JPS6020892B2 - semiconductor element - Google Patents

semiconductor element

Info

Publication number
JPS6020892B2
JPS6020892B2 JP1990673A JP1990673A JPS6020892B2 JP S6020892 B2 JPS6020892 B2 JP S6020892B2 JP 1990673 A JP1990673 A JP 1990673A JP 1990673 A JP1990673 A JP 1990673A JP S6020892 B2 JPS6020892 B2 JP S6020892B2
Authority
JP
Japan
Prior art keywords
film
type
layer
collector
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1990673A
Other languages
Japanese (ja)
Other versions
JPS49107677A (en
Inventor
喜顕 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1990673A priority Critical patent/JPS6020892B2/en
Publication of JPS49107677A publication Critical patent/JPS49107677A/ja
Publication of JPS6020892B2 publication Critical patent/JPS6020892B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は半導体素子に関し、特に半導体素子表面の保護
被膜の形成に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to the formation of a protective film on the surface of a semiconductor device.

一般にシリコンプレーナー型半導体素子表面はその安定
化のためにSi02膜により被覆保護されているが、通
常の素子製造方法では完全に清浄なSi02膜を形成す
ることは難しく、しばしさ該Si02膜中にある種の不
純物が導入される。
In general, the surface of a silicon planar semiconductor element is coated and protected with a Si02 film to stabilize it, but it is difficult to form a completely clean Si02 film using normal device manufacturing methods, and it is often difficult to form a completely clean Si02 film. Certain impurities are introduced.

特に該不純物が有通性物質並びにイオン性物質である場
合、該不純物を含むSi02膜直下のSj表面が分極し
、そこに電荷が誘起されて空乏層若しくはチャンネル層
が形成され易くなり、結果として素子の電気的特性に悪
影響が現われる。例えばシリコンプレーナー型NPNト
ランジスタに対し、P型ベース表面に被覆せるSi02
膜中に前記不純物が入ると、該Si02膿直下のP型ベ
ース表面に負電荷が誘起され、そこに空乏層若しくはN
型チャンネル層が現われ該表面の再結合電流が増加し、
例えば低電流のhFE等が低下する。またPNPトラン
ジスタを例にとるとP型コレクタ表面に被覆せるSiQ
膜中の不純物により該コレクタ表面に負電荷が誘起され
そこにN型チャンネル層が現われ、特にコレクタ・ベー
ス間の逆方向チャンネル電流が現われる。以上の例はい
ずれも従来からよく知られている現象でSiQ膜中のプ
ラス電荷成分によりP型シリコン表面に負電荷が譲起さ
れた場合であり、その対策として従来リンガラス層に代
表されるようなプラスイオンをゲッターする等の各種の
方法がとられている。
In particular, when the impurity is a permeable substance or an ionic substance, the Sj surface directly under the Si02 film containing the impurity is polarized, charges are induced there, and a depletion layer or channel layer is likely to be formed. This adversely affects the electrical characteristics of the device. For example, for a silicon planar NPN transistor, Si02 is coated on the P-type base surface.
When the impurity enters the film, a negative charge is induced on the P-type base surface directly below the Si02 pus, and a depletion layer or N
type channel layer appears and the recombination current on the surface increases,
For example, low current hFE etc. are reduced. Also, taking a PNP transistor as an example, SiQ can be coated on the P-type collector surface.
Negative charges are induced on the collector surface by impurities in the film, and an N-type channel layer appears there, and in particular, a reverse channel current between the collector and the base appears. All of the above examples are well-known phenomena in which negative charges are transferred to the P-type silicon surface due to positive charge components in the SiQ film, and conventional measures such as phosphor glass layers have been used as countermeasures. Various methods have been used, such as getting positive ions.

