JPS61125087A - Insulated gate type field effect semiconductor device and manufacture thereof - Google Patents

Insulated gate type field effect semiconductor device and manufacture thereof

Info

Publication number
JPS61125087A
JPS61125087A JP24660684A JP24660684A JPS61125087A JP S61125087 A JPS61125087 A JP S61125087A JP 24660684 A JP24660684 A JP 24660684A JP 24660684 A JP24660684 A JP 24660684A JP S61125087 A JPS61125087 A JP S61125087A
Authority
JP
Japan
Prior art keywords
region
insulating film
substrate
channel
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24660684A
Other languages
Japanese (ja)
Inventor
Masashi Koyama
小山 昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24660684A priority Critical patent/JPS61125087A/en
Publication of JPS61125087A publication Critical patent/JPS61125087A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To eliminate transition region between an insulating region and an active region, by utilizing the facts that an element isolating insulating film agrees with the end part of a channel cutting impurity region, the substrate surface beneath the element isolating insulating film agrees with the substrate of a channel region, and said surfaces are flat. CONSTITUTION:On a substrate 11, a channel doping region 12 and a gate insulating film 13 are formed and thereafter a gate electrode material film 14 is formed. Then, a mask pattern in an active region is formed, and the material film 14 is etched. With a pattern 14a in the active region as a mask, a channel cutting region 15 is formed and a field insulating film 16 is grown. Then the insulating film 16 is etched so that the surface of the pattern 14a is exposed,and a material film 17 is formed. With a resist pattern formed on the material film 17 as a mask, a wiring material film is etched. On the active region, with the wiring pattern as masks, self-aligning etching of the material film pattern is performed. Then impurities are introduced in the substrate,and source and drain region 18 are formed. Thus, a transition region is not present between the element isolating insulating region and the active region, and element isolation, which does not disturb the crystal orientation of the substrate, can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型電界効果半導体装置(MI S型
半導体装置)及びその製造方法に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate field effect semiconductor device (MIS type semiconductor device) and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年のMIS型半導体装置の発展は目ざましく、微細化
が進みその集積度は飛躍的に上昇している。
The recent development of MIS type semiconductor devices has been remarkable, with advances in miniaturization and a dramatic increase in the degree of integration.

この中で能動素子の微細化はイオン注入法による浅接合
化、リアクティブイオンエツチング(以下RIEと記す
)による異方性エツチング等の製造技術と共に促進され
つつある。しかし高集積化のためには各能動素子の微細
化だけでなく、各素子間同志を分離する領域も微細化す
る必要がある。
In this context, miniaturization of active elements is being promoted along with manufacturing techniques such as shallow junctions using ion implantation and anisotropic etching using reactive ion etching (hereinafter referred to as RIE). However, in order to achieve high integration, it is necessary not only to miniaturize each active element but also to miniaturize the regions separating each element from each other.

このため微細素子間分離技術は最近特に重要釦なってき
ておシ各種の素子間分離技術が考案されている。その中
で従来知られていた代表的な例を第千図(a) 、 (
時に示す。第千図(a)は基板上に形成された厚゛い絶
縁膜のうち所望の部分を除去し基板表面を露出させて活
性領域と素子間分離領域を形成する方法の構造断面図で
ある。ここで素子間分離領域は厚い絶縁膜3(以下フィ
ールド絶縁膜と配力と各素子間(生じる寄生MO8)、
−ンジスタ効果を防止するために導入された不純物領域
2(以下チャンネルカット領域と記す)によって構成さ
れる。ご仁で1は基板、4はゲート絶縁膜である。
For this reason, techniques for separating fine elements have recently become particularly important, and various techniques for isolating elements have been devised. Typical examples known in the past are shown in Figure 100 (a) and (
Sometimes shown. FIG. 10(a) is a structural cross-sectional view of a method for forming an active region and an isolation region by removing a desired portion of a thick insulating film formed on a substrate to expose the surface of the substrate. Here, the inter-element isolation region is a thick insulating film 3 (hereinafter referred to as field insulating film, power distribution and between each element (generated parasitic MO8),
- It is constituted by an impurity region 2 (hereinafter referred to as a channel cut region) introduced to prevent the transistor effect. In the figure, 1 is a substrate and 4 is a gate insulating film.

