JPS601883A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS601883A
JPS601883A JP11036883A JP11036883A JPS601883A JP S601883 A JPS601883 A JP S601883A JP 11036883 A JP11036883 A JP 11036883A JP 11036883 A JP11036883 A JP 11036883A JP S601883 A JPS601883 A JP S601883A
Authority
JP
Japan
Prior art keywords
layer
substrate
semiconductor
cladding
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11036883A
Other languages
Japanese (ja)
Inventor
Masasue Okajima
岡島 正季
Yuhei Muto
武藤 雄平
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11036883A priority Critical patent/JPS601883A/en
Publication of JPS601883A publication Critical patent/JPS601883A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/3203Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations

Abstract

PURPOSE:To obtain a self-matching type semiconductor laser having excellent lateral mode control with a vapor phase growing method (MOCVD method) using organic metal by inclining the planar azimuth of the surface of a ground substrate having a striped groove from (100) surface. CONSTITUTION:A current narrowing layer 2 is epitaxially grown by an MO CVD method on a substrate 1 having the planar azimuth inclined at 2 degree in (011) direction from (100) surface, and selectively etched to form a striped groove 2a in (011) direction. A clad layer 3, an active layer 4, a clad layer 5 and a contacting layer 6 are sequentially grown by the MOCVD method. Stepwise difference is formed on the top of the groove 2a in the layer 4, and the thickness is largely increased. Accordingly, light enclosing effect increases, stable lateral mode control can be performed. The lateral mode control structure and the current narrowing structure can be performed in one step simultaneously, thereby largely simplifying the manufacturing steps.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体レーザ装置及びその製造方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in a semiconductor laser device and its manufacturing method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、光通信用光源や光ディスク用光淵として、各錘の
半導体レーザが床机に利用されるようになっている。こ
うした応用のための半導体レーザには、横モードの制御
と同時に、低価格に生産できる量産性の優れた構造が必
要とされる。横モードの制御及び量産性に優れた構造の
半稈゛L体レーザとしては、所謂自己整合型の半導体レ
ーザが知られている。このレーザは、横モード制御と発
光領域への電流狭窄とが1つの工程で同時に実現できる
ので、製造工程数が少なく、その低価格化をはかる上で
極めて有利である。
In recent years, individual semiconductor lasers have come to be used in floor desks as light sources for optical communications and as optical sources for optical discs. Semiconductor lasers for such applications require control of the transverse mode as well as a structure that can be produced at low cost and has excellent mass productivity. A so-called self-aligned semiconductor laser is known as a half-branched L-body laser having a structure excellent in transverse mode control and mass productivity. Since this laser can simultaneously achieve transverse mode control and current confinement to the light emitting region in one process, it has a small number of manufacturing processes and is extremely advantageous in terms of reducing the cost.

一方、イ1↑幾金Fjif−用いた気相成長法(Met
al−Organic Chemical Vapor
 Deposition法、以下MOCVD法と略記す
る)は、大きな面積にわたって均質な薄膜結晶の成長が
可能であるため、量産性に優れた半導体レーザの74造
方法として注目されている。しかし、MOCVI)法は
従来の液相成長法(T、1quld Phase Ep
ltaxy法、以下LPFi法と略記する)とは結晶成
長機構が異なるため、LPE法で作られてきた半導体レ
ーザの横モード制御構造がMOCVD法では実現困難な
場合がある。
On the other hand, I1↑Met
al-Organic Chemical Vapor
The deposition method (hereinafter abbreviated as MOCVD method) is attracting attention as a manufacturing method for semiconductor lasers with excellent mass productivity because it allows the growth of a homogeneous thin film crystal over a large area. However, the MOCVI) method is different from the conventional liquid phase epitaxy (T, 1qld Phase Ep
Since the crystal growth mechanism is different from that of the ltaxy method (hereinafter abbreviated as LPFi method), it may be difficult to realize the transverse mode control structure of a semiconductor laser that has been made using the LPE method using the MOCVD method.