しかし、その反面Si02腰中のマイナス電荷成分によ
りn型シリコン表面に正電荷が誘起されるような現象に
対しては従来あまり報告がなされていない。ところが発
明者の調査によれば素子製造工程中Si02膜中にマイ
ナス電荷成分が導入される可能性が充分にあり、このマ
イナス電荷成分によりSi02膜直下のn型シリコン表
面にP型チャンネル層が形成されることが明らかに認め
られた。即ちこのマィナ電荷成分は一般的なSi02膜
の形成前後にアンモニアを含む水溶液にて素子表面処理
を行なうことにより、また一般的なSi02膿表面に金
属の酸化物例えばアルミニウムオキサイド、チタニウム
オキサイド、タンタルオキサィド等が存在することによ
り該Si02腰中にマイナス電荷成分が導入され、N型
シリコン表面にP型チャンネル層が形成される。例えば
シリコンNPN型トランジスタ素子の場合、前記マィナ
ス電荷成分を含むSi02膿直下の′N型コレクタ表面
にP型チャンネル層が形成されると該チャンネル層は素
子分割用のスクラィブ窓に迄達しコレクタ・ベース間逆
方向のチャンネル電流即ちリーク電流を著しく増大させ
る。特にこのチャンネル層はコレクタ側の比抵抗が高い
程、またSi02膜厚が薄い程容易に形成される。
However, on the other hand, there have been few reports on the phenomenon in which positive charges are induced on the n-type silicon surface by negative charge components in the Si02 matrix. However, according to the inventor's investigation, there is a good possibility that a negative charge component will be introduced into the Si02 film during the device manufacturing process, and this negative charge component will form a P-type channel layer on the n-type silicon surface directly under the Si02 film. It was clearly recognized that That is, this minor charge component can be removed by treating the surface of the device with an aqueous solution containing ammonia before and after forming a general Si02 film, or by applying metal oxides such as aluminum oxide, titanium oxide, tantalum oxide, etc. to the general Si02 surface. Due to the presence of ions, a negative charge component is introduced into the Si02 layer, and a P-type channel layer is formed on the surface of the N-type silicon. For example, in the case of a silicon NPN type transistor element, when a P type channel layer is formed on the N type collector surface directly under the SiO2 layer containing the negative charge component, the channel layer reaches the scribe window for element division and the collector base. This significantly increases the reverse channel current, or leakage current. In particular, this channel layer is formed more easily as the specific resistance on the collector side is higher and as the Si02 film thickness is thinner.

本発明はN型シリコン表面に出来るP型チャンネル層の
悪影響を阻止することを目的とする。
The object of the present invention is to prevent the adverse effects of a P-type channel layer formed on the surface of N-type silicon.

本発明の構成はまずN型シリコン表面に被覆せるSi0
2膜を部分的に若し〈はほぼ全面的に除去し、次に露出
せるSi表面に、酸化性雰囲気による低温の熱処理等に
てプラス電荷成分を含むごく低級のシリコン酸化膜を形
成し、該Si02際中に含まれるプラス電荷成分により
譲るiQ膜直下のN型シリコン表面に負電荷を誘起せし
むることによって該P型チャンネル層を遮断することを
特徴とする。したがってN型シリコン表面はプラス成分
を含む低温熱処理で形成された低級のシリコン酸化膜を
含む構造より成る。ここで、「低級シリコン酸化膜」と
は、例えば常温もしくは450午○以下の低温熱処理を
施こすことにより形成されるプラス電荷成分を含む低級
のシリコン酸化膜のことであり、一般の正規なシリコン
酸化膜(Si02濃)になっておらず、酸素が欠損しS
i○、Si20tSi203等の化合物を形成している
ので「化学量論的な組成が変化して酸素空間(Vaca
ncy)が多い状態や、Si−0の結合が各所で切れて
いる不対電子が多い状態のシリコン酸化膜のことである
。本発明によれば例えばNPN型トランジスタ素子の製
造に於いて、故意に前記マイナス電荷成分を含むSi0
2膜を形成し「 P型ベース表面の安定化をはかりその
効果として例えば低電流のhF耳・低周波のノイズレベ
ル等のレベルアップが達成でき、更にN型コレクタ表面
に形成されるP型チャンネル層を局部的に除去すること
により、コレクタ・ベース間逆方向のチャンネル電流を
消去せしむる効果を上げることが出来る。したがって半
導体装置の製造歩留、品質並びに信頼性等が一段と向上
する。次に本発明をその具体的な実施例に基づき図面を
参照して説明する。
The structure of the present invention is to first coat the N-type silicon surface with Si0
2 film is partially or almost completely removed, and then a very low-grade silicon oxide film containing a positive charge component is formed on the exposed Si surface by heat treatment at a low temperature in an oxidizing atmosphere. It is characterized in that the P-type channel layer is blocked by inducing negative charges on the N-type silicon surface directly under the iQ film due to the positive charge component contained in the Si02 film. Therefore, the N-type silicon surface has a structure including a low-grade silicon oxide film formed by low-temperature heat treatment containing positive components. Here, the term "low-grade silicon oxide film" refers to a low-grade silicon oxide film containing a positive charge component, which is formed by performing low-temperature heat treatment at room temperature or below 450 pm, and is a general regular silicon oxide film. It is not an oxide film (SiO2 concentration), and oxygen is deficient and S
Since compounds such as i○, Si20tSi203 are formed, the stoichiometric composition changes and the oxygen space (Vaca
This refers to a silicon oxide film in a state in which there are a large number of unpaired electrons (ncy) or in a state in which there are many unpaired electrons in which Si-0 bonds are broken at various places. According to the present invention, for example, in the production of an NPN transistor element, SiO
By forming two films, it is possible to stabilize the P-type base surface, and as a result, it is possible to improve the level of low-current hF ears, low-frequency noise levels, etc., and to further stabilize the P-type channel formed on the N-type collector surface. By locally removing the layer, it is possible to increase the effect of eliminating the channel current in the opposite direction between the collector and the base.Therefore, the manufacturing yield, quality, and reliability of semiconductor devices are further improved.Next Now, the present invention will be explained based on specific embodiments with reference to the drawings.

