JPS60186063A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS60186063A
JPS60186063A JP1848184A JP1848184A JPS60186063A JP S60186063 A JPS60186063 A JP S60186063A JP 1848184 A JP1848184 A JP 1848184A JP 1848184 A JP1848184 A JP 1848184A JP S60186063 A JPS60186063 A JP S60186063A
Authority
JP
Japan
Prior art keywords
film
active region
thin film
region
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1848184A
Other languages
Japanese (ja)
Inventor
Takefumi Ooshima
大嶋 健文
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1848184A priority Critical patent/JPS60186063A/en
Publication of JPS60186063A publication Critical patent/JPS60186063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the thickness of an active region, to raise the mobility of a carrier, to lower a threshold voltage and to reduce the resistances of a source region and an active region by forming source and drain regions of a laminated film of a polycrystalline silicon film for forming the active region and a low resistance film. CONSTITUTION:A doped polysilicon film 13 which is reduced in the resistance value by the addition of an impurity is coated by a CVD method on the surface of a silicon dioxide film 12. A central portion interposed between the source and drain regions of the film 13 (the portions at both sides of the drawing) remain except the both regions is removed by photoetching. Then, a polysilicon film 14 is coated in the necessary thickness on the active layer by a CVD method. The thickness of the film 14 at this time is reduced to improve the characteristic. Then, the laminated films 14 and 13 are removed at both sides. Here, the portion interposed between the films 14 and 13 becomes an active region.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は絶縁基板上に半導体薄膜を被着形成してなる薄
膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thin film transistor formed by depositing a semiconductor thin film on an insulating substrate.

く背景技術とその問題点〉 石英板またはガラス板等の絶縁基板上に半導体薄膜を被
着形成してなる薄膜トランジスタ(T F T : T
b1n Film Transister )は、たと
えば第1図のような構成を有している。
Background technology and its problems> Thin film transistors (T F T : T
b1n Film Transister) has a configuration as shown in FIG. 1, for example.

すなわち、この第1図において、石英板等の絶縁基板1
上に二酸化シリコン等の絶縁膜2を形成した後、ポリシ
リコン(多結晶シリコン)等の半導体薄膜を被着形成し
ており、これにエツチングや不純物拡散等の処理を施す
ことによって、ソース領域3、ドレイン領域5、ふζよ
びこれらの領域の間に活性領域(チャンネル領域)4を
形成している。そして、これら3つの領域を覆うように
絶縁膜6を形成した後、アルミニウムA1等によシソ−
スミ極1およびドレイン電極8を形成中るとす ともに、トープトポ中シリコン(不純物添加多結晶シリ
コン)等によりゲート電極9を形成している。なお、上
記3つの領域はいずれも3000〜5000A:”程度
の膜厚で形成されている。
That is, in this FIG. 1, an insulating substrate 1 such as a quartz plate
After forming an insulating film 2 such as silicon dioxide thereon, a semiconductor thin film such as polysilicon (polycrystalline silicon) is deposited, and by performing etching, impurity diffusion, etc. on this, the source region 3 is formed. , a drain region 5, a channel ζ, and an active region (channel region) 4 between these regions. After forming the insulating film 6 to cover these three regions, it is made of aluminum A1 or the like.
While the summation electrode 1 and the drain electrode 8 are being formed, a gate electrode 9 is being formed of toppolysilicon (polycrystalline silicon added with impurities) or the like. Note that each of the above three regions is formed with a film thickness of about 3000 to 5000 A:''.

