JPS5843590A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5843590A
JPS5843590A JP14132881A JP14132881A JPS5843590A JP S5843590 A JPS5843590 A JP S5843590A JP 14132881 A JP14132881 A JP 14132881A JP 14132881 A JP14132881 A JP 14132881A JP S5843590 A JPS5843590 A JP S5843590A
Authority
JP
Japan
Prior art keywords
layer
type
substrate
xalxas
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14132881A
Other languages
Japanese (ja)
Inventor
Shunji Otani
大谷 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14132881A priority Critical patent/JPS5843590A/en
Publication of JPS5843590A publication Critical patent/JPS5843590A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser in a double hetero structure available for single lateral mode oscillation, by forming a projection extended to one direction in a stripe form on a semiconductor substrate and providing a deficit part on a part of a layer on the end part of both side surfaces of the projection. CONSTITUTION:The upper surface of an N type GaAs substrate 10 is coated with a photo resist, a stripe is provided thereon by an exposure, and the projection is formed by a chemical etching with this film as a mask. A P type Ga1-xAlxAs current blocking layer 11 is formed on the substrate of the projection side by a liquid epitaxial growing method. In this case, the deficit part 19 serving as a current concentrated region due to an epitaxial growing speed is formed on both sides of a groove. Next, an N type Ga1-xAlxAs confining layer 12, an n- or P type GaAs active layer 13, a P type Ga1-xAlxAs confining layer 14 and P type GaAs ohmic contact layer 15 are successively formed on the upper surface of the current blocking layer 11 by a liquid epitaxial growing method, a P side electrode 16 is formed on the uppermost layer in a stripe form, and an N side electrode 17 on the substrate 10 resulting in the completion. The N type Ga1-xAlxAs confining layer 12 is formed thick to the degree that deficit parts are not generated.

Description

【発明の詳細な説明】 本発明は単−横モード発振が可能なストライプ型二重ヘ
テ・構造の半導体し−ザに−する硫ので□     1
    1    □         1ある。
[Detailed Description of the Invention] The present invention is a semiconductor with a striped double heterostructure capable of single-transverse mode oscillation.
1 □ There is 1.

活性層をそれよシも禁制帯郷が大きく且つ屈折率が小さ
いキャリア及び光の閉込め層で3挾んだ二。
The active layer is surrounded by three carrier and light confinement layers with a large forbidden zone and a small refractive index.

重へテロ構造の半導体レーザは、活性層平面に垂直な方
向に関しては、閉込め層の効果により良好な光及び電流
の閉込めを行うことができる。゛しかし活性層平面に水
平な、方向、即ち横方向1に関しては、屈折率ガイドに
よる導波機竺が形成されておらず、わずかに注入電流分
布に依存した屈j折率の変動によってモードが立ってい
るだけであり、安定なモードはえら、れなり。また、電
流−光出力特性をみるといわゆるキン、りが生じること
が多い。
The heavy heterostructure semiconductor laser can effectively confine light and current in the direction perpendicular to the plane of the active layer due to the effect of the confinement layer. However, in the direction horizontal to the plane of the active layer, that is, in the lateral direction 1, no waveguide is formed by the refractive index guide, and the mode is caused by fluctuations in the refractive index that slightly depend on the injection current distribution. It is only standing, and the stable mode is gills and renari. Furthermore, when looking at the current-light output characteristics, so-called "kinkuri" or "golden" often occurs.

そこで、横モードを単一化するために、活性層あるいは
そα近くに導波路を埋込んだストライプ状の半導体レー
ザが従来より各種提案されている。
Therefore, in order to unify the transverse mode, various striped semiconductor lasers in which a waveguide is buried in or near the active layer have been proposed.

例えばこの種の従来型の半導体し−ザよりもさらに電流
−先出:力1特性゛の直麺性とモードの安定化°を目的
として活性層内の電−分布を均一化を行つ庭内部電流狭
窄゛型め半導体゛レーザが特願昭56二41270とし
て本発明者は出願し粋・る。   、  □この半導体
レーザの構造を第1図に示す。  。
For example, it is possible to uniformize the electric current distribution in the active layer for the purpose of stabilizing the straightness and mode of the current characteristic of this type of semiconductor device. The present inventor has filed an application for an internal current confinement type semiconductor laser as Japanese Patent Application No. 1982-41270. , □The structure of this semiconductor laser is shown in Figure 1. .

