JPH05347353A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05347353A
JPH05347353A JP4153763A JP15376392A JPH05347353A JP H05347353 A JPH05347353 A JP H05347353A JP 4153763 A JP4153763 A JP 4153763A JP 15376392 A JP15376392 A JP 15376392A JP H05347353 A JPH05347353 A JP H05347353A
Authority
JP
Japan
Prior art keywords
semiconductor
epitaxial growth
region
isolation trench
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4153763A
Other languages
Japanese (ja)
Other versions
JP3189387B2 (en
Inventor
Tetsuo Fujii
哲夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP15376392A priority Critical patent/JP3189387B2/en
Publication of JPH05347353A publication Critical patent/JPH05347353A/en
Application granted granted Critical
Publication of JP3189387B2 publication Critical patent/JP3189387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To make it possible to reduce cavities in an isolation trench without deteriorating electrical properties of a second semiconductor region by burying the isolation trench under cold conditions, then, forming the second semiconductor region, and eliminating unnecessary silicon to make the surface of that region smooth. CONSTITUTION:A method for manufacturing a semiconductor device has a first process for forming a plurality of first semiconductor regions 3 and 4, which are isolated from each other by an isolation trench 5 having a trench dielectric film 6, on a substrate dielectric film 2 formed on the surface of a semiconductor substrate 1. A second process includes an isolation trench filling process for burying the isolation trench 5 at a temperature lower than that at epitaxial growth and an epitaxial growth process for forming a second semiconductor region 8 which is practiced following the isolation trench filling process. The second process further includes a process for smoothing the surface of the second semiconductor region which is practiced after the epitaxial growth process. Thereby, cavities contained in a polysilicon layer 71 within the isolation trench 5 can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体分離構造の半導
体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a dielectric isolation structure.

【0002】[0002]

【従来の技術】特開昭63ー58817号公報は、半導
体基板表面に形成された基板絶縁膜上に溝絶縁膜付きの
分離溝により互いに分離された複数の第1半導体領域を
形成し、基板絶縁膜の開口部上にエピタキシャル成長に
より基板導通可能な第2半導体領域を形成すると同時に
分離溝をポリシリコンで埋めて、誘電体分離構造の半導
体装置を作製している。
2. Description of the Related Art Japanese Unexamined Patent Publication No. Sho 63-58817 discloses a substrate insulating film formed on the surface of a semiconductor substrate, in which a plurality of first semiconductor regions separated from each other by a separation groove with a groove insulating film are formed. A semiconductor device having a dielectric isolation structure is manufactured by forming a second semiconductor region capable of conducting the substrate by epitaxial growth on the opening of the insulating film and filling the isolation trench with polysilicon at the same time.

【0003】この種の半導体装置は、第2半導体領域に
パワー素子を有し、第1半導体領域に高耐圧の集積回路
を有するインテリジェントパワー素子に好適である。
This type of semiconductor device is suitable for an intelligent power device having a power element in the second semiconductor region and a high breakdown voltage integrated circuit in the first semiconductor region.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に開示される方法でこの種の誘電体分離構造の半導体
装置を製造する場合、エピタキシャル成長に適した高温
環境で分離溝にポリシリコンを充填することになるため
に、分離溝中のポリシリコン中に巣が生じる場合があっ
た。このような巣が生じると、製造工程中の凹部が露出
し例えば配線の段切れ、凹部でのゴミ等の残査により信
頼性の低下という問題が生じる。なお、エピタキシャル
成長・ポリシリコン充填の途中で何回もアニールを行っ
て巣を低減することも可能であるが、工程が複雑とな
り、エピ領域の特性も劣化する虞れがある。エピタキシ
ャル成長温度を低減するとエピ領域の特性が劣化してし
まう。
However, when manufacturing a semiconductor device having this type of dielectric isolation structure by the method disclosed in the above publication, it is necessary to fill the isolation trench with polysilicon in a high temperature environment suitable for epitaxial growth. As a result, there were cases where cavities were formed in the polysilicon in the isolation trench. When such a nest is formed, the concave portion is exposed during the manufacturing process, and there is a problem that reliability is deteriorated due to, for example, disconnection of wiring and residual dust in the concave portion. It is possible to perform annealing many times during the epitaxial growth / polysilicon filling to reduce the cavities, but the process becomes complicated and the characteristics of the epi region may deteriorate. If the epitaxial growth temperature is reduced, the characteristics of the epi region will deteriorate.