また第千図(b)は一般にLOCO8技術と称せられる
選択酸化による素子分離技術を示している。ここで6は
耐酸化性膜で活性領域を規定する形状にパターンニング
されている。チャンネルカット領域2は耐酸化性膜パタ
ーンをマスクとして活性領域以外に導入される1、その
後全体に酸化を施こし素子間分離酸化膜3t−形成する
。素子間分離領域は上記厚い素子間分離酸化膜3とチャ
ンネルカット領域2で構成される。
Further, FIG. 10(b) shows an element isolation technique using selective oxidation, generally referred to as LOCO8 technique. Here, 6 is an oxidation-resistant film that is patterned in a shape that defines an active region. The channel cut region 2 is introduced outside the active region using the oxidation-resistant film pattern as a mask, and then the entire region is oxidized to form an element isolation oxide film 3t. The element isolation region is composed of the thick element isolation oxide film 3 and the channel cut region 2.

この技術はチャンネルカット領域と素子間分離酸化膜を
自己整合的に製造できる利点から広く使用されてきた。
This technique has been widely used because of the advantage that channel cut regions and element isolation oxide films can be manufactured in a self-aligned manner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上述した第十図(a)に示した第1の従来例の
欠点はチャンネルカット領域2と素子間分離絶縁膜3と
が自己整合的に形成されていない点である。つまりチャ
ンネルカット領域と活性領域があるマージンをもって設
計されなければならず微細化・高集積化(は不適である
However, the drawback of the first conventional example shown in FIG. 10(a) is that the channel cut region 2 and the element isolation insulating film 3 are not formed in a self-aligned manner. In other words, it must be designed with a certain margin between the channel cut region and the active region, which is inappropriate for miniaturization and high integration.

また、第今図中)に示した第2の従来例も、素子の微細
化が進むにつれて以下の問題点が指摘されてきた。その
第1は2バーズビーク”と称せられる素子間分離酸化膜
の活性領域への侵入である。
Furthermore, the following problems have been pointed out in the second conventional example shown in FIG. The first is the intrusion into the active region of the device isolation oxide film, which is called ``Bird's Beak''.

このバーズビーク、っまシ活性領域から素子分離領域へ
の遷移領域、の幅が高集積化に対する障害となってきて
いる。このバーズビーク幅を減少すせるために窒化膜下
の酸化膜5と窒化膜6の厚さを適切に選ぶことが試みら
れたが”ホワイトリボン1と称せられる基板の窒化現象
が障害となりバーズビークの解消には効果が少ないこと
が報告されている。第2にこの技術は選択酸化時の熱処
理によタチャンネルカット不純物の活性領域への侵入を
許してしまう。このためチ、マンネル幅の狭いMIS)
ランジスタ能カの低下を起こしゃすい欠点を有している
。第3にこの技術は局所的に基板を酸化するため酸化時
に応力が生じ基板結晶の乱れ、すなわち結晶欠陥発生f
、誘発しゃすい。この選択酸化時に発生した欠陥は高密
度集積デバイスの歩留シ低下や信頼性低下の原因の−っ
となっている0 本発明はこれら従来の素子間分離技術で生じた素子間分
離絶縁領域と活性領域間の遷移領域がないしかも基板の
結晶性を乱さない素子間分離構造及びその製造方法を提
供することを目的とする。
The width of this bird's beak, the transition region from the active region to the element isolation region, has become an obstacle to higher integration. In order to reduce the bird's beak width, an attempt was made to appropriately select the thickness of the oxide film 5 and nitride film 6 under the nitride film, but the nitridation phenomenon of the substrate, known as the white ribbon 1, became an obstacle and eliminated the bird's beak. It has been reported that this technique has little effect on the channel cut impurity due to the heat treatment during selective oxidation.
It has the disadvantage that it tends to cause a decline in transistor performance. Third, since this technology locally oxidizes the substrate, stress occurs during oxidation, causing disorder in the substrate crystals, that is, crystal defects.
, provoked. Defects generated during selective oxidation are a major cause of decreased yield and reliability of high-density integrated devices. It is an object of the present invention to provide an element isolation structure that does not have a transition region between active regions and does not disturb the crystallinity of a substrate, and a method for manufacturing the same.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の第1の発明の絶縁ゲート型電界効果半導体装置
は、一導電型の半導体基体の主表面に形成された反対導
電型のソース・ドレイン不純物拡散層領域とチャンネル
領域で構成された活性領域と、前記チャンネル領域に接
するように設けられたゲート絶縁膜と、該ゲート絶縁膜
に接し前記チャンネル領域を覆うごとく設けられたゲー
ト電極と、前記チャンネル領域およびソース・ドレイン
拡散層領域以外の基板上に設けられた素子間分離絶縁膜
と、該素子間分離絶縁膜下に基板と同一導電型のチャン
ネルカット不純物領域と、前記ゲート電極同志を電気的
に接続する配線とを具備してなる絶縁ゲート型電界効果
半導体装置において、前記素子間分離絶縁膜とチャ/ネ
ルカット不純物領域の端部が一致し、さらVc素子間分
離絶縁膜下の基板表面とチャンネル領域の基板表面が一
致し平担であることを特徴として構成される。
The insulated gate field effect semiconductor device according to the first aspect of the present invention has an active region formed on the main surface of a semiconductor substrate of one conductivity type and composed of a source/drain impurity diffusion layer region and a channel region of opposite conductivity type. a gate insulating film provided in contact with the channel region; a gate electrode provided in contact with the gate insulating film and covering the channel region; and a substrate other than the channel region and the source/drain diffusion layer region. an insulated gate comprising: an element isolation insulating film provided in the element isolation insulating film; a channel cut impurity region having the same conductivity type as the substrate under the element isolation insulating film; and wiring electrically connecting the gate electrodes. In the type field effect semiconductor device, the ends of the element isolation insulating film and the channel/channel cut impurity region are aligned, and further, the substrate surface under the Vc element isolation insulating film and the substrate surface of the channel region are aligned and flat. It is composed of the following characteristics.