MWと垂直な方向にストライプ状に伸9た溝部8がn−
GaAp基板l基板l面に形成−され、その、各側面の
端部でストライプ状の欠損部9が生じるようにp’−G
ap−xArAs電流阻止層1がn−GaAs基板lO
の全面に形成され、その上面にn−Gal−2AIxA
8閉込め層2、n又はし・形のGaAs活性層8 、p
”−Gal;zA1xAs閉込め層4及びp−GaAs
オーミックコンタクト層5が順次形成されているもので
あり、最上層に発振領域に相当する部分上にV側電極6
、基板10上にn側型、極7が設けもれている。
Grooves 8 extending in a stripe shape in the direction perpendicular to MW are n-
A p'-G layer is formed on the GaAp substrate L surface, and a p'-G
The ap-xArAs current blocking layer 1 is formed on an n-GaAs substrate lO
n-Gal-2AIxA is formed on the entire surface of the
8 confinement layer 2, n or square GaAs active layer 8, p
"-Gal;zA1xAs confinement layer 4 and p-GaAs
Ohmic contact layers 5 are sequentially formed, and a V-side electrode 6 is formed on the top layer on a portion corresponding to the oscillation region.
, an n-side type pole 7 is provided on the substrate 10 and is omitted.

このレーザの特徴は、内部に設けられ7F!:2本のス
トライプにより、電流狭窄が効果的に行われ″、ス)ラ
イブ間の電流限・正領域の存在により、電流の増加に伴
い電流が中央部に集中することを防ぎ、安定した単一基
本モード動作の範囲が広いことである。
The feature of this laser is that it is installed inside 7F! : The two stripes effectively constrict the current, and the presence of the current limiting/positive region between the stripes prevents the current from concentrating in the center as the current increases, resulting in a stable single stripe. One basic mode is that the range of operation is wide.

しかしながらこの構造のし一部には一つの加工上の難点
を残している。すなわち、基板に溝を形成するとき、化
学エツチング法を用いるが、この化学エツチングによっ
て溝の底1□i、、P部分は一般に凹凸が増加し、もと
の基板よりも平坦性は劣化jる。
However, this structure still has one difficulty in processing. That is, when forming a groove on a substrate, a chemical etching method is used, but as a result of this chemical etching, the bottom part of the groove 1□i,,P generally becomes more uneven, and the flatness becomes worse than that of the original substrate. .

このためこの上に成長した活性層の平坦性は、他の部分
に較べてわるくなっている。このためにし流の増加につ
ながる。
Therefore, the flatness of the active layer grown thereon is poorer than in other parts. This leads to an increase in waste flow.

本発明は上記の欠点を取除くことを可能とした半導体レ
ーザに関するものである。
The present invention relates to a semiconductor laser which makes it possible to eliminate the above-mentioned drawbacks.

本発明は、一方向にストラ・イブ状に伸びた凸部を有す
る第1導電型の半導体基板と、前記凸部を有する面上に
形成され且つ前記凸部の両側面の端部において層の一部
が欠損している第2導電型の電流阻止層と、前記電流阻
止層と前記欠損部上に順次積層されな第1導電型の光及
びキ□ャリアの閉込め層と、第1または第2!電型の活
性層と、第2導電型め光及びキャリ、アの閉込め層とを
具備した拳−横モード発振が可能な二重へテロ構造の半
導体レーザーで今る。
The present invention provides a semiconductor substrate of a first conductivity type having a convex portion extending in a stripe shape in one direction, and a layer formed on a surface having the convex portion and at the ends of both side surfaces of the convex portion. a current blocking layer of a second conductivity type that is partially defective; a light and carrier confinement layer of a first conductivity type that is not laminated in sequence on the current blocking layer and the defective portion; Second! This semiconductor laser has a double heterostructure capable of fist-transverse mode oscillation, and includes an active layer of a conductive type and a confinement layer of a second conductive type for light, carriers, and a.