【0005】特に、上記問題は微細化を図る場合に重大
となった。これは高温条件では大粒径のポリシリコンが
形成されるので、微細化により分離溝幅が縮小するとま
すます分離溝内のポリシリコンに巣が生じ易くなる。本
発明は上記問題点に鑑みなされたものであり、ポリシリ
コンが充填された分離溝とエピ領域とを有する半導体装
置の製造方法において、分離溝中のポリシリコンに含ま
れる巣を低減することを、その目的としている。
In particular, the above problems have become serious when miniaturization is attempted. This is because polysilicon with a large grain size is formed under high temperature conditions, and as the width of the separation groove is reduced due to miniaturization, cavities are more likely to occur in the polysilicon within the separation groove. The present invention has been made in view of the above problems, and in a method of manufacturing a semiconductor device having an isolation trench filled with polysilicon and an epi region, it is possible to reduce the nests contained in the polysilicon in the isolation trench. , Its purpose is.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板表面に形成された基板絶縁膜上に
溝絶縁膜付きの分離溝により互いに分離された複数の第
1半導体領域を形成する第1工程と、前記基板絶縁膜の
開口部上にエピタキシャル成長により基板導通可能な第
2半導体領域を形成するとともに前記分離溝をポリシリ
コンで埋める第2工程とを有する半導体装置の製造方法
において、前記第2工程は、前記エピタキシャル成長時
の温度よりも低温で前記分離溝を埋める分離溝充填工程
と、前記分離溝充填工程後に実施され第2半導体領域を
形成するエピタキシャル成長工程と、前記エピタキシャ
ル成長工程後に実施され表面部を平坦化する平坦化工程
とを有することを特徴としている。
According to a method of manufacturing a semiconductor device of the present invention, a plurality of first semiconductor regions separated from each other by a separation groove with a groove insulating film is formed on a substrate insulating film formed on a surface of a semiconductor substrate. A method for manufacturing a semiconductor device, comprising: a first step of forming the second insulating layer; and a second step of forming a second semiconductor region capable of conducting the substrate by epitaxial growth on the opening of the substrate insulating film and filling the isolation trench with polysilicon. The second step includes a separation groove filling step of filling the separation groove at a temperature lower than the temperature during the epitaxial growth, an epitaxial growth step of performing a second semiconductor region after the separation groove filling step, and an epitaxial growth step after the epitaxial growth step. And a flattening step of flattening the surface portion.

【0007】なお、分離溝に埋設されるポリシリコンは
アモルファスシリコンを随伴することもできる。
The polysilicon buried in the isolation trench can be accompanied by amorphous silicon.

【0008】[0008]

【発明の効果】以上説明したように本発明の半導体装置
の製造方法は、エピタキシャル成長時の温度よりも低温
条件でポリシリコン堆積を行って分離溝をまず埋め、そ
の後、エピタキシャル成長を行って第2半導体領域を形
成し、その後、上記ポリシリコン堆積及びエピタキシャ
ル成長時に生じる不要なシリコンを除去して表面部を平
坦としている。
As described above, according to the method of manufacturing a semiconductor device of the present invention, polysilicon is deposited at a temperature lower than the temperature at the time of epitaxial growth to fill the isolation trench first, and then epitaxial growth is performed to make the second semiconductor. A region is formed, and then unnecessary silicon generated during the above polysilicon deposition and epitaxial growth is removed to flatten the surface portion.

