JPS6020588A - Areal emission type light emitting diode - Google Patents

Areal emission type light emitting diode

Info

Publication number
JPS6020588A
JPS6020588A JP58128413A JP12841383A JPS6020588A JP S6020588 A JPS6020588 A JP S6020588A JP 58128413 A JP58128413 A JP 58128413A JP 12841383 A JP12841383 A JP 12841383A JP S6020588 A JPS6020588 A JP S6020588A
Authority
JP
Japan
Prior art keywords
active layer
semiconductor substrate
layer
light emitting
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58128413A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58128413A priority Critical patent/JPS6020588A/en
Publication of JPS6020588A publication Critical patent/JPS6020588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the titled diode capable of high-speed modulation and facile manufacture by burying the double hetero structure including an active layer and a clad layer by the second clad layer of high resistivity. CONSTITUTION:The double hetero structure is composed of the first clad layer 3a having the impurity concentration enough for confining of injected carriers, an active layer 2a and a semiconductor substrate 1. By the current injection part 51 of 20mum diameter, the current is narrowed and injected into the active layer 2a and the structure operates as the areal emission type light emitting diode in which the emitted light is took out through a light taking-out window 61. The leakage current which flows directly to the semiconductor substrate 1 instead of flowing from the current injection part 51 to the active layer 2a, which often becomes a problem in a buried-in structure, is sufficiently restrained by the second clad layer 4 consisting of the InP having a P type conductive type of high resistivity, a wide forbidden band gap and a large diffusion potential in a junction with the semiconductor substrate 1.

Description

【発明の詳細な説明】 本発明は光フアイバ通信用に適した面発光屋発光ダイオ
ードの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in surface-emitting light emitting diodes suitable for use in fiber optic communications.

面発光型発光ダイオードは、低出力という欠点を有する
ものの高信頼性+ flA度特性高安定性、あるいは非
コヒーレント光源で非しきい値動作素子であるといった
半導体レーザにはない特徴を有し、短・中距離光伝送に
おいて実用的な素子である。
Although surface-emitting light-emitting diodes have the drawback of low output, they have features that semiconductor lasers do not have, such as high reliability + high stability of flA degree characteristics, and are non-coherent light sources and non-threshold operating elements.・A practical element for medium-distance optical transmission.

特に、活性層注入キャリアのライフタイムを短縮し、応
答速度を改善した高速変調型素子は、伝送速度100M
b/s以上の光伝送システムを構成することも可能であ
ル広い用途が期待されている。
In particular, the high-speed modulation type device, which shortens the lifetime of carriers injected into the active layer and improves response speed, has a transmission speed of 100M.
It is also possible to construct an optical transmission system of b/s or higher, and a wide range of applications are expected.

活性層注入キャリアのライフタイム短縮には、不純物を
高濃度にドーピングすることが有効であシ、従来、面発
光型発光ダイオードの応答高速化には、この方法が用い
られてきた。しかしながら、活性層の不純物濃度を注入
キャリア濃度以上に増やしてゆくと、活性層の面内横方
向への多数キャリア・ドリフト電流が増大するため、発
光部周辺域のpn接合に存在する電気的に応答の遅い寄
生アドミッタンスの影響が顕著に現れてくる。さらに、
活性層のドーパントとして用いられる不純物は拡散しや
すいものが多く、しばしば結晶成長中に同一導電型のク
ラッド層へ拡散し、その導電率が増大するため寄生アド
ミッタンスの影響はよシ一層顕著になる。従って、従来
の単に活性層に不純物を高濃度にドーピングした面発光
型発光ダイオードは、その構造上発光部周辺域の寄生ア
ドミッタンスの影響を除去することができないため、1
00 M b/sを越える高速変調が困難であるといつ
た欠点を有していた。
Doping impurities at a high concentration is effective for shortening the lifetime of carriers injected into the active layer, and this method has conventionally been used to increase the response speed of surface-emitting light emitting diodes. However, if the impurity concentration in the active layer is increased beyond the injected carrier concentration, the majority carrier drift current in the lateral direction within the plane of the active layer increases, so that the electrical The influence of parasitic admittance, which has a slow response, becomes noticeable. moreover,
Many of the impurities used as dopants in the active layer are easily diffused, and often diffuse into the cladding layer of the same conductivity type during crystal growth, increasing its conductivity, making the effect of parasitic admittance even more pronounced. Therefore, conventional surface-emitting light emitting diodes in which the active layer is simply doped with impurities at a high concentration cannot eliminate the influence of parasitic admittance in the area surrounding the light emitting part due to its structure.
The disadvantage of this method is that it is difficult to perform high-speed modulation exceeding 00 Mb/s.