このような従来の薄膜トランジスタに」?いて、上記活
性領域4はキャリアの移動度を上げるとともにしきい値
電圧を低くするため薄い方が好ましい。しかし、上述し
たように、ソース領域3、活性領域4、およびドレイ/
領域5は半導体薄膜の被着により等しい膜厚で形成され
るため、活性領域4の膜厚を薄くしようとすると、ソー
ス領域3、およびドレイン領域5の膜厚も同時に薄くな
ってしまい、これら2つの領域の抵抗値が高くなってし
まう。また、l(I E (反応性イオンエツチング)
等により、−活性領域4のみを薄くすることもできるが
、膜厚の制御が難しく膜へのダメージも大きbため、通
常この方法は用いられない。
"For conventional thin film transistors like this"? Therefore, the active region 4 is preferably thin in order to increase carrier mobility and lower the threshold voltage. However, as mentioned above, the source region 3, active region 4, and drain/
Since the region 5 is formed with the same film thickness by depositing a semiconductor thin film, if an attempt is made to reduce the film thickness of the active region 4, the film thicknesses of the source region 3 and drain region 5 will also become thinner at the same time. The resistance value in one area becomes high. In addition, l(I E (reactive ion etching)
It is also possible to make only the active region 4 thinner by, etc., but this method is usually not used because it is difficult to control the film thickness and the damage to the film is large.

〈発明の目的〉 そこで1本発明は上述した従来の問題点に鑑みてなされ
たものであり、活性領域の膜厚を薄くしキャリアの移動
度を上げしきい値電圧を低くするとともに、ソース領域
およびドレイン領域の膜厚を上記活性領域の膜厚より厚
くしこれら2つの領域の低抵抗化を図った薄膜トランジ
スタを提供することを目的とする。
<Purpose of the Invention> The present invention has been made in view of the above-mentioned problems of the conventional art. Another object of the present invention is to provide a thin film transistor in which the drain region is made thicker than the active region to reduce the resistance of these two regions.

〈発明の概要〉 本発明に係る薄膜トランジスタは、上述した目的を達成
するために、多結晶シリコン膜からなる半導体層にソー
ス、ドレイン領域と夫々の電極を形成し、該ソース、ド
レイン領域の間の活性領域にゲート絶縁膜を介してゲー
ト電極を形成してなる薄膜トランジスタにおいて、上記
ソース、ドレイン領域が上記活性領域を形成する上記多
結晶シリコン膜より低抵抗膜との積層膜で形成されてな
ることを特徴とするものである。
<Summary of the Invention> In order to achieve the above-mentioned object, a thin film transistor according to the present invention includes a semiconductor layer made of a polycrystalline silicon film, in which a source region, a drain region, and respective electrodes are formed, and a region between the source region and the drain region. In a thin film transistor in which a gate electrode is formed in an active region via a gate insulating film, the source and drain regions are formed of a laminated film with a film having a lower resistance than the polycrystalline silicon film forming the active region. It is characterized by:

〈実施例〉 以下、本発明の好適な実施例について図面を参照しなが
ら詳細に説明する。
<Embodiments> Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

第2図〜第11図は、本発明に係る薄膜トランジスタの
第1の実施例における製造工程を示す概略断面図である
FIGS. 2 to 11 are schematic cross-sectional views showing manufacturing steps in a first embodiment of a thin film transistor according to the present invention.

まず、第2図に示すように、石英板あるいはガラス板等
の絶縁基板11上に、絶縁膜として、たとえば二酸化シ
リコン膜12をC1f−D法(気相成長法)等により被
着形成した後、第3図1C示すように、この二酸化シリ
コン膜12の表面に不純物添加によシ抵抗値を下げたド
ープトポリシリコン(不純物添加多結晶シリコン)膜1
3をCVD法等によシ被着形成する。この時、ドープト
ポリシリコン膜13は膜厚3000犬程度に形成するの
が好ましい。
First, as shown in FIG. 2, an insulating film, for example, a silicon dioxide film 12, is formed on an insulating substrate 11 such as a quartz plate or a glass plate by a C1f-D method (vapor phase growth method), etc.; , as shown in FIG. 1C, a doped polysilicon (polycrystalline silicon with impurities) film 1 whose resistance value has been lowered by adding impurities to the surface of this silicon dioxide film 12.
3 is deposited and formed by CVD method or the like. At this time, the doped polysilicon film 13 is preferably formed to have a thickness of about 3000 mm.

そして、第4図に示すように、上記ドープトポリシリコ
ン膜13のソース領域およびドレイン領域とする部分(
図中両側の部分)を残してこれらの・領域に挾まれる中
央部分を、フォトエツチング等を施すことによシ除去す
る。
Then, as shown in FIG.
The center portion sandwiched between these regions is removed by photo-etching or the like, leaving only the portions on both sides in the figure.