【0009】このようにすれば、エピタキシャル成長領
域すなわち第2半導体領域の電気特性を劣化させること
なく分離溝中の巣を低減することができ、また別工程で
行われる上記分離溝充填工程及びエピタキシャル成長工
程で形成される不要シリコンを最後に除去しているの
で、工程短縮もできる。
[0009] With this structure, the voids in the isolation trench can be reduced without deteriorating the electrical characteristics of the epitaxial growth region, that is, the second semiconductor region, and the isolation trench filling step and the epitaxial growth step performed in separate steps. Since the unnecessary silicon formed in 1 is removed last, the process can be shortened.

【0010】[0010]

【実施例】(実施例1)以下、本発明の一実施例を示す
断面図を図1に示す。この半導体装置において、1はN
+ シリコン基板(半導体基板)、2はシリコン酸化膜
(基板絶縁膜)、3、4は第1半導体領域、5は第1半
導体領域3、4を分離する分離溝、6は分離溝5の表面
に形成されたシリコン酸化膜(溝絶縁膜)、7は分離溝
6に充填されたポリシリコン、8はN- エピ領域からな
る第2半導体領域、Gはゲート絶縁膜(図示せず)上の
ゲート電極である。第1半導体領域3にはPMOSトラ
ンジスタが形成されており、第1半導体領域4にはNP
Nバイポーラトランジスタが形成されており、第2半導
体領域8には縦型チャンネルパワーMOSトランジスタ
が形成されている。なお、上記素子に関してはフィール
ド絶縁膜、配線等は省略してある。
(Embodiment 1) A sectional view showing an embodiment of the present invention is shown in FIG. In this semiconductor device, 1 is N
+ Silicon substrate (semiconductor substrate), 2 is a silicon oxide film (substrate insulating film), 3 and 4 are first semiconductor regions, 5 is a separation groove for separating the first semiconductor regions 3 and 4, and 6 is a surface of the separation groove 5. A silicon oxide film (groove insulating film) formed on the substrate, 7 is polysilicon filled in the isolation trench 6, 8 is a second semiconductor region including an N epi region, and G is on a gate insulating film (not shown). It is a gate electrode. A PMOS transistor is formed in the first semiconductor region 3, and an NP transistor is formed in the first semiconductor region 4.
N bipolar transistors are formed, and vertical channel power MOS transistors are formed in the second semiconductor region 8. It should be noted that the field insulating film, wiring, etc. are omitted from the above element.

【0011】以下、上記装置の製造工程を図1から図5
を参照して詳述する。まず図2に示すように、N+ 拡散
層91を形成した比抵抗1〜20Ω・cmのN- 型(1
00)単結晶シリコン基板92を用意し、その表面に熱
酸化シリコン酸化膜2を0.1〜2μmの厚さに形成し
た。また、Asなどの不純物を高濃度に含んだN+
(100)単結晶シリコン基板1をH2 2 −H2 SO
4 混合液中で加熱し、親水性処理を行い、室温でこれら
基板92、1を合わせ、摂氏600〜1000度で30
分〜2時間熱処理し、接合させた。
The manufacturing process of the above device will be described below with reference to FIGS.
Will be described in detail. First, as shown in FIG. 2, the N + diffusion layer 91 formed was resistivity 1~20Ω · cm N - -type (1
00) A single crystal silicon substrate 92 was prepared, and a thermally oxidized silicon oxide film 2 was formed on its surface to a thickness of 0.1 to 2 μm. In addition, the N + type (100) single crystal silicon substrate 1 containing a high concentration of impurities such as As was used as H 2 0 2 —H 2 SO.
4 Heat in a mixed solution to perform hydrophilic treatment, combine the substrates 92 and 1 at room temperature, and heat at 30 ° C. at 600 to 1000 ° C.
Heat treatment was performed for about 2 minutes to 2 hours to bond them.

