical patent/JPS60210871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make the wiring fine, and to reduce migration by a method wherein the titled devices driven by small current and large current are formed, and, in providing these with wiring electrodes, the electrode led out of the small current element is composed of a metallic layer, and the electrode led out of the large current element of a lamination of two metals. CONSTITUTION:Diffused regions 2 and 3 for small current and large current driven elements are provided in the surface layer section of a semiconductor substrate 1, which is then covered over with an SiO2 film 4, and contact holes 5 and 6 for electrode lead-out are bored by corresponding to the regions 2 and 3, respectively. Next, the first metallic layers 7 contacting the regions 2 and 3 are formed in the holes 5 and 6, and the whole surface is coated with an SiO2 film 10. Thereafter, a through-hole 11 is opened by corresponding to the metallic layer 7 in the hole 6, and the second metallic layer 8 is adhered only on the exposed metallic layer 71, which is then protected with a passivation film 9. The current capacitance is increased by thus thickening the electrode for the large current element, and the electrode width is reduced.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体装置およびその製造方法に係シ%特に
電極配線およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor device and a method of manufacturing the same, and particularly relates to an electrode wiring and a method of manufacturing the same.

(従来技術) 半導体装置の電極配線金属としては、一般に、Atまた
はAL−8i合金が使用される。これは、Atが、半導
体材料に対して密着性、オーミック性にすぐれ、電気抵
抗も低く、微細加工が容易であるなど、電極配線金属と
しての諸条件を満足しているからである。
(Prior Art) At or AL-8i alloy is generally used as the electrode wiring metal of a semiconductor device. This is because At satisfies various conditions as an electrode wiring metal, such as excellent adhesion and ohmic properties to semiconductor materials, low electrical resistance, and easy microfabrication.

ところで、最近、半導体集積回路の集積度が向上するに
つれAtN極配線(At−St金合金らなる電極配線も
含む)・クターンも微細化されているが、これに応じて
At電極配線中を流れる電流密度が上昇する結果、 A
tなどの金属イオンの移動によ1M電極配線が短絡した
り断線する、いわゆるエレクトロマイグレーションが問
題になっている。
By the way, as the degree of integration of semiconductor integrated circuits has improved recently, At N-pole wiring (including electrode wiring made of At-St gold alloy) and patterns have also been miniaturized. As a result of the increase in current density, A
So-called electromigration, in which 1M electrode wiring is short-circuited or disconnected due to movement of metal ions such as t, has become a problem.

この現象を防ぐためには、At電極配線の幅を太くする
必要があるが、微細化に逆行する方法である。また、A
t−8i −Cu などのエレクトロマイグレージョン
に強い合金を使用する方法もあるが、耐腐食性およびワ
イヤボンディング性に劣るなどの欠点があった。
In order to prevent this phenomenon, it is necessary to increase the width of the At electrode wiring, but this is a method that runs counter to miniaturization. Also, A
Although there is a method of using an alloy resistant to electromigration such as t-8i-Cu, it has drawbacks such as poor corrosion resistance and wire bonding properties.

なお、これらの問題は、比較的電流密度の高いバイポー
ラ型半導体集積回路において顕著であシ、微細化の妨け
となっている。
Note that these problems are noticeable in bipolar semiconductor integrated circuits with relatively high current density, and are an impediment to miniaturization.

(発明の目的) この発明は上記の点に鑑みなはれたもので、その目的は
、電極配線の微細化と耐エレクトロマイグレーション性
を両立させることにある。
(Objective of the Invention) The present invention has been developed in view of the above points, and its object is to achieve both miniaturization of electrode wiring and electromigration resistance.

(発明の概要) この発明の要点は、大電流が流れる部分の電極配線のみ
2つの金属層の積層構造とすることにある。
(Summary of the Invention) The key point of the present invention is that only the electrode wiring in the portion where a large current flows has a laminated structure of two metal layers.

(実施例) 以下この発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の第1の実施例を示す図である。この
図を参照して第1の実施例を説明すると、第1図(4)
において、1は半導体基板であシ、この半導体基板1の
表面部内にはφ電流駆動素子の拡散領域2と、大電流駆
動素子の拡散領域3が形成されている。また、半導体基
板1上には5t(hのような絶縁膜4が設けられ、この
絶縁膜4には前記拡散領域2.3上において電極引出し
用のコンタクト穴5,6がそれぞれ設けられている。
FIG. 1 is a diagram showing a first embodiment of the present invention. The first embodiment will be explained with reference to this figure.
1, a semiconductor substrate 1 has a diffusion region 2 for a φ current drive element and a diffusion region 3 for a large current drive element in the surface portion of the semiconductor substrate 1. Further, an insulating film 4 such as 5t (h) is provided on the semiconductor substrate 1, and contact holes 5 and 6 for leading out electrodes are provided in this insulating film 4 on the diffusion region 2.3, respectively. .