本発明の目的は、上述の欠点を除去し、高速変調が可能
で製造容易な面発光型発光ダイオードを提供するこ′と
にある。
An object of the present invention is to eliminate the above-mentioned drawbacks, to provide a surface-emitting type light emitting diode that is capable of high-speed modulation and is easy to manufacture.

本発明によれば、メサ構造を有する半導体基板のメサ上
部に活性層及び前記半導体基板と反対導電型の第一のク
ラッド層が形成され、前記活性層及び第一のクラッドハ
゛4が、第一のクラッド層と同一の導電型を有し、第一
のクラッド層よシネ鈍物濃度が低い第二のクラッド層で
埋め込まれていることを特徴とする面発光型発光ダイオ
ードが得られる。
According to the present invention, an active layer and a first cladding layer having a conductivity type opposite to that of the semiconductor substrate are formed on the mesa of a semiconductor substrate having a mesa structure, and the active layer and the first cladding layer 4 are connected to the first cladding layer 4. A surface-emitting light emitting diode is obtained, which is embedded with a second cladding layer having the same conductivity type as the cladding layer and having a lower cine concentration than the first cladding layer.

次に図面を参照して本発明を説明する。図面は本発明に
基づく一実施例の断面を表わすものである。本実施例は
円すい台形状メサ構造を有し、メサ上部1a、平坦部l
b、メサ側面部1cから成る半導体基板lにエピタキシ
ャル成長された活性層2a及び2b、第一のクラッド層
3a及び3b。
Next, the present invention will be explained with reference to the drawings. The drawing represents a cross section of an embodiment according to the invention. This embodiment has a trapezoidal mesa structure, with a mesa upper part 1a and a flat part l.
b, active layers 2a and 2b and first cladding layers 3a and 3b epitaxially grown on a semiconductor substrate l consisting of a mesa side surface portion 1c;

第二のクラッド層4、電流注入部51を含む電極形成層
5及び光取出し窓61を含むn側電極6、P側電極7よ
シ構成されている。半導体基板1は(100)方位を有
しSnが2X10 (”M ドープされたInPから成
υ厚さ約100/’F#、活性層2a及び2bはZnが
7XIQ18a−’ドープされたI n O,74Ga
wAs O,56P[L44から成シ厚さ約0.5pm
、第一のクラッド層3a及び3bはZnがlXl0 3
 ドープされたInPから成シ厚さ約0,5μm1第二
のクラッド層4はZnが2X10”n−’ ドープされ
たInPから成シ厚さ約0.3pm、電極形成層5はS
nが5X10’質3ドープされたI n (184Ga
 o、16A+s a、+56Pa64から成シ、平坦
部1bでの厚さ約3μm、メサ上部1aでの厚さ約la
mである。nll1l電極6はA u −G e −N
 i 合金によシPIIIll電極7はAu−Zn合金
によシ形成されている。メサ上部1aの直径は25μm
、メサ上部1aの平坦部1bからの高さは2μmである
It is composed of a second cladding layer 4, an electrode forming layer 5 including a current injection part 51, an n-side electrode 6 including a light extraction window 61, and a p-side electrode 7. The semiconductor substrate 1 has a (100) orientation and is made of InP doped with Sn 2X10 (''M) and has a thickness of approximately 100/'F#, and the active layers 2a and 2b are made of InP doped with Sn 7XIQ18a-'. ,74Ga
wAs O, 56P [Made from L44, thickness approximately 0.5pm
, the first cladding layers 3a and 3b contain Zn lXl0 3
The second cladding layer 4 is made of doped InP and has a thickness of about 0.5 μm. The second cladding layer 4 is made of Zn doped with 2×10"n-' and has a thickness of about 0.3 pm. The electrode forming layer 5 is made of S.
I n (184Ga
Made from o, 16A+s a, +56Pa64, thickness at flat part 1b approximately 3 μm, thickness at mesa upper part 1a approximately la
It is m. nll1l electrode 6 is A u -G e -N
The PIIIll electrode 7 is made of an Au-Zn alloy. The diameter of the upper mesa 1a is 25 μm
, the height of the mesa upper part 1a from the flat part 1b is 2 μm.