本実施例では本発明をプレーナー型NPNトランジスタ
に適用した場合について説明する。
In this embodiment, a case will be described in which the present invention is applied to a planar type NPN transistor.

第1図はN型ェミッタ拡散層1、P型ベース拡散層2、
N型コレクタ層3「 熟成長Si02膜4並びにェミツ
タ電極5、ベース電極6を公知の方法で形成したNPN
トランジスタ素子の断面図を示す。加うるに第1図に於
いて通常、素子分割を便ならしむるためのシリコン面を
露呈したスクライブ窓8、さらに素子製造工程中便宜的
に該スクラィブ窓8に形成せる拡散層7を示す。
Figure 1 shows an N-type emitter diffusion layer 1, a P-type base diffusion layer 2,
N-type collector layer 3 "NPN with ripely grown Si02 film 4, emitter electrode 5, and base electrode 6 formed by a known method.
A cross-sectional view of a transistor element is shown. In addition, FIG. 1 shows a scribe window 8 exposing a silicon surface for facilitating device division, and a diffusion layer 7 which is conveniently formed in the scribe window 8 during the device manufacturing process.

尚該拡散層7は格別、ジャンクションを形成する必要が
ないために、通常同一寸法のスクラィブ窓からェミッタ
及びベース拡散の際同時に夫々P型及びN型の不整な拡
散層7が形成される。したがって該スクラィブ窓8はコ
レク夕層3とほとんど短絡状態になつている。第2図は
第1図の如く形成されたトランジスタ素子のコレクタ側
のSi02膜4がマイナス電荷成分を含む場合、N型コ
レクタ表面に正電荷が誘起されP型チャンネル層9が形
成された状態を示す。
Since there is no particular need to form a junction in the diffusion layer 7, the irregular diffusion layers 7 of P type and N type are formed at the same time as the emitter and base diffusion from the scribe window of the same size. Therefore, the scribe window 8 is almost short-circuited with the collector layer 3. FIG. 2 shows a state in which when the Si02 film 4 on the collector side of the transistor element formed as shown in FIG. 1 contains a negative charge component, positive charges are induced on the N-type collector surface and a P-type channel layer 9 is formed. show.

即ち、第2図に於いてマイナス電荷成分を含むSi02
膜は例えば拡散、酸化並びに電極形成の前処理として、
一般に使用されている洗浄液例えばアンモニア水(30
%水溶液)を2部、過酸化水素水(30%水溶液)を2
部、純水を6部の混合水溶液を使用し、当水溶液中で温
度を70qoに保ち、2鰍HZの超音波を与えた状態で
洗浄することにより形成される。さらに該マイナス電荷
成分を含むSi02膜4の影響を受け易くするためにコ
レクタ層は比較的高い比抵抗40弧のェピタキシャル層
を使用し、さらにSiQ濃厚を8000Aに形成した。
That is, in FIG. 2, Si02 containing a negative charge component
The membrane can be treated, for example, as a pretreatment for diffusion, oxidation, and electrode formation.
Commonly used cleaning liquids such as ammonia water (30
% aqueous solution) and 2 parts of hydrogen peroxide (30% aqueous solution).
It is formed by using a mixed aqueous solution of 1 part and 6 parts of pure water, maintaining the temperature in the aqueous solution at 70 qo, and washing with 2 parts of HZ ultrasonic waves applied. Further, in order to be easily influenced by the Si02 film 4 containing the negative charge component, an epitaxial layer having a relatively high resistivity of 40 arc was used as the collector layer, and the SiQ concentration was formed to be 8000A.