このような半導体基板1上にAtまたはht −s i
合金からなる第1の金属層7を6000〜10000X
の厚さに蒸着し、続いて公知のホトエッチ技術により第
1の金属NjI7t−/4′ターニングすることにより
、第1図(B)に示すように、第1の金属層7を、コン
タクト穴6を含む大電流駆動素子の電極配線形成部分に
のみ残す。
On such a semiconductor substrate 1, At or ht-s i
The first metal layer 7 made of an alloy is heated at 6000 to 10000X.
By depositing the first metal layer 7 to a thickness of 100 nm and then turning the first metal NjI7t-/4' by a known photoetching technique, the first metal layer 7 is formed into a contact hole 6 as shown in FIG. 1(B). It is left only in the electrode wiring formation part of the large current drive element including the

次に、第1図C)に示すように、半導体基板1上の全面
に、kt”*たtiAt−8t合金からなる第2の金属
層8を8000〜14000Aの厚さに蒸着する。
Next, as shown in FIG. 1C, a second metal layer 8 made of a kt''*tiAt-8t alloy is deposited on the entire surface of the semiconductor substrate 1 to a thickness of 8,000 to 14,000 Å.

しかる後、公知のホトエッチ技術によシ第2の金属層8
のバターニングを行うことによシ、この第2の金属層s
t−1g1図0に示すように前記残存第1の金属層7上
および、コンタクト穴5を含む小電流駆動素子の電極配
線形成部分にのみ残す。
Thereafter, a second metal layer 8 is formed using a known photoetching technique.
By performing patterning, this second metal layer s
t-1g1 As shown in FIG. 0, it is left only on the remaining first metal layer 7 and on the electrode wiring forming portion of the small current driving element including the contact hole 5.

この時、第1の金属層7上の第2の金属層8を前記第1
図0に示すようにオーバーラツプ構造にすると、第2の
金[118をパターニングする時に第1の金属I#!I
7がエツチングされることもなく、また/4’ツシペー
ション膜のカバレーソモ良好となる。
At this time, the second metal layer 8 on the first metal layer 7 is
When an overlap structure is formed as shown in FIG. 0, when patterning the second gold [118], the first metal I#! I
7 is not etched, and the coverage of the /4' ossification film is good.

そして、この第2の金属FW18の?ぐターニングが終
了した段階で、小電流駆動素子の電極配線が残存第2の
金属層8で形成されたことになる。また、大電流駆動素
子の電極配線が、残存第1の金属層7および残存第2の
金属NI8の積層構造で形成されたことになる。
And this second metal FW18? When the turning process is completed, the electrode wiring of the small current drive element is formed using the remaining second metal layer 8. Further, the electrode wiring of the large current driving element is formed with a laminated structure of the remaining first metal layer 7 and the remaining second metal NI8.

しかる後、第1図■に示すように、半導体装置を保護す
る)母ツシペーション膜9をCVD法によル全面に形成
する。
Thereafter, as shown in FIG. 1 (2), a mother tsipation film 9 (which protects the semiconductor device) is formed over the entire surface of the substrate by CVD.

第2図はこの発明の第2の実施例を示す図である。この
第2の実施例について以下説明する。
FIG. 2 is a diagram showing a second embodiment of the invention. This second embodiment will be explained below.

第2図(2)に示すように、半導体基板1には、第1の
実施例と同様に拡散領域2.3および絶縁膜4が形成さ
れておシ、絶縁膜4にはコンタクト穴5.6が開口され
ている。
As shown in FIG. 2(2), a diffusion region 2.3 and an insulating film 4 are formed in the semiconductor substrate 1, as in the first embodiment, and a contact hole 5.3 is formed in the insulating film 4. 6 is open.

このような半導体基板1上にAtまたはAt−8t合金
からなる第1の金属層7を8000〜10000Aの厚
さに蒸着した後、公知のホトエッチ技術によシ第1の金
属層7を/4’ターニングすることにより、この場合は
、同第2図囚に示すように、第1の金属!+7を、コン
タクト穴6t−含む大電流駆動素子の電極配線形成部分
および、コンタクト穴5を含む小電流駆動素子の電極配
線形成部分に残す。
After depositing a first metal layer 7 made of At or At-8t alloy to a thickness of 8,000 to 10,000 Å on such a semiconductor substrate 1, the first metal layer 7 is deposited to a thickness of /4 by a known photoetching technique. 'By turning, in this case, as shown in Figure 2, the first metal! +7 is left in the electrode wiring forming portion of the large current driving element including the contact hole 6t- and in the electrode wiring forming portion of the small current driving element including the contact hole 5.

