JPS60189266A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS60189266A
JPS60189266A JP4435084A JP4435084A JPS60189266A JP S60189266 A JPS60189266 A JP S60189266A JP 4435084 A JP4435084 A JP 4435084A JP 4435084 A JP4435084 A JP 4435084A JP S60189266 A JPS60189266 A JP S60189266A
Authority
JP
Japan
Prior art keywords
island
oxide film
film
gate oxide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4435084A
Other languages
Japanese (ja)
Inventor
Shigeji Yoshii
吉井 成次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4435084A priority Critical patent/JPS60189266A/en
Publication of JPS60189266A publication Critical patent/JPS60189266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to form a transistor having a favorable characteristic, and to enable to form an LSI of a high speed and high density by a method wherein when the transistor is to be formed in a single crystal island surrounded with an insulator, thickness of a gate oxide film at the central part of the single crystal island is made thinner than thickness of the film thereof at the interface between the single crystal island and the peripheral insulator. CONSTITUTION:An oxide film 22 is formed on the surface of a substrate 21 of Si metal or insulator, etc. Then after a poly-Si film 23 is formed, a protective oxide film 27, and a nitride film 25 are formed. The poly-Si film 23 is etched by the half using the nitride film 25 as a mask, and when oxidized according to LOCOS, a poly-Si island 23 is formed. An island 23' is formed by performing crystallization of the poly-Si island 23 according to a laser beam (e) in such a condition. Then after field ion implantation is performed to the Si island 23', by depositing a thermal oxide film, a gate oxide film 24 is formed. After the central part 26 of the Si island of the gate oxide film 24 is etched to thin the film thickness, a gate electrode 28 is formed, source.drain ion implantation is performed, and an Al wiring and a passivation film are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路、特に高密度、高速な半導体集
積回路の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit, and particularly to the structure of a high-density, high-speed semiconductor integrated circuit.

従来例の構成とその問題点 半導体装置は最近ますます高密度化、高速化される傾向
にあシ、そのため絶縁分離の半導体集積回路の開発に対
する要望が高まっている。従来、絶縁物分離の半導体集
積回路の形成には例えば絶縁物基板11上の絶縁物12
中にポIJ Siの島16を形成し、このポリSi島1
5にビームアニールを施すことによシポリSiの単結晶
化または大粒径化を行ない、ゲート酸化膜の形成、ゲー
ト形成等の工程を経てトランジスタが形成されていた。
Conventional Structures and Problems Semiconductor devices have recently become more dense and faster, and as a result, there has been an increasing demand for the development of semiconductor integrated circuits with insulation isolation. Conventionally, in forming an insulator-separated semiconductor integrated circuit, for example, an insulator 12 on an insulator substrate 11 is used.
A poly-Si island 16 is formed inside the poly-Si island 1.
5 is subjected to beam annealing to make SiPoly Si into a single crystal or to have a large grain size, and through steps such as forming a gate oxide film and forming a gate, a transistor is formed.

このとき、ゲート酸化膜13は均一な厚みの熱酸化膜又
はcvn酸化膜を堆積する方法がとられている。この方
法によれば、ポIJSi島15と周囲の絶縁膜12の界
面ではビームアニールによる微小な結晶成長が生じてい
るのと、界面自体の不安定さのために、トランジスタを
形成した場合に界面でのリーク等による特性の劣化が問
題となっていた。
At this time, the gate oxide film 13 is formed by depositing a thermal oxide film or a CVN oxide film with a uniform thickness. According to this method, minute crystal growth occurs at the interface between the poIJSi island 15 and the surrounding insulating film 12 due to beam annealing, and the interface itself is unstable, so when a transistor is formed, the interface Deterioration of characteristics due to leaks, etc., had become a problem.

発明の目的 本発明は以上のような従来の問題に鑑み、ビームアニー
ルによりポIJSi等の非単結晶島を良質の結晶領域に
したうえで、ゲート酸化膜の厚みをポリS上島と周囲の
絶縁物界面にて厚くする構造をとることによシ、良好な
トランジスタを形成することが可能となる。
Purpose of the Invention In view of the above-mentioned conventional problems, the present invention has been developed by converting non-single-crystal islands such as polyS into high-quality crystal regions by beam annealing, and then reducing the thickness of the gate oxide film to the thickness of the polyS upper island and the surrounding insulation. By adopting a structure in which the thickness is increased at the material interface, it is possible to form a good transistor.