尚、かくの如く形成されるトランジスタ素子は本実施例
に限らず一般的に数多く存在する。第2図に示す如く「
N型コレクタ層3に被覆せるSi02膜4の直下のチ
ャンネル層9が存在し、該チャンネル層9がスクラィブ
窓8に迄到達すると、コレクタ・ベース逆方向電流はコ
レクタ層3からスクラィブ窓8に形成せる不整な拡散層
7を通り、さらに該チャンネル層9を通じてベース領域
2に流れるため瞬間的に増大する。
Note that there are many transistor elements formed in this manner, not only in this embodiment. As shown in Figure 2,
There is a channel layer 9 directly under the Si02 film 4 covering the N-type collector layer 3, and when the channel layer 9 reaches the scribe window 8, a collector-base reverse current is formed from the collector layer 3 to the scribe window 8. It flows into the base region 2 through the irregular diffusion layer 7 and further through the channel layer 9, so that it increases instantaneously.

この現象は前述した如くSi02膜中のマイナス電荷成
分に起因するものである。反面マイナス電荷成分を含む
SiQ膜がP型ベース表面に被覆されるとこのSi02
膜4′は該ベース表面に負電荷を誘起する方向なので該
表面での空乏層並び反転層等の形成が阻止されるため通
常のプラス電荷成分を含むSi02膜と比し該表面での
再結合電流が著しく減少し、低電流のhFE並びに低周
波でノイズレベル等が著しく改善される。したがって第
2図に示すトランジスタ素子はコレクタ側のチャンネル
層9を消去せしむることのみにより一段と改良されたデ
バイス特性をもつようになる。本発明は該チャンネル層
9を途中で消去せしめコレクタ・ベース間逆方向の電流
経路を遮断する方法で行なう。
As mentioned above, this phenomenon is caused by the negative charge component in the Si02 film. On the other hand, when a SiQ film containing a negative charge component is coated on the P-type base surface, this Si02
Since the film 4' has a direction that induces negative charges on the base surface, the formation of a depletion layer, an inversion layer, etc. on the surface is prevented, so recombination on the surface is prevented compared to a normal Si02 film containing a positive charge component. The current is significantly reduced, and noise levels etc. are significantly improved with low current hFE and low frequency. Therefore, the transistor element shown in FIG. 2 has further improved device characteristics only by erasing the channel layer 9 on the collector side. The present invention is carried out by a method in which the channel layer 9 is erased midway to cut off the current path in the reverse direction between the collector and the base.

即ち本発明の一実施例として第3図に示す如くコレクタ
層3に被覆せるSi02膜4を途中で弗酸水溶液を使用
し選択的にリング状に除去せしめ、その後常温若しくは
45000以下で酸化性雰囲気、例えば空気中で譲りン
グ窓10に選択的に10〜200Aの低級酸化膜11を
形成させる。尚当酸化膜形成にあたり、必然的にスクラ
ィブ窓8上にも低級酸化膜12が形成されるが、この程
度の膜厚ではスクラィブに際し全く支障はない。該低級
酸化膜11は当工程を経て形成される限りかならずこの
低級酸化膜11と接触するN型コレクタ層表面付近に負
電荷を誘起するに十分なプラス電荷成分を含むため該S
i02膜11直下のN型コレクタ表面には負電荷が誘起
される方向になり、P型チャンネル層9は該表面にて完
全に消去される。したがって前記逆方向電流経路は同時
に完全に遮断されることになる。次に本発明の他の実施
例として、第4図に示す如くコレクタ層3上のSi02
膜9をほぼ全面的に除去し、露呈せるコレクタ表面13
に前記実施例と同様に450℃以下の低温熱処理により
低級シリコン酸化膜14を形成することによりチャンネ
ル層9の形成を阻止して、逆方向電流経路を完全に遮断
させる方法を挙げることが出来る。
That is, as an embodiment of the present invention, as shown in FIG. 3, the Si02 film 4 coated on the collector layer 3 is selectively removed in a ring shape using a hydrofluoric acid aqueous solution, and then exposed to an oxidizing atmosphere at room temperature or below 45,000 ℃. For example, a low grade oxide film 11 of 10 to 200 A is selectively formed on the yielding window 10 in air. In forming the oxide film, a lower grade oxide film 12 is inevitably formed on the scribe window 8, but with a film thickness of this level, there is no problem at all during scribing. As long as the lower oxide film 11 is formed through this process, it will definitely contain a positive charge component sufficient to induce negative charges near the surface of the N-type collector layer in contact with the lower oxide film 11.
Negative charges are induced on the N-type collector surface directly under the i02 film 11, and the P-type channel layer 9 is completely erased on this surface. Therefore, the reverse current path is completely cut off at the same time. Next, as another embodiment of the present invention, as shown in FIG.
The collector surface 13 is exposed by removing almost the entire film 9.
Another method is to prevent the formation of the channel layer 9 by forming the low-grade silicon oxide film 14 by low-temperature heat treatment at 450° C. or lower, as in the previous embodiment, and to completely cut off the reverse current path.