以下、本発明を実施例にもとづいて説明する。The present invention will be explained below based on examples.

実施例fl) 本実施例の半導体レーザの−っは第2図に示すように1
、紙面と垂直な方向にストライプ状に伸びた凸部18が
n−GaAs基板1oの上面に形成され、−その各側面
の端部でストライプ状の欠m119が生じるように、p
−Gal−2AlxAs電流阻止”層11゛がn −G
aAs基板lOの全面に形成され、その上面にn−Ga
1.A’1xAs閉込め−12、n又はp形Q)GaA
s活i層1 B 、’p−Ga1−zAlxAs閉込め
層14′及びp−GaAsオーミックコンタクト層15
が順次形成されているもの−であり、最上層□に発振領
域に相当する部分上にp側電極16、基板10にn側電
極17が設けられている。凸部1・8は1μm以上の高
さ、電流阻止層11は階、段状段差部19の裾から20
μm・以゛上離れた領域でその深さのA以下の厚さ、閉
込め層12、閉。込め層14及びオーミックコンタクト
層15は0.5〜1.1> fimの厚さ、活性層18
は0.1〜0.8μmの厚さとするものである。また、
閉込め層12、活性層18、閉込め層14の禁制帯幅及
び屈折率をそれぞれ”gg* Egse Eg4* N
ll 、Na +N4とすると、E g 8 <E g
 m * E g 4 # NIt > N R+ N
 4 とするものである。
Example fl) In the semiconductor laser of this example, - is 1 as shown in FIG.
, a convex portion 18 extending in a stripe shape in a direction perpendicular to the plane of the paper is formed on the upper surface of the n-GaAs substrate 1o, and - p
-Gal-2AlxAs current blocking layer 11' is n-G
It is formed on the entire surface of the aAs substrate IO, and n-Ga is formed on the top surface.
1. A'1xAs confinement - 12, n or p type Q) GaA
s active i layer 1 B, 'p-Ga1-zAlxAs confinement layer 14' and p-GaAs ohmic contact layer 15
are formed in sequence, and a p-side electrode 16 is provided on the top layer □ on a portion corresponding to the oscillation region, and an n-side electrode 17 is provided on the substrate 10. The height of the convex parts 1 and 8 is 1 μm or more, and the height of the current blocking layer 11 is 20 mm from the bottom of the stepped part 19.
The confinement layer 12 is closed, with a thickness less than or equal to its depth A in areas separated by more than μm. The filling layer 14 and the ohmic contact layer 15 have a thickness of 0.5 to 1.1> fim, and the active layer 18
The thickness is 0.1 to 0.8 μm. Also,
The forbidden band width and refractive index of the confinement layer 12, active layer 18, and confinement layer 14 are respectively "gg* Egse Eg4* N
ll , Na +N4, E g 8 <E g
m * E g 4 # NIt > N R+ N
4.

この構造の半導体レーザは次のようにして作製すること
ができる。まずn−GaAs基板10の上面に、フォト
レジストをコートし、露光して巾2〜10μmの細長い
ストライプを設け、この膜をマスクとして化学エツチン
グにより1〜8μmの高さの凸部を形成する。エツチン
グ液としては、例えばリン酸と過酸化水素水の混合液を
用いると良く、凸部の高さはエツチング時間により調整
することができる。この凸部の形成された側の基板の上
にp −Ga 1−XAIXAs電流阻止層11を液、
相エピタキシ :ヤル成長法によりn−GaAs基板l
O上に形成する。 ・この場合、エピタキシャル成長速
度が凸部で零又は負になること、に起因して、電流阻止
層11が凸  。
A semiconductor laser having this structure can be manufactured as follows. First, the upper surface of the n-GaAs substrate 10 is coated with a photoresist, exposed to light to form elongated stripes with a width of 2 to 10 .mu.m, and using this film as a mask, chemical etching is performed to form convex portions with a height of 1 to 8 .mu.m. As the etching solution, for example, a mixture of phosphoric acid and hydrogen peroxide may be used, and the height of the convex portion can be adjusted by adjusting the etching time. A p-Ga 1-XAIXAs current blocking layer 11 is deposited on the substrate on the side where the convex portion is formed.
Phase epitaxy: N-GaAs substrate l by the phase epitaxy method.
Formed on O. - In this case, the current blocking layer 11 is convex because the epitaxial growth rate becomes zero or negative at the convex portion.