発明の構成 本発明は絶縁物にて囲まれた単結晶島にトランジスタを
形成するときに、ゲート酸化膜の厚みを単結晶島の中央
部で単結晶島と周囲の絶縁物との界面での厚みよりも薄
くする構造にょシ、特性の良いトランジスタの形成を可
能にし、高速、高密度のLSIを製造可能とするもので
ある。
Structure of the Invention The present invention, when forming a transistor on a single-crystal island surrounded by an insulator, changes the thickness of the gate oxide film at the center of the single-crystal island and at the interface between the single-crystal island and the surrounding insulator. This makes it possible to form a transistor with a thinner structure and better characteristics, and to manufacture high-speed, high-density LSIs.

実施例の説明 本発明の実施例をポリSi島にトランジスタを形成する
場合について以下に説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below regarding a case where a transistor is formed on a poly-Si island.

第2図は本発明の第1の実施例における半導体島の構造
を示す。第2図亀は平面図、bはB−B’線断面図であ
る。21は絶縁物等の基板、22は酸化膜、23は周囲
を酸化膜22に囲まれた結晶化Si島である。この結晶
化Si島230表面にゲート酸化膜24を形成するが、
このときゲート中央部26の酸化膜厚を結晶化Si島2
3と酸化膜22との界面よりも薄くなるように形成する
。さらにゲート酸化膜24の表面にゲート電極となるポ
リSi 25 を形成する。
FIG. 2 shows the structure of a semiconductor island in the first embodiment of the present invention. The tortoise in FIG. 2 is a plan view, and b is a sectional view taken along the line B-B'. 21 is a substrate such as an insulator, 22 is an oxide film, and 23 is a crystallized Si island surrounded by the oxide film 22. A gate oxide film 24 is formed on the surface of this crystallized Si island 230, but
At this time, the thickness of the oxide film in the central part 26 of the gate is
It is formed to be thinner than the interface between oxide film 22 and oxide film 22. Further, poly-Si 25 is formed on the surface of the gate oxide film 24 to serve as a gate electrode.

以上のように結晶化Si島23の中央部のゲート酸化膜
26の厚さを他の部分の酸化膜厚24′よりも薄くする
ことにより、トランジスタを形成したときにゲート電圧
をかけることにより、ゲート酸化膜直下にチャネルが形
成されるが、ゲート酸化膜が薄いほどチャネルが形成さ
れやすいため結晶化Si島23の中央部でチャネルが形
成されやすく、ソース、ドレイン電流が結晶化Si島中
央部で流れやすく結晶化al島23と周囲の絶縁物22
との界面の影響を受けにくくなり、界面でのリーク等の
影響を低く抑えることができる。
As described above, by making the thickness of the gate oxide film 26 in the central part of the crystallized Si island 23 thinner than the oxide film thickness 24' in other parts, by applying a gate voltage when forming a transistor, A channel is formed directly under the gate oxide film, but the thinner the gate oxide film is, the easier the channel is to be formed, so the channel is more likely to be formed in the center of the crystallized Si island 23, and the source and drain currents are more likely to be formed in the center of the crystallized Si island. The crystallized Al island 23 and the surrounding insulator 22 flow easily.
This makes it less susceptible to the influence of the interface with the material, and the influence of leaks at the interface can be suppressed to a low level.