又、電流注入部51はZnの選択拡散によシ形成され、
メサ上部1aの真上に位置しその直径は2011mであ
る。
Further, the current injection part 51 is formed by selective diffusion of Zn,
It is located directly above the mesa upper part 1a and has a diameter of 2011 m.

本実施例に示す+14造は、円すい台形メサ構造を有す
る基板上の成長層0.5μ7n以下の薄膜の液相エピタ
キシャル成長においてそのメサ側面部での成長形態が成
長融液の過冷却度に強く依存する性質を応用することに
より、再現性よく容易に製作す層2a、2b及び第一の
クラッド層3a、3bを厚さ0.5μ71程度液相エピ
タキシャル成長する場合、その融液過冷却度を5℃以下
に小さくとればメサ仙佃部1cに成長せず、メサ上部1
a及び平坦部1bにそれぞれ途切れて成長する。一方、
第二のクラッド層4の液相エピタキシャル成長において
その融液過冷却度を10℃以上に大きくとれば、メサ上
部1a、メサ側面部IC1平坦部1b全面に途切れるこ
となく成長する。さらに、電極形成層5を平坦部1bで
3μm程度成長すれば、成長層厚1μm以上の厚膜の液
相エピタキシャル成長は、基板の凹凸を平坦化する性質
があるため、電極形成層5の成長表面は平坦になシ、実
施例に示す構造が得られる。
In the +14 structure shown in this example, in liquid phase epitaxial growth of a thin film of 0.5μ7n or less on a substrate having a trapezoidal mesa structure, the growth form on the mesa side surface strongly depends on the degree of supercooling of the growing melt. By applying the properties of If it is made smaller than below, it will not grow into mesa Sentsuku part 1c and the mesa upper part 1
a and flat part 1b, respectively. on the other hand,
If the degree of supercooling of the melt is increased to 10° C. or higher in the liquid phase epitaxial growth of the second cladding layer 4, the second cladding layer 4 will grow without interruption over the entire mesa upper portion 1a and mesa side surface portion IC1 flat portion 1b. Furthermore, if the electrode forming layer 5 is grown to a thickness of about 3 μm on the flat portion 1b, the liquid phase epitaxial growth of a thick film with a growth layer thickness of 1 μm or more has the property of flattening the unevenness of the substrate. is flat, and the structure shown in the example is obtained.

本実施例において、二重へテロ構造は注入キャリア閉じ
込めに十分な不純物濃度を有する第一のクラッド層3a
及び活性層2a、半導体基板1から構成されておシ直径
20μmの電流注入部51によシ活性層2aへ電流が狭
窄・注入され、光取出し窓61から発光を取出す面発光
型発光ダイオードとして動作する。又、埋め込み構造で
しばしば問題となる電流注入部51から活性層2aへ流
れず、直接半導体基板1へ流れる副れ電流は抵抗率が高
く、かつ禁制帯幅が大きく半導体基板1との接合拡散電
位が大きいP型溝電型を有するInPから成る第二のク
ラッド層4によシ十分に抑制されている。
In this embodiment, the double heterostructure has a first cladding layer 3a having a sufficient impurity concentration to confine injected carriers.
A current is constricted and injected into the active layer 2a by a current injection part 51 having a diameter of 20 μm, and the active layer 2a is composed of the semiconductor substrate 1, the active layer 2a, and the semiconductor substrate 1, and operates as a surface-emitting type light emitting diode which extracts light from the light extraction window 61. do. In addition, the side current that does not flow from the current injection part 51 to the active layer 2a but directly to the semiconductor substrate 1, which is often a problem in buried structures, has a high resistivity and a large forbidden band width, so that the junction diffusion potential with the semiconductor substrate 1 is high. is sufficiently suppressed by the second cladding layer 4 made of InP having a large P-type groove conductivity.