このため、MOCvD法の特徴に合った横モード制御構
造を有する半導体レーザの開発が望まれている。
Therefore, it is desired to develop a semiconductor laser having a transverse mode control structure that meets the characteristics of the MOCvD method.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、MOCVD法によって実現の可能な、
量産性に優れた自己整合型の半導体レーザ装置及びその
製造方法を提供することにある。
The object of the present invention is to achieve the following:
An object of the present invention is to provide a self-aligned semiconductor laser device that is excellent in mass production and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ストライプ状の溝を有し、かつこの溝
と垂直方向に(100)而から傾けた面方位を持つ基板
上に、MOCVD法によってダブルへテロ接合構造を形
成することにある。
The gist of the present invention is to form a double heterojunction structure by MOCVD on a substrate having stripe-shaped grooves and having a plane orientation perpendicular to the grooves and tilted from (100). .

溝の上への結晶成長として本発明者等が各種実験′fr
、重ねた結果、下地基板表面の面方位を(100)而か
ら傾けることによって、溝上部に形成される結晶層、例
えば活性層に段差が生じ、かつその部分に安定な横モー
ド制御に必要な屈折率差を生じるに十分な膜厚増加が生
じるのが判った。また、木発明者等のさらなる鋭意研究
によれば、上記活性層に生じる段差及び膜厚増加現象は
、基板表面の面方位の(100)面からの傾きや結晶成
長の条件等によって異なることが判明した。したがって
、上記手法を用い基板表面の面方位及び結晶成長条f(
等を適切に選択すれば、LIjE法は勿論のことMOC
VD法によっても前述した自己整合型の半導体レーザの
実現が可能になる。
The present inventors have conducted various experiments for crystal growth on the grooves.
As a result of overlapping, by tilting the plane orientation of the surface of the base substrate from (100), a step is created in the crystal layer formed on the top of the groove, for example, the active layer, and in that part there is a layer that is necessary for stable transverse mode control. It was found that a sufficient increase in film thickness occurred to cause a refractive index difference. Further, according to further intensive research by the inventors, the above-mentioned step difference and film thickness increase phenomenon occurring in the active layer vary depending on the inclination of the plane orientation of the substrate surface from the (100) plane, the crystal growth conditions, etc. found. Therefore, using the above method, the plane orientation of the substrate surface and the crystal growth line f(
If etc. are selected appropriately, not only the LIjE method but also the MOC
The VD method also makes it possible to realize the self-aligned semiconductor laser described above.

なお、基板表面の面方位の(ioo)而からの傾きは、
結晶成長条件にもよるが2〜5〔度〕の範囲が段差や膜
厚等の観1点から最も良好であったが、上記傾きが0.
5〔展〕以上であれば段差や膜厚等に対し十分な良好な
結果が得られた。
Note that the inclination of the plane orientation of the substrate surface from (ioo) is
Although it depends on the crystal growth conditions, the range of 2 to 5 [degrees] was the best from the viewpoint of steps, film thickness, etc., but the above slope was 0.
When the thickness was 5 [expansion] or more, sufficiently good results were obtained with respect to steps, film thickness, etc.

本発明はこのような点に着目し、閃亜鉛鉱型結晶構造を
有する化合物半導体基板と、この基板上に形成されたス
トライプ状の溝、或いは基板上に設けられ該溝が形成さ
れた電流狭窄層と、活性層をクラッド層で挾んでなシ上
記基板及び電流狭窄層上に成長形成されたベテロ接合構
造部とを具備した半導体レーザ装置において、上記基板
の表面の面方位を前記溝のストライプ方向を軸心としく
100)面よ、j70.5度以上傾けるようにしたもの
である。
The present invention focuses on these points, and provides a compound semiconductor substrate having a zincblende crystal structure, a striped groove formed on this substrate, or a current confinement formed on the substrate in which the groove is formed. In the semiconductor laser device, the surface orientation of the surface of the substrate is set to the stripe of the groove. The plane is tilted at an angle of 70.5 degrees or more from the 100) plane with the direction as the axis.

