JPS6196761A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6196761A
JPS6196761A JP21631884A JP21631884A JPS6196761A JP S6196761 A JPS6196761 A JP S6196761A JP 21631884 A JP21631884 A JP 21631884A JP 21631884 A JP21631884 A JP 21631884A JP S6196761 A JPS6196761 A JP S6196761A
Authority
JP
Japan
Prior art keywords
region
impurity
concentration
oxide film
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21631884A
Other languages
Japanese (ja)
Inventor
Kenji Azetsubo
畦坪 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21631884A priority Critical patent/JPS6196761A/en
Publication of JPS6196761A publication Critical patent/JPS6196761A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the current amplification degree and breakdown- withholding capability by a method wherein impurity concentration in a base region is eventually lowered without reducing the quantity of impurity to be diffused during a base region forming process. CONSTITUTION:On a first semiconductor layer 1a on a substrate 1, a silicon oxide film 2 is formed, therein an opening 2a is provided by the selective removal method. A boron-doped oxide film 3 is formed to cover the opening 2a and the remaining silicon oxide film 2. A heating process follows whereby the impurity (boron) in the film 3 is diffused through the opening 2a into the semiconductor layer 1a for the formation of a P type low-concentration first region 4 (base region). The oxide film 3 is subjected to elective removal and the exposed first region 4 is removed by etching for the formation of a recess 4a. An impurity (phosphorus) is caused to be diffused through the inside walls of the recess 4a into a section in the first region 4 for the formation of an N type second region 5 (emitter region), when the impurity diffusion concentration from the recess walls is reduced and an emitter region 5 is formed wherein a high-concentration region 5a is contained in a low-concentration region 5b.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置例えばトランジスタの製造方法に関
するものであり、特に電流増幅率および破壊強匿の向上
を図る改良された方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, such as a transistor, and more particularly to an improved method for improving current amplification factor and breakdown protection.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来のNPN トランジスタの製造方法の一例を図を用
いて説明する。
An example of a conventional method for manufacturing an NPN transistor will be explained with reference to the drawings.

第1工程 第2図(a)に示すように、通称O8Lウェ
ハ(ワンサイドラップトウエノS)と呼ばれる、N型第
1半導体ノー(N)f4)laと高?a1度N型半纏体
層(N+層)lbとから成るシリコン基板1を用意する
First step As shown in FIG. 2(a), the first N-type semiconductor (N)f4)la and high? A silicon substrate 1 consisting of a1 degree N-type semi-coherent layer (N+ layer) lb is prepared.

そしてこの第1半導体層1aの1主面上に酸化シリコン
膜2を形成する。
Then, a silicon oxide film 2 is formed on one main surface of the first semiconductor layer 1a.

開口2aおよび残った酸化シリコン膜2上にボロンドー
プドオキサイド膜3を被着形成する。次いで加熱処理を
施すことにより膜3の不純物(ボロ/)を開口2aよ轢
半導体層1aへ拡散しP型ベース領域4を形成する。
A boron-doped oxide film 3 is deposited on the opening 2a and the remaining silicon oxide film 2. Next, by performing a heat treatment, the impurity (boro/) in the film 3 is diffused into the semiconductor layer 1a through the opening 2a, thereby forming a P-type base region 4.

第3工程 第2図(c)に示すように、膜3を選択除去
して開口3aを形成する。そしてこの開口3aおよび残
った膜3上にリンドープドオキサイド膜6を被着形成す
る。次いで加熱処理を施すことにより膜6の不純物(リ
ン)を開口3aよりペース領域4ヘ拡散しN型エミッタ
領域5を形成する。
Third step As shown in FIG. 2(c), the film 3 is selectively removed to form an opening 3a. Then, a phosphorus-doped oxide film 6 is formed over the opening 3a and the remaining film 3. Next, by performing a heat treatment, the impurity (phosphorus) in the film 6 is diffused into the space region 4 through the opening 3a, thereby forming an N-type emitter region 5.