次に、第5図に示すように、ポリシリコン(多結晶シリ
コン)膜14を後述する活性領域に必要な膜厚だけCV
D法等により被着形成する。この時のポリシリコン膜1
4の膜厚は、たとえば1500に以下のように一般の薄
膜トランジスタ形成時の膜厚よりも薄くすることが好ま
しいが、更に後述するように、100〜750λと極め
て薄くすることにより、特性を大幅に向上できる等の優
れた効果が1外られるものである。
Next, as shown in FIG. 5, the polysilicon (polycrystalline silicon) film 14 is CVD to a thickness necessary for the active region to be described later.
Adhesion is formed by the D method or the like. Polysilicon film 1 at this time
It is preferable that the film thickness of No. 4 be made thinner than the film thickness when forming a general thin film transistor, for example, 1500 λ as shown below, but as will be described later, by making it extremely thin to 100 to 750 λ, the characteristics can be significantly improved. Excellent effects such as improved performance are rated as 1.

続いて、第6図に示すように、積層形成されたポリシリ
コン膜14とドープトポリシリコン膜13の図中両側の
部分を、他の累子(図示せず)と−分離を図るために、
フォトエツチング等を施すことによシ除去する。ここで
、上記ポリシリコン膜14のドープトポリシリコン膜1
3に挾まれた部分が活性領域となる。 ゛ 次に、第7図に示すように、これに熱酸化を短時間施し
た後、CVD法を施すことによって二酸化シリコン膜1
5を膜厚xooo1程度に被着形成する。なお、二酸化
シリコン膜15はCVD法のみで形成しても良いが、上
述したように、CVD法を施す前に熱酸化を短時間施す
ことにより、この二酸化シリコン膜15とポリシリコン
膜14との密着性が良くなるとともに、これらの界面で
の悪影響が低減され、特性向上が図れる。
Subsequently, as shown in FIG. 6, the portions on both sides of the layered polysilicon film 14 and doped polysilicon film 13 in the figure are separated from other separators (not shown). ,
It is removed by photo-etching or the like. Here, the doped polysilicon film 1 of the polysilicon film 14 is
The part sandwiched by 3 becomes the active region.゛Next, as shown in Fig. 7, after a short period of thermal oxidation, the silicon dioxide film 1 is formed by applying a CVD method.
5 is deposited to a film thickness of about xooo1. Note that the silicon dioxide film 15 may be formed only by the CVD method, but as described above, by performing thermal oxidation for a short time before applying the CVD method, the silicon dioxide film 15 and the polysilicon film 14 can be formed. In addition to improving adhesion, adverse effects at these interfaces are reduced, and properties can be improved.

次に、第8図に示すように、不純物としてリンPを添加
したリン・ドープトポリシリコン(リン添加多結晶シリ
コン)膜16をCVI〕法等により被着形成した後、第
9図に示すように、図中中央のゲート部のみを残し、リ
ン・ドープトポリシリコン膜16および二酸化シリコン
膜15fフォトエツチング等を用いてそれぞれ除去する
Next, as shown in FIG. 8, a phosphorus-doped polysilicon (phosphorus-doped polycrystalline silicon) film 16 doped with phosphorus P as an impurity is deposited by a CVI method or the like, and then as shown in FIG. The phosphorus-doped polysilicon film 16 and the silicon dioxide film 15f are removed by photo-etching or the like, leaving only the gate portion at the center in the figure.

続すて、第1θ図に示すように、絶縁膜とじてたとえば
二酸化シリコン膜17をCVD法等により被着形成する
。この時、二酸化シリコン膜1Tは膜厚3000λ程度
に形成するのが好ましい。
Subsequently, as shown in FIG. 1θ, a silicon dioxide film 17, for example, is deposited as an insulating film by CVD or the like. At this time, it is preferable to form the silicon dioxide film 1T to a thickness of about 3000λ.