また、本発明のt42の発明の絶縁ゲート型電界効果半
導体装置の製造方法は、基板の所定の位置にチャンネル
ドーピング不純物を導入する工程と、基板上にゲート絶
縁膜を形成する工程と、該ゲート絶縁膜上にゲート電極
材料パターンをパターンニングする工程と、該ゲート電
極材料をマスクとしてチャンネルカット不純物t−導入
する工程と、前記ゲート電極材料パターン間を埋め込む
ように絶縁膜を形成する工程と、前記ゲート電極材料上
部表面を露出させる工程と、前記ゲート電極材料と基板
上の絶縁膜上に配線材料を形成する工程と、該配線材料
と前記ゲート電極材料をエツチングしパターンニングす
る工程と、基板と反対導電型の不純物を基板に導入する
工程とを含んで構成される0 〔実施例〕 以下、本発明の実施例について、図面を参照して説明す
る。第1図(a)〜(e)は本発明の一実施例の構造及
びその製造方法を説明するために工程順に示した断面図
である。
Further, the method for manufacturing an insulated gate field effect semiconductor device according to the invention of t42 of the present invention includes a step of introducing a channel doping impurity into a predetermined position of a substrate, a step of forming a gate insulating film on the substrate, and a step of forming a gate insulating film on the substrate. a step of patterning a gate electrode material pattern on an insulating film, a step of introducing a channel cut impurity t- using the gate electrode material as a mask, a step of forming an insulating film so as to fill in between the gate electrode material patterns, exposing the upper surface of the gate electrode material; forming a wiring material on the gate electrode material and the insulating film on the substrate; etching and patterning the wiring material and the gate electrode material; and a step of introducing impurities of opposite conductivity type into the substrate. [Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(e) are sectional views shown in order of steps to explain the structure and manufacturing method of an embodiment of the present invention.

まず、第1図(a)において、11は基板、13はゲー
ト絶縁膜、12はチャンネルドーピング領域である。基
板上にチャンネルドーピング領域12とゲート絶縁膜1
3を形成後ゲート電極材料膜14を形成する。
First, in FIG. 1(a), 11 is a substrate, 13 is a gate insulating film, and 12 is a channel doping region. A channel doping region 12 and a gate insulating film 1 are formed on the substrate.
3, a gate electrode material film 14 is formed.