第4工程 第2図fd)に示すように、ベース領域4の
1部およびエミッタ領域5の1部が露出するように、膜
3および膜6にベース電極用の開ロアbおよびエミッタ
電極用の開ロアeを形成する。
Fourth step As shown in FIG. 2 fd), an open lower b for the base electrode and an open lower b for the emitter electrode are formed on the film 3 and the film 6 so that a part of the base region 4 and a part of the emitter region 5 are exposed. An open lower e is formed.

第5工程 第2図(e)に示すように、上述した開ロア
b+ 7部全通してベース電極8bおよびエミッタ電極
8eを被着形成し、高濃度N型半辱体層(N+層)lb
Kはコレクタ電極8cを被着形成する。
5th step As shown in FIG. 2(e), a base electrode 8b and an emitter electrode 8e are formed through the entire seven parts of the open lower b+ described above, and a high concentration N-type semi-abrasive body layer (N+ layer) lb
K forms the collector electrode 8c.

このような従来例のトラ/ジメタの電流増幅率を向上さ
せようとする場合、ベース不純物濃度を下げる方法、エ
ミッタ不純物濃度を高くする方法等が考えられる。
In order to improve the current amplification factor of such a conventional transistor/dimetal, there may be a method of lowering the base impurity concentration, a method of increasing the emitter impurity concentration, etc.

しかしながら、ベース不純物#度を下けるためには、従
来不純物の拡散量を減らさなければならなかった。この
ような低濃度の拡散はそのコント:   ロールが困難
でありかつベース内の不純物濃度にばらつきが生じ、し
いては電流増幅率をばらつかせる事になる。
However, in order to lower the base impurity level, it has been necessary to reduce the amount of diffusion of impurities. Such low concentration diffusion is difficult to control and causes variations in the impurity concentration within the base, which in turn causes variations in the current amplification factor.

またエミッタ不純物濃度を上けるため不純物の拡散量を
増やすと結晶構造がくずれ欠陥が増えたり、部分的に深
く拡散されたりしてリーク電流が増加する。
Furthermore, if the amount of diffusion of impurities is increased in order to increase the emitter impurity concentration, the crystal structure will be disrupted and defects will increase, or the impurities will be partially diffused deeply, resulting in an increase in leakage current.

また破壊強度を向上させるだめ従来は、例えばベース電
極やエミッタ電極に抵抗物質を用いる方法等があるが、
このような方法によるとこの砥杭によるパワーロスが生
じてしまうため順方向の特性が悪化する。
In order to improve the breaking strength, there are conventional methods such as using a resistive material in the base electrode and emitter electrode.
According to such a method, a power loss occurs due to the grinding pile, which deteriorates the characteristics in the forward direction.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の問題点を解決し、拡散工程における
ベース領域形成用の不純物の拡散量を減らすことなく最
終的にはベース領域の不純物濃度を下げ、電流増幅率を
向上させ、かつ破壊強度をも向上させることができる半
導体装置の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and ultimately lowers the impurity concentration in the base region without reducing the amount of diffusion of impurities for forming the base region in the diffusion process, improves the current amplification factor, and improves the breakdown strength. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can also improve the performance.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するための、第1導電型の第1
半導体層の一生面に第2導電型の不純物を拡散し、第2
導電型の第1領域を形成する工程とこの第1領域表面の
一部をエツチング除去して所定深さの凹部を形成する工
程と、この凹部内壁より第1導電型の不純物をこの第1
領域に導入し第1導電型の第2領域を形成する工程と、
前記−主面を前記凹部の底面の深さまでラッピング除去
する工程とを具備することを特徴とする半導体装置の製
造方法である。
The present invention provides a first conductivity type first conductivity type to achieve the above object.
A second conductivity type impurity is diffused over the whole surface of the semiconductor layer to form a second conductivity type impurity.
A step of forming a first region of a conductivity type, a step of etching away a part of the surface of the first region to form a recess of a predetermined depth, and removing an impurity of the first conductivity type from an inner wall of the recess.
introducing into the region to form a second region of the first conductivity type;
A method for manufacturing a semiconductor device, comprising the step of lapping and removing the main surface to a depth of the bottom surface of the recess.