そして、第11図に示すように、最後に、電極用の窓開
けを行い、アツベニウム(A I)等をたとえば真空蒸
着ト・・ター・−ツチ・グすることによシ、ソース電極
18、ゲート′電極19、およびドレイン電極20をそ
れぞれ形成する。
Finally, as shown in FIG. 11, a window for the electrode is opened, and alumina (AI) or the like is vacuum-deposited, for example, to form the source electrode 18, A gate' electrode 19 and a drain electrode 20 are respectively formed.

このような製造工程を経て得られた薄膜トランジスタに
おいて活性領域を形成するポリシリコン膜14の膜厚を
100〜750人にすることによって、しきい値電圧を
低くすることができるとともに、キャリアの実効移動度
を極めて大きくすることができ、ソース領域およびドレ
イ/領域の接合におけるリーク電流ならびに外部光によ
るソース領域、ドレイン領域間のリーク電流を小さくす
ることができる。なお、このような超薄膜トランジスタ
を構成する場合において、活性領域のポリシリコン膜1
4の膜厚は100〜750λの範囲であれば良いが、一
般的には、100〜600λにするのが好ましく、20
0〜50(3A’にするのがさらに好ましい。
By setting the thickness of the polysilicon film 14 forming the active region in the thin film transistor obtained through such a manufacturing process to 100 to 750 nm, the threshold voltage can be lowered and the effective movement of carriers can be reduced. The leakage current at the junction between the source region and the drain/region and the leakage current between the source region and the drain region caused by external light can be reduced. Note that when configuring such an ultra-thin film transistor, the polysilicon film 1 in the active region
The film thickness of No. 4 may be in the range of 100 to 750 λ, but generally it is preferably 100 to 600 λ, and 20
0 to 50 (more preferably 3A').

続いて、第2の実施例について説明する。第12図〜第
21図は、本発明に係る薄膜トランジスタの第2の実施
例における製造工程を示゛を概略断面図である。なお、
この実施例における薄膜トランジスタはいわゆるバック
ゲートタイプのものである。
Next, a second example will be described. 12 to 21 are schematic cross-sectional views showing the manufacturing process in a second embodiment of the thin film transistor according to the present invention. In addition,
The thin film transistor in this embodiment is of a so-called back gate type.

まず、第12図に示すように、石英板あるいはガラス板
等の絶縁基板21上に、絶縁膜として、たとえば二酸化
シリコン膜22をCVD法等により被着形成した後、第
13図に示すように、この二酸化シリコン膜22の表面
にドープトポリシリコン膜23をCVD法等により被着
形成する。
First, as shown in FIG. 12, an insulating film, for example, a silicon dioxide film 22, is deposited on an insulating substrate 21 such as a quartz plate or a glass plate by CVD method, and then as shown in FIG. A doped polysilicon film 23 is formed on the surface of this silicon dioxide film 22 by CVD or the like.

そして、上記ドープトポリシリコン膜23の図中中央部
のみを残して、他の部分をフォトエツチング等で除去す
ることにより、第14図に水子ように、ゲート・電極2
3aを形成する。
Then, by leaving only the central part of the doped polysilicon film 23 in the figure and removing the other parts by photoetching or the like, the gate/electrode 23 is etched as shown in FIG.
Form 3a.

次に、これに熱酸化あるいはCVD法を行うことにより
、第15図に示すように、ゲート電険となる。ドープト
ポリシリコン膜23の表面に二酸化/リコンl摸24を
形成する。
Next, by subjecting this to thermal oxidation or CVD, the gate voltage is made as shown in FIG. A silicon dioxide/recon film 24 is formed on the surface of the doped polysilicon film 23.

そして、第16図に示すように、活性領域(チャンネル
領域〕を形成するポリシリコン膜25をCVD法等によ
り被着形成する。この時、ポリシリコン膜25は前述し
たように、膜厚を100〜750A’、好ましくは10
0〜600λ、さらに好ましくは200〜5001と極
めて薄くすることにより、特性が向上することは勿論で
ある。
Then, as shown in FIG. 16, a polysilicon film 25 forming an active region (channel region) is deposited by CVD or the like.At this time, the polysilicon film 25 has a thickness of 100 mm as described above. ~750A', preferably 10
It goes without saying that the characteristics can be improved by making the thickness extremely thin, preferably 0 to 600 λ, more preferably 200 to 500 λ.