部9両側面の階栓状段差部の蝉部吟より切断され、。Section 9 is cut from the cicada part of the stepped part on both sides.

電流集中領域となる欠損部19が溝の両側に形成  、
される。次に電流阻止層11の上面に液相エピタキシャ
ル成長法により、0..5〜1.5 μm+i’)厚さ
のn−Gal−2A1xAs閉込め層12.0.1〜0
.8 pmの厚さのn又はp形のG’aAs活性層18
.0.5〜IItmの厚さのP−Gal−xA1xAs
閉込め層14及びp −GaAsオーミックコンタクト
層15を順次形成し、最上層にストライプ状にp側電極
16、基板10にn側電極17を形成して完成する。前
記n−Ga1−xA1xAa閉込め層12は欠損部が生
じない程度の厚さとするものである。
Defects 19, which serve as current concentration regions, are formed on both sides of the groove.
be done. Next, the upper surface of the current blocking layer 11 is grown by liquid phase epitaxial growth. .. 5-1.5 μm+i') thick n-Gal-2A1xAs confinement layer 12.0.1-0
.. 8 pm thick n or p type G'aAs active layer 18
.. P-Gal-xA1xAs with a thickness of 0.5-IItm
A confinement layer 14 and a p-GaAs ohmic contact layer 15 are sequentially formed, a p-side electrode 16 is formed in a stripe pattern on the top layer, and an n-side electrode 17 is formed on the substrate 10 to complete the process. The thickness of the n-Ga1-xA1xAa confinement layer 12 is such that no defects are generated.

実施例(2) 本発明のもう一つの実施例は、基板に形成する凸部の断
面の形を逆台形状とした場合である。それは第8図に示
すようなものであり、図中の各番号は第2図の番号のも
のに対応するものを示す。
Embodiment (2) Another embodiment of the present invention is a case in which the cross-section of the convex portion formed on the substrate is an inverted trapezoidal shape. It is as shown in FIG. 8, and each number in the figure corresponds to the number in FIG. 2.

実施例(3) 本発明の他のもう一つの実施例としての第4図は、第2
図と同様台形状の溝を利用するものであるが、活性層が
平坦となるようにエピタキシャル成長させた場合を示す
Embodiment (3) FIG. 4 as another embodiment of the present invention is a second embodiment of the present invention.
Similar to the figure, trapezoidal grooves are used, but the active layer is epitaxially grown so as to be flat.

この第4図でも、図中の番号は第2図の番号のものに対
応するものを示す。
In FIG. 4 as well, the numbers in the figure correspond to those in FIG. 2.

この場合にも溝の形を逆台形としてもよい。In this case as well, the shape of the groove may be an inverted trapezoid.

以上説明した実施例で代表′漬れるような構造の半導体
レーザにおいては、次のような格別に秀れた特徴のある
ものが得られ □ 。*****−r、v、、*w6”%x y ? 7 
y t、lr、ため、もとの基板と同じ平坦度のままで
あり、他の部分はエツチングにより平坦度が劣化してい
る。
The semiconductor laser having the structure described in the embodiments described above has the following exceptional features. *****-r, v,, *w6”%x y? 7
Because of yt and lr, the flatness remains the same as the original substrate, and the flatness of other parts has deteriorated due to etching.

したがってこの上部に形成された活性層は基板の平坦性
の影響を受け、発振部分は平坦性がよく、その両側の部
分は平坦性がわるく散乱ロスを増加させるようになって
おり、横モードの安定化に効果がある。
Therefore, the active layer formed on top of this is affected by the flatness of the substrate, and the oscillating part has good flatness, while the parts on both sides have poor flatness and increase scattering loss, resulting in transverse mode. It has a stabilizing effect.