【0012】つづいて所定の厚さ(例えば、0.5〜3
0μm、本実施例では5μm)に基板92を鏡面研磨し
てSOI基板を作製し、このSOI基板の表面に酸化膜
(図示せず)を形成し、通常のホトリソ工程により所定
のマスクパタンを形成し、ドライエッチングによりシリ
コン酸化膜2に達するトレンチ領域5、50を形成し
た。トレンチ領域5は本発明でいう分離溝であり、トレ
ンチ領域50はパワー素子のためのエピ成長領域である
(図3参照)。このトレンチにより互いに空間分離され
た単結晶の第1半導体領域3、4が形成される。
Subsequently, a predetermined thickness (for example, 0.5 to 3)
The substrate 92 is mirror-polished to 0 μm, 5 μm in this embodiment) to manufacture an SOI substrate, an oxide film (not shown) is formed on the surface of the SOI substrate, and a predetermined mask pattern is formed by a normal photolithography process. Then, trench regions 5 and 50 reaching the silicon oxide film 2 were formed by dry etching. The trench region 5 is an isolation groove according to the present invention, and the trench region 50 is an epi growth region for a power device (see FIG. 3). The trenches form single crystal first semiconductor regions 3 and 4 which are spatially separated from each other.

【0013】つづいて図4に示すように、熱酸化により
シリコン酸化膜6を0.1〜1μm形成し、各第1半導
体領域3、4の上面及び側面を絶縁保護する。側面のシ
リコン酸化膜6は本発明でいう溝絶縁膜となっている。
つづいてトレンチ領域50のシリコン酸化膜2を除去し
て窓部51を形成し、シリコン基板1を露出した。つづ
いて図5に示すように、第1のデポジション工程(本発
明でいう分離溝充填工程)を実施し、露出したシリコン
基板1の表面に単結晶のN- エピタキシャル領域を成長
させ、同時にシリコン酸化膜6表面にポリシリコン層7
1を堆積させる。この実施例では、トレンチ領域5の埋
設が完了するまでこの第1のデポジション工程を実施す
る。
Subsequently, as shown in FIG. 4, a silicon oxide film 6 is formed by thermal oxidation to a thickness of 0.1 to 1 μm to insulate and protect the upper surfaces and side surfaces of the first semiconductor regions 3 and 4. The silicon oxide film 6 on the side surface is the groove insulating film in the present invention.
Subsequently, the silicon oxide film 2 in the trench region 50 was removed to form the window 51, and the silicon substrate 1 was exposed. Then, as shown in FIG. 5, a first deposition step (separation groove filling step in the present invention) is carried out to grow a single crystal N epitaxial region on the exposed surface of the silicon substrate 1, and at the same time, silicon is formed. Polysilicon layer 7 on the surface of oxide film 6
1 is deposited. In this embodiment, this first deposition process is carried out until the filling of the trench region 5 is completed.

【0014】ここで重要なことは、トレンチ領域5中の
ポリシリコン層71に巣が生じるのを防ぐために、第2
半導体領域8中の結晶欠陥などによる特性劣化の許容範
囲でできだけ炉内温度を低下することである。この実施
例では、第1のデポジション工程は減圧状態で摂氏60
0〜1050度(好適には摂氏950度)で実施され
る。なお、デポジションの途中でアニールを行うことは
当然可能である。
What is important here is that in order to prevent the formation of the nest in the polysilicon layer 71 in the trench region 5, the second
It is to reduce the temperature in the furnace as much as possible within the allowable range of characteristic deterioration due to crystal defects in the semiconductor region 8. In this example, the first deposition step was performed at a reduced pressure of 60 degrees Celsius.
It is carried out at 0 to 1050 degrees (preferably 950 degrees Celsius). It should be noted that it is naturally possible to perform annealing during the deposition.

【0015】このようにすれば小粒径のポリシリコンが
析出するので、トレンチ領域5の幅が2μm以下、トレ
ンチ深さが5μm以上であっても、巣の発生を防止する
ことができる。つづいて第2のデポジション工程(本発
明でいうエピタキシャル成長工程)を実施し、トレンチ
領域50のエピタキシャル領域81の上に更に単結晶の
- エピタキシャル領域82を成長させ、エピタキシャ
ル領域81、82により第2半導体領域8を形成する。
第2のデポジション工程は、エピタキシャル領域82の
表面が第1半導体領域3、4上のシリコン酸化膜6より
も高位置となるまで行う。このようにするとポリシリコ
ン層71上にポリシリコン層72が形成される。
In this way, since polysilicon having a small grain size is deposited, even if the width of the trench region 5 is 2 μm or less and the trench depth is 5 μm or more, generation of cavities can be prevented. Subsequently, a second deposition step (epitaxial growth step in the present invention) is performed to further grow a single crystal N epitaxial region 82 on the epitaxial region 81 of the trench region 50. 2 The semiconductor region 8 is formed.
The second deposition process is performed until the surface of the epitaxial region 82 is located higher than the silicon oxide film 6 on the first semiconductor regions 3 and 4. In this way, the polysilicon layer 72 is formed on the polysilicon layer 71.