続いて、第17図に示すように、このポリシリコン膜1
5よりも低抵抗のドープトポリシリコン膜26を被着形
成した後、第18図に示すように、他の素子(図示せず
)との分離を図るためにドープトポリシリコン膜26お
よびポリシリコン膜25の図中両側の部分をフォトエツ
チング等を施すことにより除去する。
Subsequently, as shown in FIG. 17, this polysilicon film 1 is
After forming a doped polysilicon film 26 having a resistance lower than that of 5, as shown in FIG. Portions of the silicon film 25 on both sides in the figure are removed by photoetching or the like.

そして、更に、第19図に示すように、中央のゲート部
すなわち、ドープトポリシリコン膜26のゲート電極2
3aの上方に位置する部分のみをフォトエツチング等を
施すことにより除去する。
Further, as shown in FIG. 19, the central gate portion, that is, the gate electrode 2 of the doped polysilicon film 26
Only the portion located above 3a is removed by photo-etching or the like.

次に、第20図に示すよりに、絶縁膜として二酸化シリ
コン膜27をCVD法等により被着形成する。この時二
酸化シリコン膜27は膜厚30001程度に形成するの
が好ましい。なお、二酸化シリコン膜21は、熱酸化を
短時間施した後、CVD法によシ被着形成すれば、ポリ
シリコン膜25との密着性は良くなる。
Next, as shown in FIG. 20, a silicon dioxide film 27 is deposited as an insulating film by CVD or the like. At this time, it is preferable that the silicon dioxide film 27 be formed to have a thickness of about 30,001 mm. Note that if the silicon dioxide film 21 is thermally oxidized for a short time and then deposited by the CVD method, the adhesion with the polysilicon film 25 will be improved.

そして、第21図に示すように、最後に電極用の窓開け
を行い、アルミニウム(AI)等をたとえば真空蒸着し
パターンエツチングすることにより、ソース゛電極28
およびドレイン電極29を形成する。なお、ゲート電極
23aは図中この素子の央行き方向より引き出される。
Then, as shown in FIG. 21, a window is finally opened for the electrode, and aluminum (AI) or the like is vacuum-deposited and pattern-etched to form the source electrode 28.
and a drain electrode 29 is formed. Note that the gate electrode 23a is drawn out from the direction toward the center of this element in the figure.

このような製造工程を経て得られた薄膜トランジスタは
、上述した第1の実施例の薄膜トランジスタと同様の効
果が酪られる。
The thin film transistor obtained through such a manufacturing process exhibits the same effects as the thin film transistor of the first embodiment described above.