また本発明は上記構造の半導体レーデ1製造するに際し
、閃亜鉛鉱型結晶構造を有しその主面が(100)[1
iiより0.5度以上傾けられた化合物半導体基板上に
基板結晶の(100)方向と直交する方向にストライプ
状の溝を形成するか、或いは基板上に電流狭窄層を成長
形成したのちこの電流狭窄層を基板に至る深さまで選択
エツチングして上記溝を形成し、次いで全+?iiに少
なくとも第1クラッド層、活性層及び第2クラ、ド層を
順次成長形成するようにした方法である・ 〔発明の効果〕 本発明によれば、貴所に適したMOCVD法を用いても
横モード制御に優れた自己整合型の半導体レーザを容易
に作製すること75Zできる。このに極めて有効である
。また、ストライプ状の溝?:電流狭窄層に形成してい
るので、横モード制御宿造と電流狭窄構造と葡1工程で
同時に実現でき、製造工程が大幅に簡略化され、生産性
の向上をはかり得る。この点からも戴産化及びローコス
ト化に有効である。さらに、MOCvD法を用いて各種
結晶成長層を形成できるので、均質な簿膜結晶の成長が
可能となり、半導体レーデの信頼性向上をはかシ得る。
Further, the present invention provides a semiconductor radar 1 having the above structure, which has a zinc blende crystal structure and whose main surface is (100) [1
Form a stripe-shaped groove in a direction perpendicular to the (100) direction of the substrate crystal on a compound semiconductor substrate tilted by 0.5 degrees or more from ii, or grow a current confinement layer on the substrate and then The constriction layer is selectively etched to a depth down to the substrate to form the grooves, and then all +? In this method, at least the first cladding layer, the active layer, and the second cladding layer and the second cladding layer are sequentially grown in step ii. It is also possible to easily fabricate a self-aligned semiconductor laser with excellent transverse mode control. It is extremely effective for this purpose. Also, striped grooves? : Since it is formed in the current confinement layer, the transverse mode control structure and the current confinement structure can be realized simultaneously in one process, which greatly simplifies the manufacturing process and improves productivity. From this point of view as well, it is effective for production and cost reduction. Furthermore, since various crystal growth layers can be formed using the MOCvD method, it is possible to grow homogeneous film crystals, thereby improving the reliability of semiconductor radars.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例に係わる半導体レーザの概略
構造を示す斜視図、第2図は上記レーザの製造工程を示
す斜視図である。
FIG. 1 is a perspective view showing a schematic structure of a semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a manufacturing process of the laser.

まず、第2図(−)に示す如<(100)面より(01
1)方向に2度傾いた面方位を有するp −GaAs 
′4@、1上に、MOCVD法によりn−GaAs層(
電流狭窄層)、2ft、1 (μm〕程度の厚さにエピ
タキシャル成長する。この結晶成長には、必ずしもMO
CVD法金用いる必要はないが、大面積にわたシ厚さの
均一性の良い薄膜結晶が得られるMOCVD法が有利で
ある。次いで、第2図Φ)に示す如くフォトレノスト(
図示せず)をマスクとして電流狭窄層2を選択エツチン
グし、<011>方向に基板1に達するストライプ状の
溝2at−形成する。このエツチングは、例えばCH3
0H1I(3PO4,H20□(体積比3:1:1)%
のエツチング液を用いて行なうことができる。
First, from the <(100) plane as shown in Figure 2 (-), (01
1) p-GaAs with a plane orientation tilted 2 degrees in the direction
'4@, 1, an n-GaAs layer (
(current confinement layer) is epitaxially grown to a thickness of about 2 ft, 1 (μm).This crystal growth does not necessarily require MO
Although it is not necessary to use the CVD method, the MOCVD method is advantageous because it can provide a thin film crystal with good uniformity in thickness over a large area. Next, photorenost (
The current confinement layer 2 is selectively etched using a mask (not shown) to form striped grooves 2at- reaching the substrate 1 in the <011> direction. This etching can be performed, for example, with CH3
0H1I (3PO4, H20□ (volume ratio 3:1:1)%
This can be done using an etching solution.

次に、上記基板上にMOCVD法によって、p−”o、
55AtO,45”層(クラッド層)3、アンドープ0
110.135AZ、 15A11層(活性層)4、n
 −Ga。、□Aへ45”1?1i(クラッド層)5、
及びn −GaAs層(コンタク)M)6’t、順次エ
ピタキシャル成長させる。この場合、第2図(b)の状
態の基板は十分に脱脂況浄を行なった後、HCI等によ
って表面の自然酸化層を除去し、直ちに反応炉に入れる
。原料には、トリメチルガリウム((CH,)3GIL
 )、トリメチルアルミニウム(’ (CHρ3At)
、アルシンガス(AsH3)を用い、p型ドー・平/ト
としてノエチルジンク((C2H5)2zn)、n型ド
ーノやントとしてセレン化水素ガス(H2Se ) ′
f:用いた。成長温度750〔℃〕、原料ガス中のIl
l族元素(Ga。
Next, p-"o,
55AtO, 45” layer (cladding layer) 3, undoped 0
110.135AZ, 15A11 layer (active layer) 4, n
-Ga. , □A to 45"1?1i (cladding layer) 5,
and n-GaAs layer (contact) M) 6't are sequentially epitaxially grown. In this case, the substrate in the state shown in FIG. 2(b) is thoroughly degreased and cleaned, the natural oxidation layer on the surface is removed by HCI, etc., and the substrate is immediately placed in a reactor. The raw material is trimethylgallium ((CH,)3GIL
), trimethylaluminum (' (CHρ3At)
, using arsine gas (AsH3), noethylzinc ((C2H5)2zn) as a p-type compound, and hydrogen selenide gas (H2Se) as an n-type compound.
f: Used. Growth temperature 750 [℃], Il in source gas
Group I elements (Ga.

ht )とV族元素のモル比が、[:AI!]/([G
a ]+[:A/り)=20の条件で結晶成長を行lλ
ったところ、基板に設けた心の幅を3(tsn ] 、
(@さを1〔μm′3.クラブゝ層3の厚さを2 (t
an :]としたとき、活性層4には第1図に示したよ
うな段差が生じた6さらに、コンタクト層6上に、オー
ミック電極としてAu −Ge / A、u 7乞・、
基板1の1面にはオーミック電極としてAn −Zn 
/ Au 8 ?]l−形成すれば、第1図に示した構
造の半導体レーザ装置が得られる。
ht ) and group V element is [:AI! ]/([G
Crystal growth was performed under the conditions of a ]+[:A/ri)=20 lλ
As a result, the width of the core provided on the board was 3 (tsn),
(@The thickness is 1 [μm'3. The thickness of the club layer 3 is 2 (t
an :], the active layer 4 has a step as shown in FIG.
On one surface of the substrate 1, an ohmic electrode of An-Zn is provided.
/ Au 8? ]l-, a semiconductor laser device having the structure shown in FIG. 1 can be obtained.

かくして製造された半導体レーザは、第1図からも判る
ように溝2aの上部で段差を有し、かつその膜厚が他の
部分に比して大幅に厚くなっている。このため、光の閉
じ込み効果が犬となり、安定した横モード制御全行なう
?二とができる。また、各結晶層2.〜,7をMO(:
VD法で形成しているので、結晶層2.〜,7の膜質の
均一化をはかυ得、これによシ半導体L・−ザの信頼性
向上をはかシ得る。さらに、電流狭窄層2に形成したス
トライゾ状の溝2aにょシミ流狭孕4−>X造と柘モー
ドiii!I御宿造とを1工程で同時に実現することが
できる。したかっ−c1半導体レーザの星産化及びロー
コスト化に極めて有効である。
As can be seen from FIG. 1, the semiconductor laser thus manufactured has a step at the upper part of the groove 2a, and the film thickness thereof is significantly thicker than in other parts. For this reason, the light confinement effect becomes a dog, and stable transverse mode control is performed. I can do two things. In addition, each crystal layer 2. ~,7 is MO(:
Since it is formed by the VD method, the crystal layer 2. . Furthermore, the strizoidal groove 2a formed in the current confinement layer 2 has a narrow flow 4->X structure and Tsuge mode iii! I Onjuku-zukuri and Onjuku-zukuri can be realized simultaneously in one process. This method is extremely effective in increasing production and lowering costs of Shikka-c1 semiconductor lasers.

なお、本発明は上述した契施例に限定されるものでOi
ない。例えば、1iiJ記ダブルへテロ接合構造の他の
例として第3図に示す如く、活性層4とクラッド層5と
の間にn −Gao、65Ato、35AR層(ブ0ガ
イド層)11を設けてもよい。この場合レーザ光は光ガ
イド層1ノにILりがってガイドされるため、共振器端
面におりるモードサイズが大きくなる。これにより、共
振器端面における光恒度と光吸収が小さくなシ、端間破
壊が起りにくく、大きな光出力が得られる。しかも、活
性層と垂面方向のビーム放射角を小さくできるため、等
方面なビームが得やすい等の利点がある。
Note that the present invention is limited to the above-mentioned contract example.
do not have. For example, as another example of the double heterojunction structure described in 1iiJ, as shown in FIG. Good too. In this case, since the laser light is guided along the IL of the optical guide layer 1, the mode size that falls on the resonator end face becomes large. As a result, optical constancy and optical absorption at the resonator end faces are small, end-to-end destruction is less likely to occur, and a large optical output can be obtained. Moreover, since the beam radiation angle in the direction perpendicular to the active layer can be made small, there is an advantage that it is easy to obtain an isotropic beam.

また、実hi例ではGaAlAs系の旧料金用いたが、
この代りに、IHGaA*P系、AZGAAJP系或い
はInA7GaP系等を用いても良く、材料は特に限定
六九ない。さらに、各結晶層の形成は必ずしもMOCV
D法に限るものではなく、通帛のi、Pg汐4−用いる
ことも可能である。また、:友板岩!IIiの(100
)而からの傾き角は2 +Hh4 vc限るものでd、
なく、0.5度以上(好ましくit2〜5度)であれば
よい。また、電流1狭窄層ケ用いることなくノル板表面
にヌトライグ状の溝全形成し、このりミ板上にペテD接
合rtg造部を設けることもFii能である。その他、
本発明の要旨を逸脱しない範囲で、種々変形して実施す
ることができる。
In addition, in the actual example, we used the old rate of GaAlAs,
Instead, IHGaA*P, AZGAAJP, InA7GaP, or the like may be used, and the material is not particularly limited. Furthermore, the formation of each crystal layer is not necessarily MOCV
The method is not limited to the D method, and it is also possible to use the conventional i, Pg 4- method. Also: Tomoitaiwa! IIi (100
) is limited to 2 + Hh4 vc, and d,
It is sufficient that the temperature is not less than 0.5 degrees (preferably 2 to 5 degrees). It is also possible to completely form a Nutlig-like groove on the surface of the Nord plate without using one current confinement layer, and to provide a Pete D joint rtg structure on the glued plate. others,
Various modifications can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる半導体レーザの概略
構造を示す斜視図、第2図は上記1/−デのJM造工程
を示す斜視図、第3図は変形例を示す斜視図、である。 1− p −GnAs基板、2− n −G汽へF市、
流狭2ν層、J =・p −”0.55A40.45A
9クラッド層、4・・・アンドーゾGao85Ato1
5A!+活性層、5 ”・n −Glin、5へL n
 4sAl’1クラッド層、6・・・n GaAsコン
タクト層、7・・・Au −Go / Auオーミック
’a4私B −4u−Zn /Auオーミックtit極
、1ノ・・・n −CJ & 0.65 AZo3s 
A !!光ガイド層。 出願人代理人 弁理士 鈴 江 武彦 弔21”、1 第3図
FIG. 1 is a perspective view showing a schematic structure of a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a perspective view showing the JM manufacturing process of the above 1/-de, and FIG. 3 is a perspective view showing a modified example. , is. 1- p-GnAs substrate, 2- F city to n-G steam,
Narrow 2ν layer, J =・p −”0.55A40.45A
9 cladding layers, 4...Andoso Gao85Ato1
5A! +Active layer, 5”・n −Glin, L n to 5
4sAl'1 cladding layer, 6...n GaAs contact layer, 7...Au-Go/Au ohmic'a4IB-4u-Zn/Au ohmic tit pole, 1no...n-CJ &0. 65 AZo3s
A! ! light guide layer. Applicant's agent Patent attorney Takehiko Suzue 21", 1 Figure 3

Claims (8)

【特許請求の範囲】[Claims] (1) 表面にストライプ状のY14が形成された閃亜
鉛鉱型結晶構造を有する化合物半導体基板と、活性層を
クラッド層で挾んでなシ上記基板上に成長形成されたヘ
テロ接合構造部とを具備し、前記基板の表面の面方位は
前記溝のストライプ方向を軸心としくtoe)面よ90
.5度以上傾けられたものであることを特徴とする半導
体レーザ装置。
(1) A compound semiconductor substrate having a zincblende crystal structure with striped Y14 formed on the surface and a heterojunction structure grown on the substrate with the active layer sandwiched between cladding layers. The plane orientation of the surface of the substrate is 90 degrees from the toe plane with the stripe direction of the groove as the axis.
.. A semiconductor laser device characterized in that it is tilted by 5 degrees or more.
(2) 閃亜鉛鉱型結晶構造を有する化合物半導体基板
と、この基板上に設けられかつストライプ状の溝が形成
された低流狭窄1曽と、活性層をクラ、ド層で挾んでな
シ上記基板及び電流狭窄層上に成長形成されたヘテロ接
合構造部とを具備し、前記基板の表面の面方位は前記溝
のストライプ方向を軸心としく100)面よ90.5度
以上傾けられたものであることを特徴とする半導体レー
ザ装置。
(2) A compound semiconductor substrate having a zincblende crystal structure, a low-flow constriction layer provided on the substrate and having striped grooves formed therein, and an active layer sandwiched between cladding and cladding layers. the substrate and a heterojunction structure grown on the current confinement layer; A semiconductor laser device characterized in that:
(3) 前記電流狭窄層は、前記基板と逆導電型の半導
体層或いは品抵抗の半導体層からなるものであること′
t−特徴とする特許請求の範囲第2項記載の半導体レー
ザ装置。
(3) The current confinement layer is composed of a semiconductor layer having a conductivity type opposite to that of the substrate or a semiconductor layer having a high resistance.
The semiconductor laser device according to claim 2, characterized in that: t-characteristic.
(4) 閃亜鉛鉱型結晶構造を有しその主面が(100
)面よ!00.5度以上傾けられた化合物半導体基板上
に基板結晶の(100)方向と直交する方向にストライ
プ状の溝を形成する工程と、次いで全面に少なくとも第
1クラッド層、活性層及び第2クラッド層を順次成長形
成する工程とを具備したことを特徴とする半導体レーザ
装置の製造方法。
(4) It has a zincblende crystal structure and its main surface is (100
) Face! A process of forming stripe-shaped grooves in a direction perpendicular to the (100) direction of the substrate crystal on a compound semiconductor substrate tilted by 00.5 degrees or more, and then forming at least a first cladding layer, an active layer and a second cladding layer on the entire surface. 1. A method of manufacturing a semiconductor laser device, comprising a step of sequentially growing and forming layers.
(5)前記活性層、第1及び第2のクラ、ド層を成長形
+jMする方法として、有俄金属気相成長法を用いたこ
とを特徴とする特許請求の範囲第4項記載の半導体レー
ザ装置の製造方法。
(5) The semiconductor according to claim 4, characterized in that a metal vapor phase epitaxy method is used as a method for growing the active layer, first and second cladding and cladding layers. A method for manufacturing a laser device.
(6) 閃亜鉛鉱型結晶構造を有しその主面が(100
)面よシ0.5度以上傾けられた化合物半導体基板上に
電流狭窄rfI?:成長形成する工程と、上記電流狭窄
層を前記基板に至る深さまで選択エツチングし基板結晶
の(100)方向と直交する方向にストライプ状の溝を
形成する工程と、次いで全面に少なくとも第1クラッド
層、活性層及び第2クラッド層を順次成長形成する工程
とを具備したことを特徴とする半導体レーデ装置の製造
方法。
(6) It has a zincblende crystal structure and its main surface is (100
) Current confinement rfI on a compound semiconductor substrate tilted more than 0.5 degrees from the plane? : A step of growing and forming the current confinement layer, a step of selectively etching the current confinement layer to a depth reaching the substrate to form a stripe-shaped groove in a direction perpendicular to the (100) direction of the substrate crystal, and then etching at least a first cladding layer over the entire surface. 1. A method for manufacturing a semiconductor radar device, comprising a step of sequentially growing a layer, an active layer, and a second cladding layer.
(7) 前記電流狭窄層として、前記基板と逆導電型の
半導体層或いは高抵抗の半導体層を用いたことを特徴と
する特許請求の範囲第6項記載の半導体レーザ装置の製
造方法。
(7) The method for manufacturing a semiconductor laser device according to claim 6, wherein a semiconductor layer having a conductivity type opposite to that of the substrate or a high resistance semiconductor layer is used as the current confinement layer.
(8) 前記電流狭窄層、活性層、第1及び第2のクラ
ッド層を成長形成する方法として、有機金属気相成長法
を用いたことを特徴とする特許請求の範囲第6項記載の
半導体レーザ装置の製造方法。
(8) The semiconductor according to claim 6, characterized in that the current confinement layer, the active layer, and the first and second cladding layers are grown using metal organic vapor phase epitaxy. A method for manufacturing a laser device.
JP11036883A 1983-06-20 1983-06-20 Semiconductor laser device and manufacture thereof Pending JPS601883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11036883A JPS601883A (en) 1983-06-20 1983-06-20 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11036883A JPS601883A (en) 1983-06-20 1983-06-20 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS601883A true JPS601883A (en) 1985-01-08

Family

ID=14534018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11036883A Pending JPS601883A (en) 1983-06-20 1983-06-20 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS601883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328949A (en) * 2006-08-04 2006-12-07 Ykk Ap株式会社 Sheathing board and window equipped with it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234685A (en) * 1975-09-10 1977-03-16 Sumitomo Electric Ind Ltd Semiconductor luminous element and its manufacturing process
JPS5316590A (en) * 1976-07-29 1978-02-15 Nec Corp Multilayer thin film optical guide of rib guide stripe type semiconductor and its production
JPS57198679A (en) * 1981-05-30 1982-12-06 Fujitsu Ltd Optical semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234685A (en) * 1975-09-10 1977-03-16 Sumitomo Electric Ind Ltd Semiconductor luminous element and its manufacturing process
JPS5316590A (en) * 1976-07-29 1978-02-15 Nec Corp Multilayer thin film optical guide of rib guide stripe type semiconductor and its production
JPS57198679A (en) * 1981-05-30 1982-12-06 Fujitsu Ltd Optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328949A (en) * 2006-08-04 2006-12-07 Ykk Ap株式会社 Sheathing board and window equipped with it

Similar Documents

Publication Publication Date Title
JPS6318877B2 (en)
JPH0677587A (en) Semiconductor laser
JPH021386B2 (en)
JPS601883A (en) Semiconductor laser device and manufacture thereof
JPS61168981A (en) Semiconductor laser device
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPS641952B2 (en)
US4360920A (en) Terraced substrate semiconductor laser
US4358850A (en) Terraced substrate semiconductor laser
JPS603178A (en) Semiconductor laser device
JPS60167488A (en) Semiconductor laser device
JPS6325517B2 (en)
JPH0695589B2 (en) Method for manufacturing semiconductor laser device
JPH0437597B2 (en)
JPS61220392A (en) Semiconductor light-emitting element
JPH0558594B2 (en)
JPS61253882A (en) Semiconductor laser device
JPH0373584A (en) Semiconductor laser device
JP3422933B2 (en) Method for manufacturing semiconductor device
JPS6252984A (en) Self-aligning current constriction type semiconductor light emitting element
JPS60147188A (en) Manufacture of semiconductor laser element
KR940011276B1 (en) Laser diode and manufacturing method the same
JPS60235485A (en) Manufacture of semiconductor laser device
JPH05299760A (en) Manufacture of semiconductor light-emitting device
JPS6191990A (en) Semiconductor laser and manufacture thereof