次に、第1図(b)に示すように、周知の7オトレジス
ト技術を用い活性領域を規定するマスクパターンを形成
し、ゲート電極材料膜14をエツチングする。このゲー
ト電極材料膜のエツチングは、所望パターンとマスクパ
ターンとの寸法偏差の少なさからRIB等の異方性エツ
チングが望ましい。
Next, as shown in FIG. 1(b), a mask pattern defining an active region is formed using the well-known 7-photoresist technique, and the gate electrode material film 14 is etched. For the etching of this gate electrode material film, anisotropic etching such as RIB etching is preferable because the dimensional deviation between the desired pattern and the mask pattern is small.

次いで上記活性領域を規定するパターン14aQマスク
としてチャンネルカット不純物を基板11に導入し、チ
ャンネルカット領域15を形成する。
Next, a channel cut impurity is introduced into the substrate 11 as a pattern 14aQ mask defining the active region to form a channel cut region 15.

素子微細化のためには、この手法は高エネルギーでのイ
オン注入法が望ましい。
For device miniaturization, high-energy ion implantation is preferable for this method.

次に、第1図(C)に示すように1例えば、バイアスス
パッタ蒸着法によプ絶縁膜16を成長させる。
Next, as shown in FIG. 1C, an insulating film 16 is grown by, for example, bias sputter deposition.

このときゲート電極材料パターン14aは絶縁膜VC覆
われるがこの絶縁膜厚岐ゲート電極材料パターン14a
の上部では薄く、基板上部では厚く形成することが肝要
である。
At this time, the gate electrode material pattern 14a is covered with an insulating film VC, but the thickness of the insulating film varies.
It is important to form it thinly above the substrate and thickly above the substrate.

このような絶縁膜成長は例えばバイアス二酸化シリコン
膜スパッタ法によればそのバイアス条件を適当に調整す
ることで可能になる。例えば200Vのバイアス条件で
60 ooxの多結晶シリコン膜パターン上に2000
’A 、基板上Vc7ooo1の二酸化シリコン膜を成
長させることができた。
Such insulating film growth can be achieved by appropriately adjusting the bias conditions, for example, by bias silicon dioxide film sputtering. For example, under a bias condition of 200V, 2000V is applied on a 60OOX polycrystalline silicon film pattern.
'A. A silicon dioxide film of Vc7ooo1 could be grown on the substrate.

次に、第1図(d)に示すように1ゲート電極材料パタ
ーン14aの表面が露出するように絶縁膜16をエツチ
ングする。その後配線用材料膜17を形成する。
Next, as shown in FIG. 1(d), the insulating film 16 is etched so that the surface of the one gate electrode material pattern 14a is exposed. Thereafter, a wiring material film 17 is formed.

このとき素子間分離絶縁膜16aの厚さは基板上に成長
した初期の素子間絶縁膜16の厚さと前記絶縁膜エツチ
ング量で規定される。素子間分離絶縁膜16aの下部基
板には既に導入されたチャンネルカット領域15が自己
整合的に形成されている。この領域の不純物濃度と前記
素子間分離絶縁膜厚により寄生トランジスタ閾値を所望
の値に設定することが可能でラフ良好な素子間分離耐圧
が実現できる。
At this time, the thickness of the inter-element isolation insulating film 16a is determined by the initial thickness of the inter-element insulating film 16 grown on the substrate and the amount of etching of the insulating film. A channel cut region 15, which has already been introduced, is formed in a self-aligned manner on the lower substrate of the element isolation insulating film 16a. The parasitic transistor threshold value can be set to a desired value by the impurity concentration in this region and the thickness of the element isolation insulating film, and a rough and good element isolation breakdown voltage can be realized.

次に、第1図(e)に示すように、配線用材料膜17上
に所望のゲート電極パターン及び配線パターンマスクを
周知の7オトレジスト技術により形成する。この後レジ
ストパターンをマスクとし配線用材料膜をエツチングし
、さらに活性領域上ではゲート電極材料膜パターンを、
配線パターンをマスクとして自己整合的にエツチングす
る。次いで、例えばイオン注入法等の周知の技術を用い
基板に不純物を導入しソース・ドレイン領域18を形成
する。このときゲート電極のチャンネル長はゲート電極
パターン14bとソース−ドレイン接合深さKよって規
定される0このため素子の微細化のため釦は配線材料膜
・ゲート電極材料膜のエツチングはRI E等の異方性
エツチングがまたソースドレイン接合はできるだけ浅い
ことが頃ましい。
Next, as shown in FIG. 1(e), a desired gate electrode pattern and wiring pattern mask are formed on the wiring material film 17 by the well-known 7-photoresist technique. After that, the wiring material film is etched using the resist pattern as a mask, and the gate electrode material film pattern is etched on the active region.
Etching is performed in a self-aligned manner using the wiring pattern as a mask. Next, impurities are introduced into the substrate using a well-known technique such as ion implantation to form source/drain regions 18. At this time, the channel length of the gate electrode is defined by the gate electrode pattern 14b and the source-drain junction depth K. Therefore, in order to miniaturize the device, the etching of the wiring material film and gate electrode material film is performed using RIE, etc. It is also desirable that the source/drain junction be as shallow as possible when anisotropically etched.