本実施例の第3図及び第4図の素子表面構造によればコ
レクタ・ベース逆方向電流が減少するのみならず前述し
た如くべ−ス表面の再結合電流が減少するためあらゆる
デバイス特性の改善がなされ半導体装置として製造歩留
、品質並びに信頼性等が著しく向上する。
According to the device surface structure shown in FIGS. 3 and 4 of this embodiment, not only the collector-base reverse current is reduced, but also the recombination current on the base surface is reduced as described above, thereby improving all device characteristics. As a result, the manufacturing yield, quality, reliability, etc. of semiconductor devices are significantly improved.

以上説明した如く本発明はN型シリコン表面に被覆せる
Si02膜を部分的に若し〈はほぼ全面的に除去し、露
呈せるSi面にプラス電荷成分を含む低級のシリコン酸
化膜を形成してN型シリコン表面に誘起されるP型チャ
ンネル層を消去せしむることを特徴とするものであり、
本実施例ではNPNトランジスタを例に挙げたが本発明
は該トランジスタに限らず、その目的を遂行するもので
あればダイオード、集積回路等あらゆる半導体装置に適
用できることは言うまでもない。
As explained above, the present invention involves partially or almost completely removing the Si02 film covering the N-type silicon surface, and forming a low-grade silicon oxide film containing a positive charge component on the exposed Si surface. It is characterized by erasing the P-type channel layer induced on the N-type silicon surface,
In this embodiment, an NPN transistor is taken as an example, but it goes without saying that the present invention is not limited to this transistor, but can be applied to any semiconductor device such as a diode or an integrated circuit as long as it accomplishes the purpose.

さらに本実施例では、マイナス電荷成分を含むSi02
膜の形成としてアンモニア水を含む水溶液を挙げたが、
必らずしも当方法に限定するものでなく、例えばアンモ
ニア基を含む化合物の適用、金属酸化物の適用など他方
法も充分考えられる。
Furthermore, in this example, Si02 containing a negative charge component
Although an aqueous solution containing ammonia water was used to form a film,
The method is not necessarily limited to this method, and other methods such as the application of a compound containing an ammonia group or the application of a metal oxide are also conceivable.

さらに本発明によるP型チャンネル層の消去方法は本実
施例に掲げたマイナス電荷成分を含むSi02膜以外の
保護被膜に対しても容易に適用出来ることは論外ではな
い。
Furthermore, it is not out of the question that the method for erasing a P-type channel layer according to the present invention can be easily applied to protective films other than the Si02 film containing a negative charge component as described in this embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第3図から第4図は本発明の実施例の半導体素子表面の
製造工程を説明するための断面図でありその中で第3図
並びに第4図は本発明の代表的な素子表面構造を示す断
面図である。 1・・・・・・ェミッタ拡散層、2・・・・・・ベース
拡散層、3……コレクタ層、4,4′・・…・熟成長シ
リコン酸化膜、5,6・・・・・・素子電極層、7・・
・・・・スクラィブ窓からの拡散層、8・・・・・・ス
クラィブ窓、9・・・・・・P型チャンネル層、10・
・・・・・リング状窓、11,12,14・・・・・・
低級シリコン酸化膜、13・・・…コレクタ表面。 卒1図 第2図 第3流 多4図
3 to 4 are cross-sectional views for explaining the manufacturing process of the surface of a semiconductor device according to an embodiment of the present invention, and FIGS. 3 and 4 show typical device surface structures of the present invention. FIG. 1... Emitter diffusion layer, 2... Base diffusion layer, 3... Collector layer, 4, 4'... Mature silicon oxide film, 5, 6...・Element electrode layer, 7...
...Diffusion layer from the scribe window, 8...Scribe window, 9...P-type channel layer, 10.
...Ring window, 11, 12, 14...
Low grade silicon oxide film, 13... Collector surface. Graduation 1 figure 2 figure 3 Ryuta 4 figure