【0016】ここで重要なことは、エピタキシャル領域
82の電気特性を向上させるために、第2のデポジショ
ン工程を摂氏1050〜1200度の高温(ここでは摂
氏1150度)で行うことである。このようにすること
により、後でエミッタ、ベース、チャンネルなどが形成
される第2半導体領域8の表面部の電気特性の劣化が防
止される。また、トレンチ領域5の内でやや広い幅をも
つもので上記第1のデポジション工程では埋め切れなか
ったもの(図示せず)にも、完全にポリシリコン充填が
完了する。
What is important here is that the second deposition step is performed at a high temperature of 1050 to 1200 ° C. (here, 1150 ° C.) in order to improve the electrical characteristics of the epitaxial region 82. By doing so, deterioration of the electrical characteristics of the surface portion of the second semiconductor region 8 in which the emitter, the base, the channel, etc. will be formed later is prevented. In addition, even in the trench region 5 having a slightly wider width and not completely filled in the first deposition process (not shown), the polysilicon filling is completely completed.

【0017】つづいて図1に示すように、シリコン酸化
膜6をストッパとして選択研磨により表面を平滑にした
(本発明でいう平坦化工程)。つづいて通常のIC製造
プロセスにより第2半導体領域8には縦型チャンネルパ
ワーMOSTを作製し、第1半導体領域3にはNMOS
T(図示せず)、PMOSTを作製し、第1半導体領域
4にはバイポーラトランジスタを作製した。
Subsequently, as shown in FIG. 1, the surface was smoothed by selective polishing using the silicon oxide film 6 as a stopper (planarizing step in the present invention). Subsequently, a vertical channel power MOST is formed in the second semiconductor region 8 by an ordinary IC manufacturing process, and an NMOS is formed in the first semiconductor region 3.
T (not shown) and PMOST were manufactured, and a bipolar transistor was manufactured in the first semiconductor region 4.

【0018】なお本実施例において窓部51を形成する
時、第1半導体領域3、4上面のシリコン酸化膜6を選
択除去することもできる。また、上記第1、第2のデポ
ジション工程に際し、レーザー照射による光エピタキシ
ャル成長を採用すれば、基板温度の低下と結晶品質の向
上を図ることができる。更に、第1のデポジション工程
で超高真空中で低温エピタキシャル成長(600〜80
0℃)することにより結晶品質を向上することができ
る。 (実施例2)他の実施例の製造工程を図6〜図11に示
す。
When the window 51 is formed in this embodiment, the silicon oxide film 6 on the upper surfaces of the first semiconductor regions 3 and 4 can be selectively removed. Further, when the optical epitaxial growth by laser irradiation is adopted in the first and second deposition steps, the substrate temperature can be lowered and the crystal quality can be improved. Further, in the first deposition step, low temperature epitaxial growth (600-80
The crystal quality can be improved by adjusting the temperature to 0 ° C. (Embodiment 2) Manufacturing steps of another embodiment are shown in FIGS.