第2図は以上の工程を経て製造されたMIS型半導体装
置の模式的平面図t−表わしておりその人−A’面の構
造断面図が第1図(e)でおる。またB−B’面での構
造断面図はgt図(d)に一致する。
FIG. 2 is a schematic plan view of the MIS type semiconductor device manufactured through the above steps, and FIG. 1(e) is a structural cross-sectional view of the plane A'. Further, the structural cross-sectional view along the BB' plane corresponds to the gt diagram (d).

この後(周知の技術を利用し金属配線ノー間絶縁膜を形
成し、ソース・ドレイン不純物領域18およびゲート電
極配線17a上の層間絶縁膜の一部を除去し開孔部を設
け、金属電極、金属配線を形成してMIS型半導体装置
を得る。
After this (using a well-known technique, an insulating film is formed between the metal wiring and the interlayer insulating film, a part of the interlayer insulating film on the source/drain impurity region 18 and the gate electrode wiring 17a is removed to form an opening, and the metal electrode, A MIS type semiconductor device is obtained by forming metal wiring.

以上説明した構造によると、従来のLUCO8技術で生
じたバーズビークのような活性領域から素子間分離領域
への遷移領域を無くすることがoT能になった。
According to the structure described above, it is possible to eliminate the transition region from the active region to the element isolation region, such as a bird's beak, which occurs in the conventional LUCO8 technology.

さらにHIE等の異方性エツチングを利用することで活
性領域を設計値との寸法偏差が小さい状塊で形成するこ
とが可能になる。
Further, by using anisotropic etching such as HIE, it becomes possible to form the active region in a lump having a small dimensional deviation from the design value.

また、チャンネルカット不純物領域形成後〈厚い酸化膜
を除去し活性領域を形成する方法と異なシチャンネルカ
ット不純物領域を素子間分離絶縁膜下にのみ自己整合的
に形成することができる。
Further, after forming the channel cut impurity region, the channel cut impurity region can be formed in a self-aligned manner only under the element isolation insulating film, which is different from the method in which a thick oxide film is removed to form an active region.

そのため活性領域とチャンネルカット領域との設計マー
ジンを見込む必要がなく、さらにチャンネルカット不純
物導入のための7オトリソグラフイーエ程もl工程減ら
すことができる。
Therefore, there is no need to allow for a design margin between the active region and the channel cut region, and furthermore, the number of 7 otolithography steps for introducing channel cut impurities can be reduced by 1 step.

また、スパッタ二酸化シリコン膜蒸着法等の低温厚膜形
成技術を利用することによシチャンネルカット不純物専
人後の熱処理を低温にすることができる。このため活性
領域内へのチャンネルカット不純物の侵入も小さくする
ことができる。
Further, by using a low-temperature thick film formation technique such as a sputter silicon dioxide film deposition method, the heat treatment after the channel cut impurity treatment can be performed at a low temperature. Therefore, the intrusion of channel cut impurities into the active region can also be reduced.

このように本発明釦よれば素子分離領域を活性領域と自
己整合的に形成でき、半導体集積回路装置の集積度を高
める。ことを可能とし、さらに狭チャンネル効果を抑制
しMID)ランジスタ能力の低下を防ぐ効果をもつ。
As described above, according to the button of the present invention, the element isolation region can be formed in self-alignment with the active region, thereby increasing the degree of integration of the semiconductor integrated circuit device. Furthermore, it has the effect of suppressing the narrow channel effect and preventing a decline in the MID transistor performance.