〈発明の効果〉 上述した実施例の説明から明らかなように、本発明によ
れば、活性領域の膜厚を薄くして特性の向上、例えボキ
ャリアの移動度を上げしきい値亀圧を低くすることを図
るとともに、ソース領域およびドレイン領域の膜厚を上
記活性領域の膜厚より厚くしこれら2つの領域の低抵抗
化を図った薄膜トランジスタを提供することができ、所
期の目的を十分に達成することができる。
<Effects of the Invention> As is clear from the description of the embodiments described above, according to the present invention, the film thickness of the active region can be reduced to improve characteristics, for example, by increasing the mobility of vocal carriers and lowering the threshold pressure. At the same time, it is possible to provide a thin film transistor in which the thickness of the source region and the drain region is made thicker than that of the active region, thereby lowering the resistance of these two regions. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜トランジスタの構成の一列を示す概
略断面図である。 第2図〜第11図は本発明に係る薄膜トランジスタの第
1の実施例における製造工程を示+概略断面図、第12
図〜第21図は本発明に係る薄膜トランジスタの・篤2
の実施例における製造工程を示す概略断面図である。 11.21・・・絶縁等板 13、’26・・・ ドープトポリシリコン膜14.2
5・・・ポリシリコン膜 15.24・・・二酸化シリコン膜 18.28・・・ソース電極 19.23;I・・・ゲート電極 20.29・・・ ドレイン電極 第1図 手続補正書(自発) ++B 1llI eo年4 月9 口特許庁長官 志
 賀 学 殿 1、事件の表示 昭和59年 特許願第 18481 号2、発明の名称 事イ′1との関係 特3’r出願人 住 所 東京部品用区北品用6丁目7番35号氏名 (
21B )ソニー株式会社 (名称) 代表者 大 賀 典 雄 4、代 理 人 〒105 住 所 東京都遜区虎ノ門二丁目6番4号第11森ビル
11階置(508)8266 (代)自 発 6、補正の対象 明細書の1発明の詳細な説明」の欄、 [図面の簡単な
説明]の欄、および図面 7、補正の内容 (7−1) 8A細書の第10頁第16行目と同頁第1
7行の間に次の記載を加入する。 [次に、第3の実施例について第22図〜第26図を用
いて説明する。なお、共通部分について′ま、第1の実
施例と同様の参照番号を何し説明を省略する。第3の実
施例の薄膜1〜ランンスタは、第22図に示すように、
PSG(IJンシリケ−トグラス)膜31上にノース領
域、トレイン領域であるドープトポリシリコン膜13お
よびその周辺領域に二酸化シリコン膜32が略等しい膜
厚となるように被着形成された構造となっている。した
がって、低抵抗領域である1・−ブトポリシリコン膜1
3の表面に段差がなくなり、また、ドープトポリシリコ
ン膜13とポリシリコン膜14間のコンタクトが良好で
ある。この薄膜1−ランンスタは、たとえば以下に述べ
るような製造工程によって製造すれば良い。すなわち、
絶縁基板11上にPSG膜31および二酸化シリコン膜
32をCVD法等により被着形成(第23図参照)した
後、二酸化シリコン膜32のソース領域、トレイン領域
とする各領域をフォトエツチング等により除去し溝40
を形成する(第24図参照)。そして、ドープトポリシ
リコン膜13を被着形成しレジスト33をスピンコード
法等により塗布して(第25図参照)、レジスト33と
ドープトポリシリコン膜13に対して同一のエノチンク
レートとなる条件下においてRIE(反応性イオンエツ
チング)等を施し表面を平坦化する(第26図参照)。 以降の工程については通常の薄膜トランジスタの製造工
程と同様である。なお、この薄膜トランジスタによれば
、PSG膜31によって絶縁基板11からの汚れを防止
できるさ共に、該P 8 G膜31を不純物拡散に用い
ることもてきる。 また、第27図は第4の実施例の薄膜I・ランジスタを
示す概略断面図であり、絶縁基板11上に溝50を形成
し、この溝にノース領域、トレイン領域とするドープ1
へポリシリコン膜13を形成した構造となっており、第
8の実施例と同様に段差がなく、ドープトポリシリコン
膜13とポリシリコン膜14間のコンタクトが良好であ
る。なお、この第27図においても、共通部分について
は、第1の実施例と同様の参照番号を伺し説明を省略す
る。 上述した第3および第4の実施例の各薄膜1−ランジス
タについても、第1の実施例の薄膜トランジスタと同様
の効果が得られる。」 (7L−2) 明細書の第11頁第13行目と同貢第1
4・行目の間に次の記載を加入する。 「第22図は本発明に係る薄膜トランジスタの第3の実
施例を示す概略断面図、第23図〜第26図は上記第3
の実施例の薄膜トランジスタの製造工程の一例を示す概
略断面図、第27図は本発明に係る薄膜トランジスタの
第4の実施例を示す概略断面図である。」 (7−8) 添付図面さして第22図〜第27図を別紙
の通り追加する。 以上 第22図 1 第23図 1 第24図 4/) 第25図 ママ 1 第26図 !、) tt 50
FIG. 1 is a schematic cross-sectional view showing one row of the configuration of a conventional thin film transistor. 2 to 11 show the manufacturing process in the first embodiment of the thin film transistor according to the present invention + a schematic cross-sectional view, and a 12th embodiment.
Figures 21 to 21 show details of thin film transistors according to the present invention.
It is a schematic sectional view showing the manufacturing process in the example. 11.21... Insulating plate 13, '26... Doped polysilicon film 14.2
5... Polysilicon film 15.24... Silicon dioxide film 18.28... Source electrode 19.23; I... Gate electrode 20.29... Drain electrode ) ++B 1lllI eo April 9, 2006 Manabu Shiga, Commissioner of the Japan Patent Office1, Indication of the case 1982 Patent Application No. 184812, Relationship with Title of the Invention A'1 Patent 3'r Applicant's Address Tokyo 6-7-35, Kita-Shinyo, Parts Ward Name (