さらに本発明の半導体レーザも特願昭56−41270
の半導体レーザと共通した次のような効果をもつもので
ある。
Furthermore, the semiconductor laser of the present invention is also disclosed in Japanese Patent Application No. 56-41270.
It has the following effects in common with other semiconductor lasers.

■内部に設けられた2本のストライプにより、電流狭窄
が行われている。凸部の幅がキャリアの拡散長以下であ
れば2本のストライプ型であっても発振部分が2つに分
離することはなく、発振部分は、凸部に近い活性層の部
分にわたって一様に分布し、出力&i一本のビームとな
っている。
■Current confinement is performed by two stripes provided inside. If the width of the convex part is less than the carrier diffusion length, the oscillation part will not be separated into two even if it is a two-stripe type, and the oscillation part will be uniform over the part of the active layer near the convex part. The output &i is a single beam.

■基板の上に設けられた閉込め層12は、凸部の上の領
域では中心はど薄くなっているが、導波路を構成してい
、、戸・ ■凸部の上面に1)設けられた電流阻止領域によって、
電流の増加に伴い電流が中央部分に集中することを防い
でいる。
■The confinement layer 12 provided on the substrate is thinner in the center in the area above the convex part, but forms a waveguide. The current blocking region
This prevents the current from concentrating in the center as the current increases.

このため、発振は、大電流の場合にも安定しているので
、単一基本モード動作の範囲が広(1゜■電流阻止層の
形成は一連の工・ビタキ□シャル工程の一つに含まれる
ので、連続した一回のエピタキシャル成長工程ですむの
で、半導体の内部力;外気に曝されることがない。した
がって素子の信頼性が高く、シかも工程が短いという特
徴がある。
For this reason, the oscillation is stable even at large currents, so the range of single fundamental mode operation is wide (1°■ The formation of the current blocking layer is included in a series of engineering and bitaxial processes. Since it only requires one continuous epitaxial growth process, the internal forces of the semiconductor are not exposed to the outside air.Therefore, the device is highly reliable and the process is short.

■さらに、第4図に示すように活性層を平坦となるよう
エピタキシャル成長させた場合、或は基板の凸部の断面
形状が逆台形で活性層を平坦となるようエピタキシャル
成長させた場合には、活性層がわん曲している場合に比
較して、大出力時の光電流特性の直線性がすぐれている
■Furthermore, if the active layer is epitaxially grown so that it is flat as shown in Figure 4, or if the cross-sectional shape of the convex part of the substrate is an inverted trapezoid and the active layer is epitaxially grown so that it is flat, Compared to the case where the layer is curved, the linearity of the photocurrent characteristics at high output is excellent.

以上の実施例では、電流阻止層がp−Ga1−XAIX
As(x=0.8)を用いているが、p−GaAsを用
1.zた場合であっても本発明の効果は明らかに減する
ことはない。
In the above embodiments, the current blocking layer is p-Ga1-XAIX
As (x=0.8) is used, but p-GaAs is used.1. Even in such a case, the effects of the present invention are not obviously reduced.

また以上の実施例は、GaAlAsとGaAsとの二重
へテロ接合構造についてのものであるが、他の多元化合
物、例えば1nPとInGaAsPとの二重ヘテ四接合
を有する半導体発光装置にも、本発明を適用し得ること
は勿論のことである。
Furthermore, although the above embodiments are about a double heterojunction structure of GaAlAs and GaAs, the present invention can also be applied to a semiconductor light emitting device having a double heterojunction structure of other multicomponent compounds, such as 1nP and InGaAsP. Of course, the invention can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のストライプ型二重へテロ構造半導体レー
ザの側断面図、第2図、第8図、第4図□は本発明の実
施例を表わす側断面図である。 lOはn−GaAs基板、11はp −Gal−z A
lxAs電流阻止層、12はn−Ga1−XAIXA8
閉込め層、13はn又はp形のGaAs活性層、14は
p −Ga 1−xA1xAs閉込め層、15はp−G
aA’sオーミックコンタクト層、16.17はp側及
びn側電極、18は階段状段差部、19i欠損部である
。 12図 [″ ill: ・       ”′)
FIG. 1 is a side sectional view of a conventional striped double heterostructure semiconductor laser, and FIGS. 2, 8, and 4 □ are side sectional views showing embodiments of the present invention. 1O is an n-GaAs substrate, 11 is a p-Gal-z A
lxAs current blocking layer, 12 is n-Ga1-XAIXA8
Confinement layer, 13 is n or p type GaAs active layer, 14 is p-Ga1-xA1xAs confinement layer, 15 is p-G
aA's ohmic contact layer, 16 and 17 are p-side and n-side electrodes, 18 is a stepped portion, and 19i is a defective portion. Figure 12 [''ill: ・ ''')