さらに本発明によると基板を局所的に厚く酸化すること
がない。このためLOGO8技術で問題となった選択酸
化時のストレスに起因する結晶欠陥が発生しない。
Further, according to the present invention, the substrate is not locally oxidized to a large extent. Therefore, crystal defects caused by stress during selective oxidation, which were a problem with the LOGO8 technology, do not occur.

このため信頼性の高いMIS型半導体装置を高歩留りで
製造することが可能になる。
Therefore, it becomes possible to manufacture a highly reliable MIS type semiconductor device at a high yield.

第3図(a) 、 (b)は本発明の他の実施例並びに
その製造方法を説明するために工程順に示した断面図で
ある。本実施例は第1図(a)〜(e)が単一チャンネ
ル型MI S#−導装置tff、に適用した例を述べた
のに対し相補型rvl I S型半導体装置への適用に
ついて説明する。
FIGS. 3(a) and 3(b) are cross-sectional views shown in order of steps to explain another embodiment of the present invention and its manufacturing method. This embodiment describes an example in which FIGS. 1(a) to (e) are applied to a single channel type MI S#-type semiconductor device tff, whereas application to a complementary type rvl I S type semiconductor device will be explained. do.

第3図(a)は片チヤンネル領域にチャンネルカット不
純物を導入する工程の構造断面図である。ここで20は
チャンネルカット不純物導入に対するマスク物質、19
は基板と反対導γ■型の不純物ウェル、15は基板と同
一4電型のチャンネルカッ゛ ト不純物領域である。後
の製造工程はnil記実施例と同様に行ない、本発明に
よる素子量分I’11絶縁膜16a、ゲート電極14b
、配線17a、基板11と反対4 電型のソース・ドレ
イン領域、及び不純物ウェル19と反対導電型のソース
・ドレイン領域18bを形成し第3回動)に示すように
、相補型MIa型半導体装置を得る。本発明による効果
は相補型MIS型半導体装置においても前記と同様であ
る。しかし相補型MIS型半導体装置は一般に微少リー
クに対しては要求が厳しく本発明の利点の一つである結
晶欠陥の発生の少なさは、さらにその有効性を増す。
FIG. 3(a) is a structural cross-sectional view of the step of introducing channel cut impurities into one channel region. Here, 20 is a mask material for channel cut impurity introduction, and 19
Reference numeral 15 indicates an impurity well of the γ■ type opposite to that of the substrate, and a channel cut impurity region 15 of the same quaternary conductivity type as the substrate. The subsequent manufacturing steps are carried out in the same manner as in the embodiment described above, and the element quantity I'11 according to the present invention is insulating film 16a and gate electrode 14b.
, a wiring 17a, a source/drain region of a conductivity type opposite to that of the substrate 11, and a source/drain region 18b of a conductivity type opposite to that of the impurity well 19 are formed. get. The effects of the present invention are similar to those described above in a complementary MIS type semiconductor device. However, complementary MIS type semiconductor devices generally have strict requirements for minute leakage, and one of the advantages of the present invention, which is less occurrence of crystal defects, further increases its effectiveness.

なお本発明を実施するKあたり、各材料及び製造方法に
対しては様々なものが可能である。
It should be noted that various materials and manufacturing methods can be used for K in carrying out the present invention.

例えばゲート電極材料14及び配線用材料17について
は多結晶シリコンをはじめモリブデン舎タングステン等
の高融点金属材料または金属とシリコンとのシリ丈イド
膜等が利用できる。また基板材料についてもシリコ2ガ
リウムヒ素等の基板が容易に利用できる。さらにゲート
絶縁膜も基板の酸化物だけでなく窒化物、または蒸着さ
れた絶縁膜でもよい。素子間分離絶縁膜についてもバイ
アススパッタ法による二酸化シリコン膜に限定されるも
のではない。
For example, for the gate electrode material 14 and the wiring material 17, polycrystalline silicon, a high melting point metal material such as molybdenum or tungsten, or a silicate film of metal and silicon can be used. Further, as for the substrate material, a substrate made of silico 2 gallium arsenide or the like can be easily used. Furthermore, the gate insulating film may also be made of nitride or a vapor-deposited insulating film, instead of being an oxide of the substrate. The element isolation insulating film is also not limited to a silicon dioxide film formed by bias sputtering.

〔発明の効果〕〔Effect of the invention〕

以上説明したようK、本発明によれば、素子間分離絶縁
領域と活性領域間の遷移領域がなく、しかも基板の結晶
性を乱さない素子間分離構造及びその製造方法が得られ
、絶縁ゲート電界効果半導体装置の小型化、高信頼性化
を達成することができる。
As explained above, according to the present invention, an element isolation structure and its manufacturing method that does not have a transition region between an element isolation insulating region and an active region and does not disturb the crystallinity of the substrate can be obtained, and an insulated gate electric field Effectively, it is possible to achieve miniaturization and high reliability of the semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例の構造並びに
その製造方法を説明するための工程順に示した断面図、
第2図は第1図に示す本発明の一実施例の一部工程の模
式的平面図、第3図(a) 、 (b)は本発明の他の
実施例の構造並びに製造方法を説明するために工程順に
示した断面図、第4図(a)、Φ)はそれぞれ従来の絶
縁ゲート型電界効果半導体装置の素子間分離構造を示す
断面図である。 1・・・・・・基板、2・・・・・・チャンネルカット
領域、3・・・・・・フィールド絶縁膜、4,5・・・
・・・ゲート絶縁膜、6・・・・・・耐酸化性膜、11
・−・・・・基板、12・・・・・・チャンネルドーピ
ング領域、13・・・・・・ゲート絶縁膜、14・・・
・・・ゲート電極材料膜、14a・・・・・・ゲート電
極材料ハターン、14b・・・・・・ゲート電極パター
ン、15・・・・・・チャンネルカット領域、16.1
6a・・・・・・フィールド絶縁膜、17・・・・・・
配線材料膜、17a・・・・・・ゲート’lli極配線
、18.18a・・・・・・ソース−ドレイン領域、1
9・・・・・・不純物ウェル、20・・・・・・チャン
ネルストッパー導入用マスク物質。 第10 第2図
FIGS. 1(a) to 1(e) are cross-sectional views showing the structure of an embodiment of the present invention and the manufacturing method thereof in the order of steps;
FIG. 2 is a schematic plan view of a partial process of one embodiment of the present invention shown in FIG. 1, and FIGS. 3(a) and (b) illustrate the structure and manufacturing method of another embodiment of the present invention. 4(a) and Φ) are cross-sectional views showing an element isolation structure of a conventional insulated gate field effect semiconductor device. 1...Substrate, 2...Channel cut area, 3...Field insulating film, 4, 5...
...Gate insulating film, 6... Oxidation-resistant film, 11
...Substrate, 12...Channel doping region, 13...Gate insulating film, 14...
...Gate electrode material film, 14a...Gate electrode material pattern, 14b...Gate electrode pattern, 15...Channel cut region, 16.1
6a...Field insulating film, 17...
Wiring material film, 17a...gate 'lli electrode wiring, 18.18a...source-drain region, 1
9... Impurity well, 20... Mask material for channel stopper introduction. 10 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型の半導体基体の主表面に形成された反対
導電型のソース・ドレイン不純物拡散層領域とチャンネ
ル領域で構成された活性領域と、前記チャンネル領域に
接するように設けられたゲート絶縁膜と、該ゲート絶縁
膜に接し前記チャンネル領域を覆うごとく設けられたゲ
ート電極と、前記チャンネル領域およびソース・ドレイ
ン拡散層領域以外の基板上に設けられた素子間分離絶縁
膜と、該素子間分離絶縁膜下に基板と同一導電型のチャ
ンネルカット不純物領域と前記ゲート電極同志を電気的
に接続する配線とを具備してなる絶縁ゲート型電界効果
半導体装置において、前記素子間分離絶縁膜とチャンネ
ルカット不純物領域の端部が一致し、さらに素子間分離
絶縁膜下の基板表面とチャンネル領域の基板表面が一致
し平担であることを特徴とする絶縁ゲート型電界効果半
導体装置。
(1) An active region consisting of a source/drain impurity diffusion layer region and a channel region of the opposite conductivity type formed on the main surface of a semiconductor substrate of one conductivity type, and a gate insulator provided in contact with the channel region. a gate electrode provided in contact with the gate insulating film and covering the channel region; an inter-element isolation insulating film provided on the substrate other than the channel region and the source/drain diffusion layer region; In an insulated gate field effect semiconductor device comprising a channel-cut impurity region of the same conductivity type as the substrate and a wiring electrically connecting the gate electrodes under the isolation insulating film, the inter-element isolation insulating film and the channel An insulated gate field effect semiconductor device characterized in that the ends of the cut impurity regions coincide with each other, and further, the substrate surface under the element isolation insulating film and the substrate surface of the channel region coincide and are flat.
(2)基板の所定の位置にチャンネルドーピング不純物
を導入する工程と、基板上にゲート絶縁膜を形成する工
程と、該ゲート絶縁膜上にゲート電極材料パターンをパ
ターンニングする工程と、該ゲート電極材料をマスクと
してチャンネルカット不純物を導入する工程と、前記ゲ
ート電極材料パターン間を埋め込むように絶縁膜を形成
する工程と、前記ゲート電極材料上部表面を露出させる
工程と、前記ゲート電極材料と基板上の絶縁膜上に配線
材料を形成する工程と、該配線材料と前記ゲート電極材
料をエッチングしパターンニングする工程と、基板と反
対導電型の不純物を基板に導入する工程とを含むことを
特徴とする絶縁ゲート型電界効果半導体装置の製造方法
(2) A step of introducing channel doping impurities into a predetermined position of the substrate, a step of forming a gate insulating film on the substrate, a step of patterning a gate electrode material pattern on the gate insulating film, and a step of forming a gate electrode material pattern on the gate insulating film. a step of introducing a channel cut impurity using the material as a mask; a step of forming an insulating film so as to fill in between the gate electrode material patterns; a step of exposing the upper surface of the gate electrode material; a step of forming a wiring material on the insulating film; a step of etching and patterning the wiring material and the gate electrode material; and a step of introducing an impurity of a conductivity type opposite to that of the substrate into the substrate. A method for manufacturing an insulated gate field effect semiconductor device.
JP24660684A 1984-11-21 1984-11-21 Insulated gate type field effect semiconductor device and manufacture thereof Pending JPS61125087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24660684A JPS61125087A (en) 1984-11-21 1984-11-21 Insulated gate type field effect semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24660684A JPS61125087A (en) 1984-11-21 1984-11-21 Insulated gate type field effect semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61125087A true JPS61125087A (en) 1986-06-12

Family

ID=17150906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24660684A Pending JPS61125087A (en) 1984-11-21 1984-11-21 Insulated gate type field effect semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61125087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152430A (en) * 1991-11-26 1993-06-18 Nec Corp Element isolation structure of simos semiconductor device and its manufacture
FR2735906A1 (en) * 1995-06-21 1996-12-27 Sgs Thomson Microelectronics MOS transistor fabrication method for high performance semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152430A (en) * 1991-11-26 1993-06-18 Nec Corp Element isolation structure of simos semiconductor device and its manufacture
FR2735906A1 (en) * 1995-06-21 1996-12-27 Sgs Thomson Microelectronics MOS transistor fabrication method for high performance semiconductor device

Similar Documents

Publication Publication Date Title
US4656076A (en) Self-aligned recessed gate process
US4830975A (en) Method of manufacture a primos device
US4521448A (en) Method of manufacturing semiconductor device
US5879994A (en) Self-aligned method of fabricating terrace gate DMOS transistor
US5407837A (en) Method of making a thin film transistor
JPS6150394B2 (en)
US5198378A (en) Process of fabricating elevated source/drain transistor
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
US5300797A (en) Coplanar twin-well integrated circuit structure
US5213991A (en) Method of manufacturing semiconductor device
JPH0521450A (en) Semiconductor device and its manufacture
US5213990A (en) Method for forming a stacked semiconductor structure
CA1136290A (en) Method of making fet
EP0600149B1 (en) Method of making a self aligned static induction transistor
US5396099A (en) MOS type semiconductor device having a high ON current/OFF current ratio
US4642259A (en) Source-side self-aligned gate process
US4633290A (en) Monolithic CMOS integrated circuit structure with isolation grooves
US5757047A (en) Semiconductor device and method of manufacturing the same
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPS61125087A (en) Insulated gate type field effect semiconductor device and manufacture thereof
JPH0669064B2 (en) Element isolation method for semiconductor device
JPS63155768A (en) Manufacture of semiconductor device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPH07297275A (en) Manufacture of semiconductor device
US4409727A (en) Methods of making narrow channel field effect transistors