次に、半導体基板1上の全面に4000〜6000X厚
の5ins膜10f:公知のCVD法によシ形成する。
Next, a 5-ins film 10f having a thickness of 4000 to 6000× is formed on the entire surface of the semiconductor substrate 1 by a known CVD method.

そして、この5ins膜10には、第2図03)に示す
ように、大電流駆動素子の電極配線形成部分において、
つまフ拡散領域3に接続された第1の金属層7(以下こ
の第1の金属層に特に符号71を付す)上においてスル
ーホール1lt−形成する。
As shown in FIG. 2 (03), this 5ins film 10 has a
A through hole 1lt- is formed on the first metal layer 7 (hereinafter, this first metal layer will be particularly designated by reference numeral 71) connected to the buff diffusion region 3.

この時、スルーホール11は大きい1つの穴で形成して
もよいし、多数の小さい穴で形成してもよい。
At this time, the through hole 11 may be formed by one large hole, or may be formed by many small holes.

しかる後、半導体基板1上の全面にAtまたはM−8i
合金からなる第2の金属層8を8000〜1ooooX
の厚さに形成し、続いて公知のホトリソ技術によシ第2
の金属層8をノ9ターニングすることによυ、この第2
の金属層8を第2図0に示すようにスルーホール11部
にのみ、すなわち残存第1の金属層71上にのみ残す。
After that, At or M-8i is applied to the entire surface of the semiconductor substrate 1.
The second metal layer 8 made of alloy is 8000~1ooooX
The second layer is formed to a thickness of
By turning the metal layer 8 of υ, this second
The metal layer 8 is left only in the through hole 11 portion, that is, only on the remaining first metal layer 71, as shown in FIG.

これにより、大電流駆動素子の電極配線が、残存第1の
金属層71と残存第2の金属層8の積層構造で形成され
たことになる。また、小電流駆動素子の電極配線は、第
1の金属層7を蒸着しパターニングした段階で、残存第
1の金属層7のみによシ形成されている。
As a result, the electrode wiring of the large current drive element is formed with a laminated structure of the remaining first metal layer 71 and the remaining second metal layer 8. Moreover, the electrode wiring of the small current drive element is formed only by the remaining first metal layer 7 at the stage where the first metal layer 7 is deposited and patterned.

しかる後、第2図0に示すように、パッシベーション膜
9をCVD法によシ全面に形成する。
Thereafter, as shown in FIG. 2, a passivation film 9 is formed over the entire surface by CVD.

(発明の効果) 以上の実施例から明らかなように、この発明では、大電
流駆動素子の電極配線を2つの金属層の積層構造とする
。このようにすれば、大電流駆動素子の電極配線が比較
的厚くなって、電流容量を単位線幅あたシ2倍程度に大
きくできるので、その電極配線について電極配線幅を細
くしてエレクト目マイグレーションを防止することがで
きる。
(Effects of the Invention) As is clear from the above embodiments, in the present invention, the electrode wiring of the large current drive element has a laminated structure of two metal layers. In this way, the electrode wiring of the large current driving element becomes relatively thick, and the current capacity can be increased to about twice the unit line width. Migration can be prevented.

さらに、電極配線幅を細くできる結果、大電流駆動素子
の電極配線の微細化を達成できる。また、小電流駆動素
子の電極配線は1つの金N層により単層で形成されるの
で、従来通シの微細パターンで形成できる。
Furthermore, as a result of being able to reduce the width of the electrode wiring, it is possible to achieve miniaturization of the electrode wiring of the large current drive element. Further, since the electrode wiring of the small current driving element is formed in a single layer of one gold N layer, it can be formed in a conventional fine pattern.

なお、この発明はいずれの半導体装置にも応用できるが
、特にバイポーラ型半導体集積回路のように比較的電流
密度の高い場合に最適である。また、Bi−0MO8構
造のように、低電流域と大電流域が混在するような半導
体装置にも効果的に適用できる。
Although the present invention can be applied to any semiconductor device, it is particularly suitable for a case where the current density is relatively high, such as a bipolar type semiconductor integrated circuit. Further, it can be effectively applied to a semiconductor device in which a low current region and a large current region coexist, such as a Bi-0MO8 structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置およびその創造方法の第
1の実施例を説明するための断面図、第2図はこの発明
の第2の実施例を説明するための断面図である。 1・・・半導体基板、2,3・・・拡散領域、7s71
・・・第1の金属層、8・・・#I2の金属層。 第1図 第2図
FIG. 1 is a cross-sectional view for explaining a first embodiment of a semiconductor device and method for creating the same according to the present invention, and FIG. 2 is a cross-sectional view for explaining a second embodiment of the present invention. 1... Semiconductor substrate, 2, 3... Diffusion region, 7s71
...First metal layer, 8...Metal layer of #I2. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)小電流駆動の素子および大電流駆動の素子を形成
した半導体装置において、小電流駆動素子から引き出す
電極配線を1つの金属層で形成する一方、大電流駆動素
子から引き出す電極を2つの金属層のfitffit構
造で形成することを特徴とする半導体装置。
(1) In a semiconductor device in which a small current drive element and a large current drive element are formed, the electrode wiring drawn out from the small current drive element is formed using one metal layer, while the electrode wiring drawn out from the large current drive element is formed using two metal layers. A semiconductor device characterized in that it is formed with a fitffit structure of layers.
(2)小電流駆動の素子および大電流駆動の素子を形成
した半導体基板上に、大電流駆動素子の電極配線を形成
する部分にのみ金属層を形成する工程と、前記半導体基
板上に、小電流駆動素子および大電流駆動素子の電極配
線を形成する部分において金属層を形成する工程とを任
意の順序で前後して実施することにより電極配線を形成
することを特徴とする半導体装置の製造方法。
(2) A step of forming a metal layer only in the portion where the electrode wiring of the large current driving element is to be formed on the semiconductor substrate on which the small current driving element and the large current driving element are formed; A method for manufacturing a semiconductor device, characterized in that electrode wiring is formed by sequentially performing a step of forming a metal layer in a portion where electrode wiring of a current drive element and a large current drive element is to be formed, in an arbitrary order. .
JP6592384A 1984-04-04 1984-04-04 Semiconductor device and manufacture thereof Pending JPS60210871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6592384A JPS60210871A (en) 1984-04-04 1984-04-04 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6592384A JPS60210871A (en) 1984-04-04 1984-04-04 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60210871A true JPS60210871A (en) 1985-10-23

Family

ID=13300974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6592384A Pending JPS60210871A (en) 1984-04-04 1984-04-04 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60210871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529320A (en) * 1991-07-24 1993-02-05 Rohm Co Ltd Semiconductor device
JPH0870002A (en) * 1994-08-29 1996-03-12 Nec Corp Semiconductor device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529320A (en) * 1991-07-24 1993-02-05 Rohm Co Ltd Semiconductor device
JPH0870002A (en) * 1994-08-29 1996-03-12 Nec Corp Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JP2773578B2 (en) Method for manufacturing semiconductor device
JPS6329961A (en) Manufacture of thin film passive circuit with resistance line which has different layer resistance and the passive circuit manufactured
JPS60210871A (en) Semiconductor device and manufacture thereof
JPS5950544A (en) Formation of multi-layer wiring
US5247204A (en) Semiconductor device having multilayer interconnection structure
JPH04278542A (en) Semiconductor device and manufacture thereof
JPS5853874A (en) Josephson integrated circuit
JPS5863150A (en) Manufacture of semiconductor device
JPH02277242A (en) Manufacture of semiconductor device
JPS62136857A (en) Manufacture of semiconductor device
JPS60210870A (en) Semiconductor device and manufacture thereof
JP3049872B2 (en) Method for manufacturing semiconductor device
JPH0621058A (en) Semiconductor device
JP2563771B2 (en) Thin film circuit board and manufacturing method thereof
JP2646897B2 (en) Method of forming multilayer wiring
JPH07130790A (en) Construction of electrode of semiconductor device
JPS62188343A (en) Manufacture of semiconductor device
JPS5976447A (en) Multi-layer wiring method
JPH05109657A (en) Manufacture of semiconductor device
JPS63132453A (en) Manufacture of compound semiconductor device
JPH0536842A (en) Multilayer interconnection formation method
JPH0341732A (en) Manufacture of semiconductor device
JPS60124950A (en) Semiconductor device having multilayer interconnection structure
JPS60177652A (en) Manufacture of semiconductor device
JPS6127658A (en) Semiconductor device and manufacture thereof