Claims (1)

【特許請求の範囲】[Claims] 1 N型シリコン層を有し、そのシリコン層表面にマイ
ナス電荷成分を有するシリコン酸化膜が半導体基板表面
に形成された半導体素子であつて、該半導体基板の前記
N型シリコン層の表面上にはリング状もしくはほぼ全面
的にプラス電荷成分を含む低級のシリコン酸化膜が形成
されていることを特徴とする半導体素子。
1. A semiconductor element having an N-type silicon layer and a silicon oxide film having a negative charge component on the surface of the silicon layer formed on the surface of a semiconductor substrate, wherein the surface of the N-type silicon layer of the semiconductor substrate is A semiconductor device characterized by a ring-shaped or almost entirely formed low-grade silicon oxide film containing a positive charge component.
JP1990673A 1973-02-19 1973-02-19 semiconductor element Expired JPS6020892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990673A JPS6020892B2 (en) 1973-02-19 1973-02-19 semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990673A JPS6020892B2 (en) 1973-02-19 1973-02-19 semiconductor element

Publications (2)

Publication Number Publication Date
JPS49107677A JPS49107677A (en) 1974-10-12
JPS6020892B2 true JPS6020892B2 (en) 1985-05-24

Family

ID=12012243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990673A Expired JPS6020892B2 (en) 1973-02-19 1973-02-19 semiconductor element

Country Status (1)

Country Link
JP (1) JPS6020892B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261672U (en) * 1985-10-04 1987-04-16
CN106531698A (en) * 2015-09-11 2017-03-22 株式会社东芝 Semiconductor device
WO2019058841A1 (en) 2017-09-19 2019-03-28 株式会社 東芝 Electrode, secondary battery, battery pack, and vehicle
US11251414B2 (en) 2017-09-19 2022-02-15 Kabushiki Kaisha Toshiba Electrode group, secondary battery, battery pack, and vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261672U (en) * 1985-10-04 1987-04-16
CN106531698A (en) * 2015-09-11 2017-03-22 株式会社东芝 Semiconductor device
WO2019058841A1 (en) 2017-09-19 2019-03-28 株式会社 東芝 Electrode, secondary battery, battery pack, and vehicle
US11251414B2 (en) 2017-09-19 2022-02-15 Kabushiki Kaisha Toshiba Electrode group, secondary battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JPS49107677A (en) 1974-10-12

Similar Documents

Publication Publication Date Title
JPS6020892B2 (en) semiconductor element
JPS63157475A (en) Semiconductor device and manufacture thereof
JP2002299641A (en) Method for fabricating semiconductor device
US2978617A (en) Diffusion transistor
JP3167797B2 (en) Method for manufacturing semiconductor device
JPH1012897A (en) Glass-coated semiconductor device and manufacture thereof
JPH0581054B2 (en)
JPS606104B2 (en) MIS semiconductor device
JPS5980970A (en) V-groove mos type field-effect transistor
JPH0212920A (en) Manufacture of semiconductor device
JPS59169179A (en) Semiconductor integrated circuit device
JPH0462922A (en) Manufacture of semiconductor device
JP3157203B2 (en) High voltage semiconductor device
JPS6213033A (en) Manufacture of semiconductor device
JPS61288467A (en) Semiconductor device and manufacture thereof
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPS5934638A (en) Semiconductor device
JPS59978B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6196761A (en) Manufacture of semiconductor device
JPS6477165A (en) Manufacture of semiconductor device
JPS6199365A (en) Semiconductor integrated circuit device
JPS6132827B2 (en)
JPH05868B2 (en)
JPS57130480A (en) Semiconductor device
JPS6340324A (en) Manufacture of semiconductor element of high breakdown strength

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19840131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19851105