第3図は本発明の第1の実施例の絶縁分離のトランジス
タの製造工程を説明するためのもので、まずS工、金属
あるいは絶縁物等の基板21の表面に約1μmの酸化膜
22を形成する。次にポリS1膜23を約0.5μm形
成したのちa、保護酸化膜27、チツ化膜26を形成す
るboそしてポリS1膜23をチノ化膜25をマスクと
して半分だけエツチングしてc、LOGO8酸化すると
ポリSi島23が形成できるdoこうした状態でレーザ
ビームeによるポリSi島23の結晶化を行なって島2
3′を形成するe。次にこのSl島23′にフィールド
イオン注入を行なったのち、熱酸化膜を堆積することに
よりゲート酸化膜27を形成する。このゲート酸化膜2
7のSi島中央部26をエツチングにて膜厚を薄くした
のち、ゲート電極28を形成し、ソース°ドレインイオ
ン注入を行ない、A7配線、パンシベーション膜を形成
してトランジスタが作製される。
FIG. 3 is for explaining the manufacturing process of a transistor with insulation isolation according to the first embodiment of the present invention. First, an oxide film 22 of approximately 1 μm is formed on the surface of a substrate 21 made of S, metal, or insulator. Form. Next, after forming a poly S1 film 23 with a thickness of about 0.5 μm, a, a protective oxide film 27 and a nitride film 26 are formed, and only half of the poly S1 film 23 is etched using the tinoide film 25 as a mask. When oxidized, poly-Si islands 23 can be formed. In this state, the poly-Si islands 23 are crystallized by the laser beam e to form islands 2.
e forming 3'. Next, after performing field ion implantation into this Sl island 23', a gate oxide film 27 is formed by depositing a thermal oxide film. This gate oxide film 2
After etching the central portion 26 of the Si island 7 to reduce its film thickness, a gate electrode 28 is formed, source and drain ions are implanted, and an A7 wiring and a pansivation film are formed to fabricate a transistor.

第4図は本発明の第2の実施例を示す。所定の膜厚のゲ
ート酸化膜24を形成したのち、Si島中央部以外にの
みさらに絶縁膜29を形成したものである。
FIG. 4 shows a second embodiment of the invention. After forming a gate oxide film 24 of a predetermined thickness, an insulating film 29 is further formed only in areas other than the central portion of the Si island.

第5図はSi島と周囲の絶縁物界面にのみ、ゲート酸化
膜上に絶縁膜を形成したものである。
In FIG. 5, an insulating film is formed on the gate oxide film only at the interface between the Si island and the surrounding insulator.

以上のように、本実施例によれば完全絶縁分離のトラン
ジスタ形成に際し、Si島と周囲の絶縁物との界面上部
のゲート酸化膜厚をSi島中央部上部のゲート酸化膜厚
よりも厚くすることによって、al島と絶縁物界面の影
響を小さくすることができ、特性の良bトランジスタが
形成可能となる。
As described above, according to this embodiment, when forming a completely isolated transistor, the gate oxide film thickness above the interface between the Si island and the surrounding insulator is made thicker than the gate oxide film thickness above the central part of the Si island. By doing so, the influence of the interface between the Al island and the insulator can be reduced, and a transistor with good characteristics can be formed.

発明の効果 以上のように、本発明は完全絶縁分離のトランジスタ形
成において、al島と周囲の絶縁物界面での特性の劣化
をさける構造によシ良質のトランジスタが形成でき、高
速、高密度のLS・工が実現できる。
Effects of the Invention As described above, the present invention makes it possible to form high-quality transistors with a structure that avoids deterioration of characteristics at the interface between the Al island and the surrounding insulator in the formation of transistors with complete insulation isolation, and to realize high-speed, high-density transistors. LS/engineering can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al 、 (b)は従来例の完全絶縁分離al
島に形成したトランジスタの平面図、A−A’線断面図
、第2図(aJ 、 (blはゲート絶縁膜に凹凸を設
けた本発明の一実施例のトランジスタの平面図、B−B
′線断面図、第3図(al〜(g)は第2図の構造のト
ランジスタの製造方法の工程断面図、第4図Ta+ 、
 (b)はゲート酸化膜の上にさらに部分的に絶縁物の
膜を設けた本発明の他の実施例のトランジスタの乎のト
ランジスタの平面図、D−D’線断面図である21・・
・・・一基板、22・・・・・・酸化膜、23・・・・
ポリSi、23’・・・・・結晶化Sl島、24・・・
・・ゲート酸化膜、28・・・・ゲート電極、26・・
 ・凹部、29・・・、絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名筆 
IF54 5 第 2 FA 第 3 図 第3図 第 4ta 23′
Figure 1 (al) and (b) show the conventional example of complete insulation isolation.
A plan view of a transistor formed in an island, a cross-sectional view taken along the line A-A', and FIG.
Figure 3 (al to (g) are process cross-sectional views of the method for manufacturing a transistor having the structure shown in Figure 2, Figure 4 Ta+,
21(b) is a plan view and a sectional view taken along the line DD' of a transistor according to another embodiment of the present invention in which an insulating film is further provided partially on the gate oxide film.
...One substrate, 22...Oxide film, 23...
Poly-Si, 23'...Crystallized Sl island, 24...
...Gate oxide film, 28...Gate electrode, 26...
- Concave portion, 29..., insulating film. Name of agent: Patent attorney Toshio Nakao and one other person
IF54 5 2nd FA 3rd figure 3rd figure 4ta 23'