【0019】この実施例の装置は図1に示す実施例1の
装置と同一構造をもつ。まず実施例1と同じ工程で図3
に示す半製品を形成し、この上に上記した第1のデポジ
ション工程を行う。なお、この場合にはトレンチ領域5
0のシリコン酸化膜2は開口されていないのでトレンチ
領域50にもポリシリコン層71が形成される。したが
って、この第1のデポジション工程はエピタキシャル成
長温度に規制されることなく、ポリシリコン層71の小
粒径化のための最適な炉内温度(ここでは摂氏650
度)を選択でき、これにより、トレンチ領域5に巣のな
いポリシリコン層71が充填される。また、この時ポリ
シリコン層71にリン等の不純物を導入すれば抵抗化、
ゲッタリングを確実におこなう事ができる。
The device of this embodiment has the same structure as the device of embodiment 1 shown in FIG. First, in the same process as in Example 1, FIG.
The semi-finished product shown in FIG. 1 is formed, and the above-mentioned first deposition step is performed thereon. In this case, the trench region 5
Since the silicon oxide film 2 of 0 is not opened, the polysilicon layer 71 is also formed in the trench region 50. Therefore, the first deposition step is not restricted by the epitaxial growth temperature, and the optimum furnace temperature (here, 650 degrees Celsius) for reducing the grain size of the polysilicon layer 71 is used.
Degree), so that the trench region 5 is filled with the non-nested polysilicon layer 71. At this time, if impurities such as phosphorus are introduced into the polysilicon layer 71, resistance is increased,
Gettering can be performed reliably.

【0020】つづいてホトリソ工程によりトレンチ領域
50を選択エッチングして窓部52を形成する。ここで
は、トレンチ領域50のポリシリコン層71はドライエ
ッチングで、その下のシリコン酸化膜2はウェットエッ
チングで除去し、単結晶のシリコン基板1を露出させ
た。つぎに上記した第2のデポジション工程を実施し、
トレンチ領域50に第2半導体領域を構成する単結晶の
- エピタキシャル領域83を形成した。この時、ポリ
シリコン層71上にはポリシリコン層72が堆積する。
Subsequently, the trench region 50 is selectively etched by a photolithography process to form a window 52. Here, the polysilicon layer 71 in the trench region 50 was removed by dry etching, and the silicon oxide film 2 thereunder was removed by wet etching to expose the single crystal silicon substrate 1. Next, the second deposition process described above is performed,
A single crystal N epitaxial region 83 forming the second semiconductor region was formed in the trench region 50. At this time, the polysilicon layer 72 is deposited on the polysilicon layer 71.

【0021】つづいて実施例1と同様にシリコン酸化膜
6をストッパとして選択研磨をおこない表面を平坦に
し、工程の要部を完了した。
Then, as in Example 1, selective polishing was performed using the silicon oxide film 6 as a stopper to flatten the surface, and the main part of the process was completed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を適用した半導体装置の断面
図、
FIG. 1 is a sectional view of a semiconductor device to which a manufacturing method of the present invention is applied,

【図2】実施例1の工程を示す断面図、FIG. 2 is a cross-sectional view showing the process of Example 1,

【図3】実施例1の工程を示す断面図、FIG. 3 is a cross-sectional view showing a process of Example 1,

【図4】実施例1の工程を示す断面図、FIG. 4 is a cross-sectional view showing a process of Example 1,

【図5】実施例1の工程を示す断面図、FIG. 5 is a cross-sectional view showing the process of the first embodiment,

【図6】実施例2の工程を示す断面図、FIG. 6 is a cross-sectional view showing the process of Example 2;

【図7】実施例2の工程を示す断面図、FIG. 7 is a cross-sectional view showing a process of Example 2,

【図8】実施例2の工程を示す断面図、FIG. 8 is a cross-sectional view showing the process of Example 2;

【符号の説明】[Explanation of symbols]