面発光型発光ダイオードの高速パルス変調において周辺
部の寄生アドミッタンスの値が発光部アドミッタンスに
比べて十分に小さくなく、かつ、その時定数が変調パル
ス周期に比べて十分に小さくない場合、顕著なパルス応
答特性の劣化をもたらす。例えば実施例に示すような層
構造パラメータの活性層、第一のクラッド層、第二のク
ラッド層を平坦基板上に作成した面発光型発光ダイオー
ドにおいては、発光部を中心に直径100μm内の領域
のpn接合容幇及び活性層、クラッド層の拡がシ抵抗が
寄生アドミッタンスとなシその値は各々42PF 58
Ωとなる。一方、電流注入部の動作インピーダンスは順
方向電流1航において26Ωであシ、又寄生アドミッタ
ンスの時定数が約2.4nsであることから、特に10
0 M Vs以上のパルス変調において応答立上シ時間
の著しい劣化をもたらす。本発明は発光部と周辺部の間
に電流注入部の動作インピーダンスより十分に高い抵抗
を電気的に直列に接続することによ、!l) )i!8
辺部へ流れる変調電流高周波成分を低減し、寄生アドミ
ッタンスの値を発光部アドミッタンスの値に比べて十分
に小さくして応答の劣化を防止するものである。その抵
抗の値は実施例に示した構造において約430Ωとなシ
ミ原注入部の動作インピーダンスに比べて十分に大きな
値である。従って周辺部の寄生アドミッタンスの影響を
ほとんど受けない高速応答可能な面発光型発光ダイオー
ドが得られる。
In high-speed pulse modulation of a surface-emitting light emitting diode, if the parasitic admittance value in the peripheral area is not sufficiently small compared to the emitter admittance and its time constant is not sufficiently small compared to the modulation pulse period, a significant pulse response will occur. This results in deterioration of characteristics. For example, in a surface-emitting light emitting diode in which an active layer, a first cladding layer, and a second cladding layer with layer structure parameters as shown in the example are formed on a flat substrate, a region within a diameter of 100 μm around the light emitting part is formed. The pn junction capacitance and the expansion resistance of the active layer and cladding layer are parasitic admittances, each of which has a value of 42PF 58
becomes Ω. On the other hand, the operating impedance of the current injection part is 26Ω for one forward current, and since the time constant of parasitic admittance is about 2.4ns, especially 10
Pulse modulation above 0 MVs results in significant degradation of response rise time. The present invention is achieved by electrically connecting in series a resistance that is sufficiently higher than the operating impedance of the current injection section between the light emitting section and the peripheral section. l) )i! 8
This is to reduce the high frequency components of the modulated current flowing to the side portions and to make the value of the parasitic admittance sufficiently smaller than the value of the admittance of the light emitting portion to prevent deterioration of the response. The value of this resistance is approximately 430Ω in the structure shown in the embodiment, which is a sufficiently large value compared to the operating impedance of the stain source injection portion. Therefore, a surface-emitting type light emitting diode capable of high-speed response and hardly affected by parasitic admittance in the peripheral area can be obtained.

尚、半導体材料及び組成は上述の実施例に限定する必要
はなく、あらゆる組成の利−V族化合物半導体に適用可
能である。又、素子の製造方法も実施例に示したよりな
メサ構造基板上への一回の液相エピタキシャル成長に限
定する必要はなく、二重へテロ構造の作成及び埋め込み
構造の作成を二重の結晶成長に分けて行なってもよく、
又その成長方法も液相エピタキシャル成長法に限らず、
気相エピタキシャル成長法、分子線エビクキシャル成長
法、あるいはそれらの組み合わせであってもよい。半導
体基板と活性層の間にバッファ層をはさんでもよい。さ
らに各層厚、不純物濃度、メサ構造の直径、メサ高さ及
び電流性入部直径の値も、いかなる数値をとってもよい
Incidentally, the semiconductor material and composition need not be limited to the above-mentioned embodiments, and can be applied to di-V group compound semiconductors of any composition. Furthermore, the manufacturing method of the device does not have to be limited to one-time liquid phase epitaxial growth on a mesa-structured substrate as shown in the example. It may be done separately,
Moreover, the growth method is not limited to liquid phase epitaxial growth method.
A vapor phase epitaxial growth method, a molecular beam epitaxial growth method, or a combination thereof may be used. A buffer layer may be sandwiched between the semiconductor substrate and the active layer. Furthermore, the values of each layer thickness, impurity concentration, mesa structure diameter, mesa height, and current conductive entrance diameter may take any value.

最後に本発明が有する特徴を要約すれば、活性層及びク
ラッド層を含む二重へテロ構造を抵抗率の高い第二のク
ラッド層で埋め込むことによシ、二重へテロ構造への注
入キャリア閉じ込めを十分に行ない、かつ漏れ電流を抑
制し、そして周辺部の寄生アドミッタンスの影響を除去
し高速応答を可能としだ面発光型発光ダイオードが得ら
れることである。
Finally, to summarize the features of the present invention, by embedding a double heterostructure including an active layer and a cladding layer with a second cladding layer having high resistivity, carriers can be injected into the double heterostructure. It is an object of the present invention to provide a surface-emitting type light-emitting diode that provides sufficient confinement, suppresses leakage current, eliminates the influence of parasitic admittance in the peripheral area, and enables high-speed response.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の断面図である。図中、■は半導
体基板、1aはメサ上部、lbは平坦部、1cはメサ側
面部、2a、2bは活性層、3a、3bは第一のクラッ
ド層、4は第二のクラッド層、5は電極形成層、51は
電流注入部、6はnft11電極、61は光取出し窓、
7はP側電極である。
The figure is a sectional view of one embodiment of the present invention. In the figure, ■ is the semiconductor substrate, 1a is the upper part of the mesa, lb is the flat part, 1c is the mesa side part, 2a and 2b are active layers, 3a and 3b are the first cladding layer, 4 is the second cladding layer, and 5 51 is an electrode forming layer, 51 is a current injection part, 6 is an NFT11 electrode, 61 is a light extraction window,
7 is a P-side electrode.

Claims (1)

【特許請求の範囲】[Claims] メサ構造を有する半導体基板のメサ上部に活性層及び前
記半導体基板と反対導電型の第一のクラッド層が形成さ
れ、前記活性層及び第一のクラッド層が、第一のクラッ
ド層と同一の導電型を有し、第一のクラッド層よシネ鈍
物濃度が低い第二のクラッド層で埋め込まれていること
を特徴とする面発光型発光ダイオード。
An active layer and a first cladding layer having a conductivity type opposite to that of the semiconductor substrate are formed above the mesa of a semiconductor substrate having a mesa structure, and the active layer and the first cladding layer have the same conductivity as the first cladding layer. What is claimed is: 1. A surface-emitting type light emitting diode, characterized in that the surface-emitting type light-emitting diode is embedded with a second cladding layer having a lower cine concentration than the first cladding layer.
JP58128413A 1983-07-14 1983-07-14 Areal emission type light emitting diode Pending JPS6020588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128413A JPS6020588A (en) 1983-07-14 1983-07-14 Areal emission type light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128413A JPS6020588A (en) 1983-07-14 1983-07-14 Areal emission type light emitting diode

Publications (1)

Publication Number Publication Date
JPS6020588A true JPS6020588A (en) 1985-02-01

Family

ID=14984151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128413A Pending JPS6020588A (en) 1983-07-14 1983-07-14 Areal emission type light emitting diode

Country Status (1)

Country Link
JP (1) JPS6020588A (en)

Similar Documents

Publication Publication Date Title
US6317444B1 (en) Optical device including carbon-doped contact layers
EP0083697B1 (en) Double channel planar buried heterostructure laser
JPS582077A (en) Semiconductor device
JP2847118B2 (en) Semiconductor device that generates electromagnetic radiation
JPS6020588A (en) Areal emission type light emitting diode
JP2738040B2 (en) Semiconductor light emitting device
JPS604277A (en) Light emitting diode
JPS61228684A (en) Semiconductor light emitting element
JPS5886788A (en) Semiconductor laser and photodiode photointegrated element
JPS61242091A (en) Semiconductor light-emitting element
JPS6237913B2 (en)
KR100366041B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS6148277B2 (en)
JPS6318874B2 (en)
JPS604278A (en) Light emitting diode
JPS6025282A (en) Surface light-emitting type light-emitting diode
KR940011275B1 (en) Laser diode and manufacturing method the same
JPS6132485A (en) Semiconductor light emitting element
JPH0377675B2 (en)
JPS60154587A (en) Semiconductor laser element
JPS5922377A (en) Local ohmic contact in contact layer of light emitting semiconductor device
JPH027488A (en) Buried heterostructure semiconductor laser
JPS62172781A (en) Semiconductor laser and manufacture thereof
JPH05129723A (en) Buried heterostructure semiconductor laser and manufacture thereof
JPH0828553B2 (en) Semiconductor laser