〔発明の実゛施例〕[Embodiments of the invention]

本発明による方法でNPN )ランジスタを製造した一
実施例を図を用いて説明する。
An example of manufacturing an NPN transistor by the method according to the present invention will be described with reference to the drawings.

第1工程 第1図(a)に示すように、N型第1半導体
1n(N/1)laと高濃IiN型半導体層(N+層)
 lbとから成るンリコン基板1を用意し、この第1半
専体層1a上−に約3μmの膜厚で酸化シリコン膜2を
形成する。
First step As shown in FIG. 1(a), an N-type first semiconductor 1n(N/1)la and a highly concentrated IiN-type semiconductor layer (N+ layer)
A silicon oxide film 2 having a thickness of about 3 μm is formed on the first semi-dedicated layer 1a.

第2工程 第1図(blに示すように、酸化シリコン膜
2を選択除去し開口2aを形成する。そしてこの開口2
aおよび残った酸化シリコン膜2上にポロ/ドープドオ
キサイド膜3を被着形成する。次いで加熱処理を施すこ
とにより膜3の不純物(ボロ/)を開口2aより半導体
層1aに拡散しP型低#度第1領域(ベース領域)4を
形成する。このベース領域4は深さが約30μmで、表
面不純物濃度は約IX 10 ” an−3となるよう
形成する。
Second step As shown in FIG. 1 (bl), the silicon oxide film 2 is selectively removed to form an opening 2a.
A polo/doped oxide film 3 is deposited on the silicon oxide film 2 and the remaining silicon oxide film 2. Next, by performing a heat treatment, the impurity (boro/) in the film 3 is diffused into the semiconductor layer 1a through the opening 2a, thereby forming a P-type low # degree first region (base region) 4. This base region 4 is formed to have a depth of about 30 μm and a surface impurity concentration of about IX 10 ”an-3.

第3工程 第1図(C)に示すように、オキサイド膜3
を選択除去し、ここから第1.領域表面の1区画を霧出
させる。次いでこの露出した第1領域の1区画をエツチ
ング除去して約10μmの深さの凹部4aを形成する。
Third step As shown in FIG. 1(C), the oxide film 3
Select and remove the first one from here. A section of the area surface is misted. Next, one section of the exposed first region is removed by etching to form a recess 4a with a depth of about 10 μm.

尚この凹部4aは、例えばぶつ酸と硝酸の混合でなるエ
ツチング液に10分乃至15分浸漬することにより形成
する。
The recess 4a is formed, for example, by immersion in an etching solution made of a mixture of butic acid and nitric acid for 10 to 15 minutes.

第4工程 第1図(dlに示すように、凹部4aの内壁
より不純物(す/)を第1領域の1区画に拡散させ、N
型第2領域(エミッタ領域)5を深さ約10μm1表面
不純物濃度約1×102°crn−3となるように形成
する。
4th step As shown in FIG.
A second mold region (emitter region) 5 is formed to have a depth of about 10 μm and a surface impurity concentration of about 1×10 2 DEG crn-3.

このとき、凹部側壁からの不純物の拡散濃度が下がり低
濃度領域5bで高濃度領域5aを包含した形のエミッタ
領域5が形成される。尚この不純物の拡散は、例えばP
OCl2(塩化スルホリル)と拡散用不純物蒸発源とし
て用いる。         −@5工程 第1図(e
)に示すように、第1半導体層1aのベース領域4を形
成した面を凹部4aの底面の深さまでLapping処
理により除去する。その後、ぶつ酸とも肖酸の混合した
エツチング液により軽く表面をエツチングする。
At this time, the concentration of impurity diffused from the sidewall of the recess is reduced, and an emitter region 5 is formed in which the low concentration region 5b encompasses the high concentration region 5a. Note that this diffusion of impurities is caused by, for example, P
Used as an impurity evaporation source for diffusion with OCl2 (sulfolyl chloride). -@5 process Figure 1 (e
), the surface of the first semiconductor layer 1a on which the base region 4 is formed is removed by a lapping process to the depth of the bottom surface of the recess 4a. After that, the surface is lightly etched using an etching solution containing a mixture of butic acid and pox acid.

これによりベース領域の中でも不純物濃度の高い表面付
近が除去されるために実質的にベース領域の表面不純物
濃度が下がる。
As a result, a portion near the surface of the base region having a high impurity concentration is removed, so that the surface impurity concentration of the base region is substantially reduced.

第6エ程 第1図(f)に示すように、第1半導体層の
前述したラッピング処理を施した面に酸化シリコン膜9
を形成し、次いでパッシベーション膜トなるリンドープ
ドオキサイド膜10を被着形成する。
Sixth Step As shown in FIG.
is formed, and then a phosphorus-doped oxide film 10 serving as a passivation film is deposited.

第7エ程 第1図(g)に示すように、ベース領域の一
部およびエミッタ領域の一部が露出するように膜9およ
び膜10にベース電極用の開ロアbおよびエミッタ電極
用の開ロアeを形成する。
Seventh Step As shown in FIG. 1(g), an open lower b for the base electrode and an open lower b for the emitter electrode are formed in the films 9 and 10 so that a part of the base region and a part of the emitter region are exposed. Forms lower e.

第8工程 第1図(hlに示すように、開ロアbおよび
々 7eを通しベース電極8bおよびエミッタ電極8eを被
着形成し、高濃度N型半導体層(N+層)lbにはコレ
クタ電極8Cを被着形成する。
8th step As shown in FIG. 1 (hl), a base electrode 8b and an emitter electrode 8e are formed through the open lower b and 7e, and a collector electrode 8C is formed on the high concentration N-type semiconductor layer (N+ layer) lb. Form the adhesion.

以上のような方法により製造されたトランジスタと従来
例のトランジスタの特性の比較を行った結果を第3図乃
至第5図に示す。ここで曲線X及びYは夫々本実施例方
法及び従来方法によるトランジスタの特性を示している
The results of comparing the characteristics of the transistor manufactured by the above method and the conventional transistor are shown in FIGS. 3 to 5. Here, curves X and Y indicate the characteristics of transistors according to the method of this embodiment and the conventional method, respectively.

第3図は、直流電流増lig率hFBに対応するコレク
タ・エミッタ間降伏電圧vsagの関係を示している。
FIG. 3 shows the relationship between the collector-emitter breakdown voltage vsag and the DC current increase rate hFB.

この図かられかるように、同じ直流電流増幅率hFEに
対して本実施例によるトランジスタの降伏電圧(曲線X
)が従来(曲線Y)に比し大きくなっており耐圧が向上
している。これはベース領域の中で不純物濃度の高い表
面付近をエツチング除去したため、ベース領域の実質的
な不純物濃度が下がり、空乏領域が広く伸びるようにな
ったためである。
As can be seen from this figure, the breakdown voltage (curve X
) is larger than the conventional one (curve Y), and the withstand voltage is improved. This is because the portion of the base region near the surface where the impurity concentration is high is removed by etching, so that the substantial impurity concentration of the base region is reduced and the depletion region is extended widely.

第4図はコレクタ・ベース印加電圧voilに対応する
ΔV’Bg法(過渡熱抵抗測定法)によるベース・エミ
ッタ間電圧の変化分(ΔVBE)の関係を示している。
FIG. 4 shows the relationship between the base-emitter voltage change (ΔVBE) measured by the ΔV'Bg method (transient thermal resistance measurement method) corresponding to the collector-base applied voltage boil.

コノΔVBE法トはコレクタ・エミッタ間の二次降伏に
帰因するトランジスタの破壊を調べる方法であり、この
二次降伏は局部的な温度上昇によるものと考えられるた
め、この温度上昇を検出することにより二次降伏を検出
するものである。そしてこの温度上昇をベース・エミッ
タ間電圧の変化J VBBとして検出するのがΔVBE
法である。この第4図を見ると同じコレクタ・ベース印
加電圧vCBに対し本実施例によるトランジスタのΔV
BB (曲線X)は従来例のΔVBB (曲MY)に比
し小さくなっている。
The ΔVBE method is a method of investigating transistor destruction caused by secondary breakdown between the collector and emitter, and since this secondary breakdown is thought to be caused by a local temperature rise, it is necessary to detect this temperature rise. This is used to detect secondary breakdown. ΔVBE detects this temperature rise as a change in base-emitter voltage JVBB.
It is the law. Looking at this FIG.
BB (curve X) is smaller than ΔVBB (music MY) of the conventional example.

つまりこれは本実施例によるトランジスタの方が従来例
より温度上昇率が小さいということであり二次降伏が起
りにくくなっていることを示している。
In other words, this means that the temperature increase rate of the transistor according to this embodiment is smaller than that of the conventional example, which means that secondary breakdown is less likely to occur.

これは、電流が集中して高温となりやすいエミッタ側面
部5bを低濃度にすることにより、ここに局部的に電流
が集中することがなくなりエミッタ中央部5a内に均一
に電流が流れるようになったためである。
This is because by lowering the concentration of the emitter side surface 5b, where current tends to concentrate and become high temperature, the current does not locally concentrate there and the current flows uniformly within the emitter center 5a. It is.

第5図はコレクタ電流Icに対応する直流電流増幅gh
FEの関係を示している。この図かられかるように、本
実施例によるトランジスタ(曲線X)は従来例のトラン
ジスタ(曲線Y)に比しhFEが向上している。これは
エミッタ領域の不純物濃度に対してのベース領域の不純
物1!度の差が従来に比しより大きく、そのためより加
速度電界を発生させる構造となっていること、およびエ
ミッタ領域の側面が低濃度でありここを流れる無効電流
が実効的に小さいため、hFEが向上したのである。
Figure 5 shows the DC current amplification gh corresponding to the collector current Ic.
It shows the relationship of FE. As can be seen from this figure, the transistor according to this embodiment (curve X) has improved hFE compared to the conventional transistor (curve Y). This means that the impurity concentration in the base region is 1! compared to the impurity concentration in the emitter region! hFE is improved because the difference in acceleration is larger than before, and therefore the structure generates more acceleration electric field, and the sides of the emitter region are low concentration and the reactive current flowing there is effectively small. That's what I did.

本発明は上記一実施例に限定されるものではなく、例え
ば第1導電凰はP型、第24電型はN型であってもよい
。また本実施例では拡散用不純物蒸発源としてPOCl
 3を用いたが例えばP2O,(5酸化リン)であって
もよい。
The present invention is not limited to the above embodiment; for example, the first conductive screen may be of P type and the 24th conductive type may be of N type. In addition, in this example, POCl is used as an impurity evaporation source for diffusion.
Although 3 was used, for example, P2O, (phosphorus pentoxide) may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によると、拡散工程における不純物の拡散量を減
らすことなく最終的にはベース領域の不純物濃度を下け
ることができ、かつこれに接合する第2領域の、その側
面付近を低濃度とすることができるため電流増幅率が向
上し、かつ破壊強度の向上した半導体装置を製造するこ
とができるという効果がある。
According to the present invention, the impurity concentration in the base region can be finally lowered without reducing the amount of impurity diffused in the diffusion process, and the concentration near the side surfaces of the second region bonded to the base region can be lowered. This has the effect of improving the current amplification factor and making it possible to manufacture a semiconductor device with improved breakdown strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための工程断面図
、第2図は従来例を説明するだめの工程断面図、第3図
乃至第5図は本実施例と従来例の特性の比較を示したグ
ラフである。 1a・・・第1半導体層 代理人 弁理士 則 近 憲 佑 (ほか1名) り 第1図 (C) 第1図 第1図 第2図 (a) 第2図
Fig. 1 is a process sectional view for explaining one embodiment of the present invention, Fig. 2 is a process sectional view for explaining a conventional example, and Figs. 3 to 5 are characteristics of this embodiment and the conventional example. This is a graph showing a comparison. 1a...First semiconductor layer agent Patent attorney Noriyuki Chika (and one other person) Figure 1 (C) Figure 1 Figure 1 Figure 2 (a) Figure 2

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の第1半導体層の一主面に第2導電型の不
純物を拡散し、第2導電型の第1領域を形成する工程と
、この第1領域の表面の一部をエッチング除去して所定
深さの凹部を形成する工程と、この凹部内壁より第1導
電型の不純物をこの第1領域に導入し第1導電型の第2
領域を形成する工程と前記一主面を前記凹部の底面の深
さまでラッピング除去する工程とを具備することを特徴
とする半導体装置の製造方法。
Diffusing impurities of a second conductivity type into one main surface of the first semiconductor layer of the first conductivity type to form a first region of the second conductivity type, and etching away a part of the surface of the first region. a step of forming a recess with a predetermined depth; and a step of introducing an impurity of a first conductivity type into the first region from the inner wall of the recess to form a second impurity of the first conductivity type.
A method for manufacturing a semiconductor device, comprising the steps of forming a region and removing the one main surface by lapping to a depth of the bottom surface of the recess.
JP21631884A 1984-10-17 1984-10-17 Manufacture of semiconductor device Pending JPS6196761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21631884A JPS6196761A (en) 1984-10-17 1984-10-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21631884A JPS6196761A (en) 1984-10-17 1984-10-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6196761A true JPS6196761A (en) 1986-05-15

Family

ID=16686646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21631884A Pending JPS6196761A (en) 1984-10-17 1984-10-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6196761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144679A (en) * 1987-11-30 1989-06-06 Nec Corp Manufacture of semiconductor device
JP2010249710A (en) * 2009-04-17 2010-11-04 Chugoku Electric Power Co Inc:The Auscultation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144679A (en) * 1987-11-30 1989-06-06 Nec Corp Manufacture of semiconductor device
JP2010249710A (en) * 2009-04-17 2010-11-04 Chugoku Electric Power Co Inc:The Auscultation device

Similar Documents

Publication Publication Date Title
CA1086868A (en) Method of manufacturing a semiconductor device utilizing doped oxides and controlled oxidation
US4196440A (en) Lateral PNP or NPN with a high gain
US4111724A (en) Method of manufacturing oxide isolated semiconductor device utilizing selective etching technique
JPH0644568B2 (en) Horizontal transistor manufacturing method
JPS6140146B2 (en)
US5198692A (en) Semiconductor device including bipolar transistor with step impurity profile having low and high concentration emitter regions
CA1048658A (en) Method for forming dielectric isolation in integrated circuits and structure produced thereby
EP0030147A1 (en) Method for manufacturing a semiconductor integrated circuit
US5403757A (en) Method of producing a double-polysilicon bipolar transistor
JPS60140854A (en) High-resistant element
JPS6196761A (en) Manufacture of semiconductor device
JP3921764B2 (en) Manufacturing method of semiconductor device
KR100774114B1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
JPS5911644A (en) Manufacture of semiconductor device
EP0029987A2 (en) Semiconductor device
JPH07235550A (en) Semiconductor device and manufacture thereof
JP3463456B2 (en) Process evaluation element
JPH065708B2 (en) Semiconductor integrated circuit device
JPS60136372A (en) Manufacture of semiconductor device
US4695328A (en) Method of making a bipolar transistor
JPH07273127A (en) Semiconductor device
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
KR820000015B1 (en) Transister
JPS61135135A (en) Semiconductor device
JP2002324807A (en) Method for manufacturing semiconductor device