Claims (2)

【特許請求の範囲】[Claims] (1)単結晶化ないし大結晶粒化された半導体島領域に
半導体素子が形成され、上記半導体素子のゲート酸化膜
厚が、上記半導体島領域と周囲の絶縁物領域の界面で、
ゲート中央部でのゲート酸化膜厚よシも厚くなっている
ことを特徴とする半導体集積回路装置。
(1) A semiconductor element is formed in a semiconductor island region that has been made into a single crystal or has a large crystal grain, and the gate oxide film thickness of the semiconductor element is such that the thickness of the gate oxide film of the semiconductor element is at the interface between the semiconductor island region and the surrounding insulator region,
A semiconductor integrated circuit device characterized in that the thickness of the gate oxide film is thicker at the center of the gate.
(2)単結晶化ないし大結晶粒化された半導体島領域に
半導体素子が形成され、上記半導体素子のゲート酸化膜
上の上記半導体島領域と周囲の絶縁物界面部分に誘電体
膜を形成したことを特徴とする半導体集積回路装置。
(2) A semiconductor element is formed in a semiconductor island region that has been made into a single crystal or has a large crystal grain size, and a dielectric film is formed on the gate oxide film of the semiconductor element at the interface between the semiconductor island region and a surrounding insulator. A semiconductor integrated circuit device characterized by:
JP4435084A 1984-03-08 1984-03-08 Semiconductor integrated circuit device Pending JPS60189266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4435084A JPS60189266A (en) 1984-03-08 1984-03-08 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4435084A JPS60189266A (en) 1984-03-08 1984-03-08 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60189266A true JPS60189266A (en) 1985-09-26

Family

ID=12689062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4435084A Pending JPS60189266A (en) 1984-03-08 1984-03-08 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60189266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144072A (en) * 1994-11-02 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144072A (en) * 1994-11-02 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same
US6509583B1 (en) 1994-11-02 2003-01-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same
US6653656B2 (en) 1994-11-02 2003-11-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device formed on insulating layer and method of manufacturing the same
US7001822B2 (en) 1994-11-02 2006-02-21 Renesas Technology Corp. Semiconductor device formed on insulating layer and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4923826A (en) Method for forming dielectrically isolated transistor
JPH02222546A (en) Manufacture of mos field-effect transistor
JP2001210834A (en) Method of forming gate insulating film for semiconductor element
JPS6015944A (en) Semiconductor device
JPS6212152A (en) Manufacture of semiconductor device
JPS60189266A (en) Semiconductor integrated circuit device
JPS62202559A (en) Semiconductor device and its manufacture
JP3297937B2 (en) Semiconductor device and manufacturing method thereof
JPS5917865B2 (en) hand tai souchi no seizou houhou
JPH05299497A (en) Semiconductor device and manufacture of the same
JPS60144950A (en) Manufacture of semiconductor device
US20060157786A1 (en) Semiconductor device and manufacturing method thereof
JPS5828734B2 (en) hand tai souchi no seizou houhou
KR100265824B1 (en) Method for fabricating transistor of ldd structure
JPH0290569A (en) Manufacture of semiconductor device
JPH036040A (en) Semiconductor device
JPS60189218A (en) Manufacture of semiconductor integrated circuit substrate
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS61125087A (en) Insulated gate type field effect semiconductor device and manufacture thereof
JPH08111511A (en) Fabrication of semiconductor device
JPH05347353A (en) Manufacture of semiconductor device
JPS60245159A (en) Manufacture of semiconductor device
JPH01128570A (en) Manufacture of semiconductor device
JPS6065544A (en) Manufacture of semiconductor device
JPS59200436A (en) Semiconductor device and manufacture thereof