1はN+ シリコン基板(半導体基板)、2はシリコン酸
化膜(基板絶縁膜)、3、4は第1半導体領域、5.5
0はトレンチ領域(分離溝)、6はシリコン酸化膜
(溝絶縁膜)、7はポリシリコン、8は第2半導体領
域、
1 is an N + silicon substrate (semiconductor substrate), 2 is a silicon oxide film (substrate insulating film), 3 and 4 are first semiconductor regions, 5.5
0 is a trench region (separation groove), 6 is a silicon oxide film
(Groove insulating film), 7 is polysilicon, 8 is a second semiconductor region,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板表面に形成された基板絶縁膜上
に溝絶縁膜付きの分離溝により互いに分離された複数の
第1半導体領域を形成する第1工程と、前記基板絶縁膜
の開口部上にエピタキシャル成長により基板導通可能な
第2半導体領域を形成するとともに前記分離溝をポリシ
リコンで埋める第2工程とを有する半導体装置の製造方
法において、 前記第2工程は、前記エピタキシャル成長時の温度より
も低温で前記分離溝を埋める分離溝充填工程と、前記分
離溝充填工程後に実施され第2半導体領域を形成するエ
ピタキシャル成長工程と、前記エピタキシャル成長工程
後に実施され表面部を平坦化する平坦化工程とを有する
ことを特徴とする半導体装置の製造方法。
1. A first step of forming a plurality of first semiconductor regions separated from each other by a separation groove having a groove insulating film on a substrate insulating film formed on a surface of a semiconductor substrate, and an opening portion of the substrate insulating film. In the method of manufacturing a semiconductor device, the method further comprises a second step of forming a second semiconductor region capable of conducting the substrate by epitaxial growth and filling the isolation trench with polysilicon, wherein the second step is higher than a temperature during the epitaxial growth. A separation groove filling step of filling the separation groove at a low temperature; an epitaxial growth step performed after the separation groove filling step to form a second semiconductor region; and a flattening step performed after the epitaxial growth step to flatten the surface portion. A method of manufacturing a semiconductor device, comprising:
JP15376392A 1992-06-12 1992-06-12 Method for manufacturing semiconductor device Expired - Fee Related JP3189387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15376392A JP3189387B2 (en) 1992-06-12 1992-06-12 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15376392A JP3189387B2 (en) 1992-06-12 1992-06-12 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05347353A true JPH05347353A (en) 1993-12-27
JP3189387B2 JP3189387B2 (en) 2001-07-16

Family

ID=15569603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15376392A Expired - Fee Related JP3189387B2 (en) 1992-06-12 1992-06-12 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3189387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735580A1 (en) * 1995-03-31 1996-10-02 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Process for realizing trench isolation structures
JP2007227601A (en) * 2006-02-23 2007-09-06 Seiko Epson Corp Semiconductor device, and method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735580A1 (en) * 1995-03-31 1996-10-02 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Process for realizing trench isolation structures
US6001705A (en) * 1995-03-31 1999-12-14 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Process for realizing trench structures
US6362072B1 (en) 1995-03-31 2002-03-26 Stmicroelectronics S.R.L. Process for realizing trench structures
JP2007227601A (en) * 2006-02-23 2007-09-06 Seiko Epson Corp Semiconductor device, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3189387B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
US4740480A (en) Method for forming a semiconductor device with trench isolation structure
US5442223A (en) Semiconductor device with stress relief
US7563693B2 (en) Method for manufacturing semiconductor substrate and semiconductor substrate
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
US8017492B2 (en) Method for fabricating semiconductor device and semiconductor device with separation along peeling layer
JPH0355984B2 (en)
US5872044A (en) Late process method for trench isolation
JPH0586673B2 (en)
JPH07326663A (en) Dielectric isolation method of wafer
JPH03129765A (en) Semiconductor device and manufacture thereof
JPH0348656B2 (en)
US4497665A (en) Method for manufacturing semiconductor device
JP3196229B2 (en) Semiconductor device
JP4288925B2 (en) Semiconductor device and manufacturing method thereof
JP3189387B2 (en) Method for manufacturing semiconductor device
JPS59189677A (en) Manufacture of semiconductor device
JP2021153163A (en) Manufacturing method for semiconductor device, and semiconductor device
JP3021850B2 (en) Method for manufacturing semiconductor device
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPH11340316A (en) Method for forming trench element isolation film by using annealing
JP3125429B2 (en) Semiconductor device and manufacturing method thereof
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH06310427A (en) Manufacture of semiconductor device
JPS6238869B2 (en)
KR100286775B1 (en) Method of manufacturing soi device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees