JPS60167488A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS60167488A
JPS60167488A JP2169084A JP2169084A JPS60167488A JP S60167488 A JPS60167488 A JP S60167488A JP 2169084 A JP2169084 A JP 2169084A JP 2169084 A JP2169084 A JP 2169084A JP S60167488 A JPS60167488 A JP S60167488A
Authority
JP
Japan
Prior art keywords
mesa
layer
gaas
conductivity type
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2169084A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2169084A priority Critical patent/JPS60167488A/en
Publication of JPS60167488A publication Critical patent/JPS60167488A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the titled device of high-output and high-reliability oscillating on stable basic lateral modes also during high output action by a method wherein a semiconductor layer of the second conductivity type is provided on a semiconductor substrate of the first conductivity type having a mesa stripe, and thereafter two mesa stripes are formed. CONSTITUTION:A mesa stripe 10-2 is formed on the P-GaAs substrate 1-1, and N-GaAs 2 is grown so that the surface may become flat. Next, the two mesa stripes 10-3 are formed in such a manner that a groove 7 is present above the mesa stripe 10-2 on the substrate 1-1. Then, a P-GaAlAs clad layer 3, a GaAlAs active layer 4, an N-GaAlAs clad layer 5, and an N-GaAs cap layer 6 are successively grown. In this structure, inner current stricture is realized by a current stricture layer 2, and current flows in concentration to the light emitting region. Besides, a double hetero structure is formed on the two mesa stripes 10-3; therefore, an active layer 4 excellent in crystallinity and composition uniformity can be grown with good reproducibility.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高出力且つ高信頼の半導体レーザ装(1) 置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention provides a high output and highly reliable semiconductor laser device (1). Regarding the location.

〔発明の背景〕[Background of the invention]

従来の高出力半導体レーザの問題点を第1図及び第2図
を用いて説明する。第1図は内部電流狭窄型レーザの一
例である。図中、■−1はp−G a A s基板、2
はn −G a A s電流狭窄層、3はp −GaA
 n Asクラッド層、4はGaA Q As活性層、
5はn −GaA 11 Asクラッド層、6はn −
G a A sキャップ層、7は溝、8はn電極、9は
n電極を示している。この構造では、電流狭窄層2によ
り、電流は発光領域に集中して流れるので利得分布が空
間的に不均一になりにくく、基本横モードが高出力動作
でもある程度維持できる。しかし、さらに高出力化を実
現するためには、活性層4を0.04〜σ、06μmと
薄くしなければならない。第1図のような溝7を有する
基板1−1及び電流狭窄層2の上に液層成長流により、
そのような薄い活性層4を結晶性や再現性良く成長する
ことは困難である。
Problems with conventional high-power semiconductor lasers will be explained with reference to FIGS. 1 and 2. FIG. 1 shows an example of an internal current confinement type laser. In the figure, ■-1 is a p-GaAs substrate, 2
is n-GaAs current confinement layer, 3 is p-GaA
n As cladding layer, 4 is GaA Q As active layer,
5 is n-GaA 11 As cladding layer, 6 is n-
In the GaAs cap layer, 7 is a groove, 8 is an n-electrode, and 9 is an n-electrode. In this structure, the current confinement layer 2 causes the current to flow in a concentrated manner in the light emitting region, so that the gain distribution is less likely to become spatially non-uniform, and the fundamental transverse mode can be maintained to some extent even in high output operation. However, in order to achieve even higher output, the active layer 4 must be made as thin as 0.04 to σ, 06 μm. A liquid layer growth flow is applied to the substrate 1-1 having the groove 7 as shown in FIG. 1 and the current confinement layer 2.
It is difficult to grow such a thin active layer 4 with good crystallinity and reproducibility.

第2図は、2つのメサストライプ上にダブルへ(2) テロ構造を設けたレーザの例である。この場合、2つの
メサストライプ10−1を有するn −GaAs基板1
−2上へクラッド層5が成長し終った段階でも、2つの
メサストライプ10−1及び溝7上の部分が他の部分よ
り高くなっている。従って、高い所は低い所に比べて成
長速度が遅いという液相成長の特徴により、活性層4の
発光領域の部分の成長時間は長くなる。従って0.04
〜0.06μmという薄層でも成長時間が長いため、結
晶性や組成の均一性が良く、また厚みも制御し易い。し
かし、電流狭窄は、拡散領域11を設けることによって
行っており、第1図の内部電流狭窄の場合に比べ、電流
は空間的に広がり易く、利得分布は光の強い中央部分で
凹み、横モードが変形し易いという短点がある。
FIG. 2 is an example of a laser with a double (2) terror structure on two mesa stripes. In this case, an n-GaAs substrate 1 having two mesa stripes 10-1
Even at the stage where the cladding layer 5 has finished growing on -2, the parts above the two mesa stripes 10-1 and the groove 7 are higher than the other parts. Therefore, due to the characteristic of liquid phase growth that the growth rate is slower in high places than in low places, the growth time of the light emitting region of the active layer 4 becomes longer. Therefore 0.04
Since the growth time is long even for a thin layer of ~0.06 μm, the crystallinity and composition are uniform, and the thickness can be easily controlled. However, current confinement is achieved by providing a diffusion region 11, and compared to the case of internal current confinement shown in FIG. The disadvantage is that it is easily deformed.

〔発明の目的〕[Purpose of the invention]

本発明は高出力動作時にも安定な基本横モードで発振す
る高出力高信頼半導体レーザ装置を提供することにある
An object of the present invention is to provide a high-output, highly reliable semiconductor laser device that oscillates in a stable fundamental transverse mode even during high-output operation.

〔発明の概要〕[Summary of the invention]

(3) 上述したように、従来の内部電流狭窄型では活性層の薄
層化が難しく、2つのメサストライプ上にダブルへテロ
を形成する構造では電流狭窄の点で問題があった。従っ
て、2つのメサストライプ上にダブルへテロ構造が形成
され、且つ内部電流狭窄ができるような素子構造を考案
する必要があった。本発明は、そのようなレーザ構造に
関するものである。以下、第3図を用いて本発明の詳細
な説明する。第3図は、本発明の一例であるGaAs−
GaAflAs系半導体レーザの断面構造を示したもの
である。図中、10−2.10−3はメサストライプ部
分を示している。この構造では、電流狭窄層2により内
部電流狭窄が実現できており、電流は発光領域に集中的
に流れることになる。従って、ある程度光出力が大きく
ても、発光領域の中央部分の利得分布が凹みにくく、基
本横モードが安定に保たれる。また、2つのメサストラ
イプ10−3の上にダブルへテロ構造を形成するので、
結晶性や組成の均一性にすぐれた活性層を再現性良く成
長させることができる。
(3) As mentioned above, in the conventional internal current confinement type, it is difficult to make the active layer thin, and the structure in which a double hetero is formed on two mesa stripes has a problem in terms of current confinement. Therefore, it was necessary to devise an element structure in which a double heterostructure is formed on two mesa stripes and internal current confinement is possible. The present invention relates to such a laser structure. Hereinafter, the present invention will be explained in detail using FIG. 3. FIG. 3 shows a GaAs-
This figure shows a cross-sectional structure of a GaAflAs-based semiconductor laser. In the figure, 10-2 and 10-3 indicate mesa stripe portions. In this structure, internal current confinement can be realized by the current confinement layer 2, and the current flows intensively to the light emitting region. Therefore, even if the optical output is large to some extent, the gain distribution in the central portion of the light emitting region is not easily depressed, and the fundamental transverse mode is kept stable. In addition, since a double heterostructure is formed on the two mesa stripes 10-3,
An active layer with excellent crystallinity and uniform composition can be grown with good reproducibility.

(4) 以上述べたように、本発明により従来のレーザよりも高
い光出力まで基本横モードが維持される高出力高信頼半
導体レーザが実現できることになる。
(4) As described above, the present invention makes it possible to realize a high-output, highly reliable semiconductor laser in which the fundamental transverse mode is maintained up to a higher optical output than conventional lasers.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第4図は本発明の一実施例であるGaAs −GaA 
j2 As系屈折率導波型半導体レーザの作製方法およ
びその断面図である。まず(a)図に示すように、p−
G a A s基板1−1上に高さ1.7 pm、幅1
0.un程度のメサストライプ10−2をりん酸系のエ
ツチング液を用いて形成する。そして(b)図のように
、液相成長法によりn−GaAs 2 (Te。
FIG. 4 shows GaAs-GaA, which is an embodiment of the present invention.
2 is a method for manufacturing a j2 As-based index-guided semiconductor laser and a cross-sectional view thereof. FIG. First, as shown in figure (a), p-
A height of 1.7 pm and a width of 1 on the GaAs substrate 1-1.
0. A mesa stripe 10-2 having a thickness of approximately 100 nm is formed using a phosphoric acid-based etching solution. As shown in the figure (b), n-GaAs 2 (Te) is grown by liquid phase growth.

4X10CI11’)を表面が平坦になるように成長す
、る。その際、nGaAs2の厚みは、メサストライプ
10−2上で0.8 μm、その他の所で2.5μmで
ある。次に、2つのメサストライプ10−3をりん酸系
のエツチング液を用いて(c)図のように形成する。エ
ツチング深さは1.5μm(5) 程度であり、各メサストライプの幅はともに10μm、
メサストライプ間の距離、つまり溝7の幅は4μmであ
る。この溝の位置は、n −G a A s基板1−1
上のメサストライプ10−2上にあれば良く、ホI・レ
ジスト工程で多少合わせズレを生じたとしても問題はな
い。そして、2回目の液相成長法により、P Gao、
5sAI2o4sA5クラッド層3(Z n + 7 
X 1017cm−”) t Ga686A Qn、H
4As活性層4 (アンドープ) Hn G a o、
s s A Q O,4s A sクラッド層5 (T
 e 、 1.5X 10”CIl+−3) 、n−G
aAsキャップ層6 (T e、 1.5X 10 c
m3)を(d)図のように順次成長する。ここで、Pク
ラッド層3の厚みは、メサストライプ10−3上で0.
3μmであり、溝7上での活性層の厚みは0.05μm
である。最後に(、)図のようにp電極8、n電極9を
それぞれ形成する。本実施例において、発振波長は0,
78μmの可視であり、光出力30mwCWまで基本横
モードが維持され、光出力30mwCW温度70℃にお
いて平均寿命3000時間以上の素子が再現性良く得ら
れた。
4X10CI11') was grown so that the surface was flat. At this time, the thickness of nGaAs2 is 0.8 μm on the mesa stripe 10-2 and 2.5 μm elsewhere. Next, two mesa stripes 10-3 are formed using a phosphoric acid etching solution as shown in FIG. The etching depth is about 1.5 μm (5), and the width of each mesa stripe is 10 μm.
The distance between the mesa stripes, that is, the width of the groove 7 is 4 μm. The position of this groove is n-GaAs substrate 1-1
It is sufficient if it is on the upper mesa stripe 10-2, and there is no problem even if some misalignment occurs in the photo-I/resist process. Then, by the second liquid phase growth method, P Gao,
5sAI2o4sA5 cladding layer 3 (Z n + 7
X 1017cm-”) t Ga686A Qn, H
4As active layer 4 (undoped) HnGao,
s s A Q O, 4s A s cladding layer 5 (T
e, 1.5X 10"CIl+-3), n-G
aAs cap layer 6 (T e, 1.5X 10 c
m3) is grown sequentially as shown in (d). Here, the thickness of the P cladding layer 3 is 0.0 mm on the mesa stripe 10-3.
3 μm, and the thickness of the active layer on groove 7 is 0.05 μm.
It is. Finally, a p-electrode 8 and an n-electrode 9 are respectively formed as shown in the figure. In this example, the oscillation wavelength is 0,
A device with a visible wavelength of 78 μm, a fundamental transverse mode maintained up to an optical output of 30 mw CW, and an average life of 3000 hours or more at an optical output of 30 mw CW and a temperature of 70° C. was obtained with good reproducibility.

(6) 本発明による半導体レーザ装置は、GaApAs系以外
のレーザ材料、例えばInGaAsP系やInGap系
に対しても同様に適用できる。
(6) The semiconductor laser device according to the present invention can be similarly applied to laser materials other than GaApAs, such as InGaAsP and InGap.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、内部電流狭窄により利得分布が空間的
に不均一になりにくく、また2つのメサストライブ上に
ダブルへテロ構造を形成するので、結晶性のすぐれた薄
い活用層を制御性良く設けられる。従って、本発明は高
出力高信頼半導体レーザを再現性良く作製できる。その
結果、光出力30mwCWまで基本横モードの可視半導
体レーザが得られ、平均寿命も光出力30 m w C
W +70℃において3000時間以上であった。従っ
て、本発明が高出力且つ高信頼の半導体レーザ実現に相
当効果があることが明らかとなった。
According to the present invention, the gain distribution is less likely to become spatially non-uniform due to internal current confinement, and since a double heterostructure is formed on two mesa strips, a thin utilization layer with excellent crystallinity is provided with good controllability. It will be done. Therefore, according to the present invention, a high-output, highly reliable semiconductor laser can be manufactured with good reproducibility. As a result, a fundamental transverse mode visible semiconductor laser with an optical output of 30 mw CW was obtained, and the average lifespan was 30 mw CW.
W at +70°C for more than 3000 hours. Therefore, it has become clear that the present invention is considerably effective in realizing a high-output and highly reliable semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の内部電流狭窄型レーザの断面図、第2図
は従来の2つのメサストライプ上にダブルへテロ構造を
形成してなるレーザの断面図、第3図は本発明によるレ
ーザの断面図、第4図は不発(7) 明によるレーザの製造方法及びその断面図である。 1−1− p −Q a A s基板、l−2−n−G
aAs基板、2・・・n −G a A s電流狭窄層
、3・・・p−GaA Q Asクラッド層、4−Ga
A Q As活性層、5− n−GaAQAsクラッド
層、6− n −G a A sキャップ層、7・・・
溝、8・・・n電極、9・・・n電極、10−1゜10
−2.10−3・・・メサストライプ、11・・・(8
Fig. 1 is a cross-sectional view of a conventional internal current confinement type laser, Fig. 2 is a cross-sectional view of a conventional laser in which a double heterostructure is formed on two mesa stripes, and Fig. 3 is a cross-sectional view of a laser according to the present invention. A cross-sectional view and FIG. 4 are a method of manufacturing a laser according to the non-explosion (7) method and a cross-sectional view thereof. 1-1-p-Q a As substrate, l-2-n-G
aAs substrate, 2...n-GaAs current confinement layer, 3...p-GaA QAs cladding layer, 4-Ga
AQAs active layer, 5-n-GaAQAs cladding layer, 6-n-GaAs cap layer, 7...
Groove, 8...n electrode, 9...n electrode, 10-1°10
-2.10-3...Mesa stripe, 11...(8
)

Claims (1)

【特許請求の範囲】[Claims] 第1のメサストライプを有した第1導電型の第1半導体
領域上番丁少なくとも第2導電型の第2半導体層を設け
た後、食刻法により第2及び第3のメサストライプに形
成し、その際該第2及び第3のメサストライブの間の溝
は第1のメサストライブの間にあり且該溝の部分でのみ
上記第1半導体領域が露出するようにし、次の上記第2
及び第3のメサストライプを有する上記第1半導体領域
及び第2半導体層の上に、少なくとも第1導電型の第3
半導体層、該第3半導体層よりも屈折率が大きく且つ禁
制幅の小さな第4半導体層、該第4半導体層よりも屈折
率が小さく月つ禁制帯幅の大きな第2導電型の第5半導
体層を順次設けたことを特徴とする半導体レーザ装置。
After providing at least a second semiconductor layer of a second conductivity type on a first semiconductor region of a first conductivity type having a first mesa stripe, second and third mesa stripes are formed by an etching method. In this case, the groove between the second and third mesa strips is between the first mesa strips, and the first semiconductor region is exposed only in the groove, and the groove between the second and third mesa strips is
and a third mesa stripe of at least the first conductivity type on the first semiconductor region and the second semiconductor layer having the third mesa stripe.
a semiconductor layer, a fourth semiconductor layer having a larger refractive index and a smaller band gap than the third semiconductor layer, a fifth semiconductor of a second conductivity type having a smaller refractive index and a larger band gap than the fourth semiconductor layer; A semiconductor laser device characterized in that layers are sequentially provided.
JP2169084A 1984-02-10 1984-02-10 Semiconductor laser device Pending JPS60167488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169084A JPS60167488A (en) 1984-02-10 1984-02-10 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169084A JPS60167488A (en) 1984-02-10 1984-02-10 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60167488A true JPS60167488A (en) 1985-08-30

Family

ID=12062058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169084A Pending JPS60167488A (en) 1984-02-10 1984-02-10 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60167488A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296490A (en) * 1986-06-17 1987-12-23 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS63181492A (en) * 1987-01-23 1988-07-26 Matsushita Electric Ind Co Ltd Semiconductor laser device
US4926432A (en) * 1988-08-18 1990-05-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US4946802A (en) * 1986-05-31 1990-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device fabricating method
JP2007228557A (en) * 2006-01-30 2007-09-06 Sony Corp Speaker apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946802A (en) * 1986-05-31 1990-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device fabricating method
JPS62296490A (en) * 1986-06-17 1987-12-23 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS63181492A (en) * 1987-01-23 1988-07-26 Matsushita Electric Ind Co Ltd Semiconductor laser device
US4926432A (en) * 1988-08-18 1990-05-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2007228557A (en) * 2006-01-30 2007-09-06 Sony Corp Speaker apparatus

Similar Documents

Publication Publication Date Title
CA1152623A (en) Semiconductor laser device
US4366568A (en) Semiconductor laser
JPH0556036B2 (en)
JPS60167488A (en) Semiconductor laser device
US4365336A (en) Terraced substrate semiconductor laser
US4377865A (en) Semiconductor laser
US4841535A (en) Semiconductor laser device
JPS641952B2 (en)
JP2840833B2 (en) Semiconductor laser manufacturing method
JPH0671121B2 (en) Semiconductor laser device
US4432092A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH0695589B2 (en) Method for manufacturing semiconductor laser device
JPS60261184A (en) Semiconductor laser device and manufacture thereof
JPS6118189A (en) Semiconductor laser array device and manufacture thereof
JPH0831652B2 (en) Semiconductor laser
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JPS6234473Y2 (en)
JPS62279690A (en) Semiconductor laser
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPH01136392A (en) Semiconductor laser device
JPS5856992B2 (en) semiconductor laser equipment
JPH01162397A (en) Semiconductor laser element
JPS5843590A (en) Semiconductor laser
JPH02275689A (en) Semiconductor laser