21B) Sony Corporation (Name) Representative: Norio Ohga 4, Agent: 105 Address: 11th Floor, 11 Mori Building, 2-6-4 Toranomon, Son-ku, Tokyo (508) 8266 (Spontaneous) 6. "Detailed Description of the Invention" column of the specification to be amended, "Brief Description of Drawings" column, and Drawing 7, Contents of the Amendment (7-1) 8A Specification, page 10, line 16 1st page on the same page as
Add the following statement between the 7 lines. [Next, a third embodiment will be described using FIGS. 22 to 26. Note that the same reference numerals as in the first embodiment will be used to refer to common parts, and a description thereof will be omitted. The thin film 1 to the run star of the third embodiment are as shown in FIG.
It has a structure in which a doped polysilicon film 13, which is a north region and a train region, and a silicon dioxide film 32 are deposited on a PSG (IJ silicate glass) film 31 so as to have substantially equal thicknesses on the surrounding region. ing. Therefore, the 1-but polysilicon film 1 which is a low resistance region
There is no step difference on the surface of the doped polysilicon film 13, and the contact between the doped polysilicon film 13 and the polysilicon film 14 is good. This thin film 1-run star may be manufactured, for example, by the following manufacturing process. That is,
After a PSG film 31 and a silicon dioxide film 32 are deposited on the insulating substrate 11 by CVD or the like (see FIG. 23), the regions of the silicon dioxide film 32 that will become the source region and the train region are removed by photoetching or the like. Groove 40
(See Figure 24). Then, a doped polysilicon film 13 is deposited and a resist 33 is applied by a spin code method or the like (see FIG. 25), so that the resist 33 and the doped polysilicon film 13 have the same enotinic rate. Under certain conditions, RIE (reactive ion etching) or the like is applied to flatten the surface (see FIG. 26). The subsequent steps are similar to those for manufacturing ordinary thin film transistors. According to this thin film transistor, the PSG film 31 can prevent contamination from the insulating substrate 11, and the P 8 G film 31 can also be used for impurity diffusion. Further, FIG. 27 is a schematic cross-sectional view showing a thin film I transistor of the fourth embodiment, in which a groove 50 is formed on an insulating substrate 11, and the groove is doped with dope 1 to form a north region and a train region.
It has a structure in which a doped polysilicon film 13 is formed, and there is no step difference as in the eighth embodiment, and the contact between the doped polysilicon film 13 and the polysilicon film 14 is good. In this FIG. 27 as well, the same reference numerals as in the first embodiment are used for common parts, and a description thereof will be omitted. The same effects as the thin film transistor of the first embodiment can be obtained with each of the thin film transistors of the third and fourth embodiments described above. (7L-2) Page 11, line 13 of the specification and contribution number 1
Add the following statement between lines 4 and 4. 22 is a schematic sectional view showing the third embodiment of the thin film transistor according to the present invention, and FIGS. 23 to 26 are the third embodiment of the thin film transistor according to the present invention.
FIG. 27 is a schematic sectional view showing an example of the manufacturing process of the thin film transistor according to the fourth embodiment of the present invention. (7-8) The attached drawings, Figures 22 to 27, are added as attached. Above Figure 22 1 Figure 23 1 Figure 24 4/) Figure 25 Mom 1 Figure 26! ,) tt 50