Claims (1)

【特許請求の範囲】[Claims] (1)一方向、にストライプ状に伸びた凸部を有す、る
第1導電型の半導体基板と、前記凸部を有する面Eに形
成され且つ、前記凸部の両側面の端部において層の一部
が欠損している第2導電型の電流、阻止層と、前記電流
阻止層と前記欠損部上に順次積層されに第1導電型の光
及びキャリアの爾込め層と、第1また)よ第2導電型め
活性層と、第2導電型の光及びキャリアの閉込め層とを
具備したことを特徴とする半導体レーザ    ′  
 □
(1) A semiconductor substrate of a first conductivity type having a convex portion extending in a stripe shape in one direction, and a semiconductor substrate formed on a surface E having the convex portion, and at the ends of both side surfaces of the convex portion. a current blocking layer of a second conductivity type in which a portion of the layer is defective; a light and carrier concentrating layer of a first conductivity type which is laminated in sequence on the current blocking layer and the defective portion; Furthermore, a semiconductor laser comprising a second conductivity type active layer and a second conductivity type light and carrier confinement layer.
JP14132881A 1981-09-08 1981-09-08 Semiconductor laser Pending JPS5843590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14132881A JPS5843590A (en) 1981-09-08 1981-09-08 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14132881A JPS5843590A (en) 1981-09-08 1981-09-08 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5843590A true JPS5843590A (en) 1983-03-14

Family

ID=15289379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14132881A Pending JPS5843590A (en) 1981-09-08 1981-09-08 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5843590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118189A (en) * 1984-07-05 1986-01-27 Matsushita Electric Ind Co Ltd Semiconductor laser array device and manufacture thereof
JPS6118191A (en) * 1984-07-05 1986-01-27 Matsushita Electric Ind Co Ltd Semiconductor laser device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118189A (en) * 1984-07-05 1986-01-27 Matsushita Electric Ind Co Ltd Semiconductor laser array device and manufacture thereof
JPS6118191A (en) * 1984-07-05 1986-01-27 Matsushita Electric Ind Co Ltd Semiconductor laser device and manufacture thereof

Similar Documents

Publication Publication Date Title
CA1152623A (en) Semiconductor laser device
US4426702A (en) Semiconductor laser device
JP2716693B2 (en) Semiconductor laser
JPS5843590A (en) Semiconductor laser
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPS60167488A (en) Semiconductor laser device
JPS641952B2 (en)
JP2940158B2 (en) Semiconductor laser device
JP2840833B2 (en) Semiconductor laser manufacturing method
JPH04150087A (en) Visible light semiconductor laser device
JPS63302587A (en) Semiconductor laser
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6252984A (en) Self-aligning current constriction type semiconductor light emitting element
JP3005998B2 (en) Manufacturing method of semiconductor laser
JPS6178191A (en) Semiconductor light-emitting element
JPS63104494A (en) Semiconductor laser device
JPS61135181A (en) Semiconductor light-emitting device
JPS63287079A (en) Manufacture of semiconductor laser
JPH01136392A (en) Semiconductor laser device
JPH04120788A (en) Semiconductor laser
JPH0766492A (en) Semiconductor laser device and its manufacture
GB2080015A (en) Semiconductor lasers
JPS6129183A (en) Semiconductor laser
JPS593873B2 (en) semiconductor light emitting device
JPS6174383A (en) Semiconductor laser array device and manufacture thereof