Claims (1)

【特許請求の範囲】[Claims] 多結晶シリコン膜からなる半導体層にソース、ドレイン
風域と夫々の電極を形成し、該ソース、ドレイン客域の
間の活性領域にゲート絶縁膜を介してゲート電極を形成
してなる薄膜トランジスタにおいて、上記ソース、ドレ
イン領域が、上記活性領域を形成する上記多結晶シリコ
ン膜と該多結晶シリコン膜より低抵抗膜との積層膜で形
成されてなる薄膜トランジスタ。
A thin film transistor in which source and drain regions and respective electrodes are formed in a semiconductor layer made of a polycrystalline silicon film, and a gate electrode is formed in an active region between the source and drain regions via a gate insulating film, A thin film transistor in which the source and drain regions are formed of a laminated film of the polycrystalline silicon film forming the active region and a film with a lower resistance than the polycrystalline silicon film.
JP1848184A 1984-02-06 1984-02-06 Thin film transistor Pending JPS60186063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1848184A JPS60186063A (en) 1984-02-06 1984-02-06 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1848184A JPS60186063A (en) 1984-02-06 1984-02-06 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS60186063A true JPS60186063A (en) 1985-09-21

Family

ID=11972823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1848184A Pending JPS60186063A (en) 1984-02-06 1984-02-06 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS60186063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128566A (en) * 1985-11-29 1987-06-10 Seiko Instr & Electronics Ltd Manufacture of thin film transistor
JPS6386573A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPH0382081A (en) * 1989-08-24 1991-04-08 Seiko Epson Corp Thin film transistor and manufacture thereof
JPH0823099A (en) * 1994-03-14 1996-01-23 Natl Science Council Of Roc Polycrystalline quality thin film transistor and its preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123772A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS58158971A (en) * 1982-03-16 1983-09-21 Seiko Epson Corp Thin film semiconductor device
JPS59168674A (en) * 1983-03-15 1984-09-22 Canon Inc Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123772A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS58158971A (en) * 1982-03-16 1983-09-21 Seiko Epson Corp Thin film semiconductor device
JPS59168674A (en) * 1983-03-15 1984-09-22 Canon Inc Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128566A (en) * 1985-11-29 1987-06-10 Seiko Instr & Electronics Ltd Manufacture of thin film transistor
JPS6386573A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPH0382081A (en) * 1989-08-24 1991-04-08 Seiko Epson Corp Thin film transistor and manufacture thereof
JPH0823099A (en) * 1994-03-14 1996-01-23 Natl Science Council Of Roc Polycrystalline quality thin film transistor and its preparation

Similar Documents

Publication Publication Date Title
US20050280069A1 (en) Semiconductor device and method of manufacturing the same
JPH03283570A (en) Semiconductor device and its production
JP2666293B2 (en) Method for manufacturing MOS transistor
JPS60186063A (en) Thin film transistor
JPS5856263B2 (en) Manufacturing method of semiconductor device
JPS63174366A (en) Manufacture of semiconductor device
JPH05251637A (en) Semiconductor device and manufacture thereof
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH0595116A (en) Semiconductor device and its manufacture
JPS5952879A (en) Manufacture of semiconductor device
JPH0746698B2 (en) Method for manufacturing semiconductor device
JP2945023B2 (en) Method for manufacturing thin film transistor
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JPH0474477A (en) Non-volatile memory and its manufacture
JPH0529624A (en) Thin film transistor and manufacture thereof
CN1111826A (en) Common gate transistor structure
KR970008411A (en) Polycrystalline Silicon Oxide Gate Insulation Layer and Manufacturing Method Thereof
JPS62131564A (en) Manufacture of memory device
JPS61148865A (en) Manufacture of semiconductor device
JPH05110103A (en) Semiconductor device
JPH11307649A (en) Manufacture of semiconductor device
JPS6118340B2 (en)
JPH0228361A (en) Manufacture of semiconductor device
JPH03248538A (en) Charge-coupled element and manufacture thereof
JPH01101654A (en) Manufacture of semiconductor integrated circuit device