JPS601838A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS601838A
JPS601838A JP58109529A JP10952983A JPS601838A JP S601838 A JPS601838 A JP S601838A JP 58109529 A JP58109529 A JP 58109529A JP 10952983 A JP10952983 A JP 10952983A JP S601838 A JPS601838 A JP S601838A
Authority
JP
Japan
Prior art keywords
semiconductor element
conductive lead
projecting
base film
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58109529A
Other languages
Japanese (ja)
Other versions
JPH0469425B2 (en
Inventor
Izumi Okamoto
岡本 泉
Masayoshi Mihata
御幡 正芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58109529A priority Critical patent/JPS601838A/en
Publication of JPS601838A publication Critical patent/JPS601838A/en
Publication of JPH0469425B2 publication Critical patent/JPH0469425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/79Apparatus for Tape Automated Bonding [TAB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To solve a problem regarding a thermal stress due to the difference of the thermal expansion coefficients of each material without resulting in a cost-up by connecting a first conductive lead to a projecting electrode formed to the peripheral section of a semiconductor element and extending a second conductive lead connected to the projecting electrode from the projecting section of a base film. CONSTITUTION:Conductive leads 3 constituting a film carrier together with projecting electrodes extending from a base film 4 are connected to projecting electrodes 2 formed to the peripheral section of a semiconductor element 1. A conductive lead 8 for a power supply line extends into the semiconductor element 1 from the base film 4, and is branched, and is connected to projecting electrodes 6 and 6a formed in the semiconductor element 1. The conductive lead 8 is extended from a projecting section 4a of which one part of the base film 4 projects into the semiconductor element 1, and the projecting section 4a functions as a support base for the conductive lead 8, and has an effect on the prevention of an edge-touch. Both said projecting electrodes 2 and conductive leads 3 and both said projecting electrodes 6 and 6a and conductive lead 8 are thermocompression-bonded simultaneously by a bonding tool 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可撓性フィルムとそれに固着した多数の導電リ
ードからなるフィルムキャリアと、多数の突起電極を有
する半導体素子を熱圧着によって接続するいわゆるギヤ
ングボンディング方式の半導体装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a so-called gigantic bonding method in which a film carrier consisting of a flexible film and a large number of conductive leads fixed thereto, and a semiconductor element having a large number of protruding electrodes are connected by thermocompression bonding. The present invention relates to a bonding type semiconductor device.

従来例の構成とその問題点 通常、半導体素子内の配線は信号ラインと電源ラインに
大別されるが、大電流を必要とする半導体素子の場合、
配線抵抗による電圧降下が問題となる。通常、半導体素
子内の配線はスパッタリングや真空蒸着で形成するため
、その配線を厚くすることは工業的に不可能であり、し
たがってその電圧降下を許容限度内に抑えるために半導
体素子で電源ラインの配線幅を広くしたり、多層配線を
採用するといった対策がとられているが、前者の対策は
素子面積の増大を招き、後者の対策は製造工程数が増加
するばかりでなく配線構造が複雑になり歩留りを下げる
という欠陥がある。
Conventional configurations and their problems Normally, wiring within a semiconductor device is roughly divided into signal lines and power supply lines, but in the case of semiconductor devices that require large currents,
Voltage drop due to wiring resistance becomes a problem. Usually, wiring within semiconductor devices is formed by sputtering or vacuum evaporation, so it is industrially impossible to make the wiring thick. Therefore, in order to suppress the voltage drop within the permissible limit, semiconductor devices are used to connect power lines. Countermeasures have been taken such as widening the wiring width and adopting multilayer wiring, but the former method increases the device area, while the latter method not only increases the number of manufacturing steps but also complicates the wiring structure. This has the drawback of lowering yield.

そこで、大電流を必要とする半導体素子において前記の
コストアップを招く対策を取ることなく、しかも電源ラ
インの電圧降下を小さくすることが可能なギヤングボン
ディング方式の半導体装置が提案されている。
Therefore, a gigantic bonding type semiconductor device has been proposed which can reduce the voltage drop in the power supply line without taking the above-mentioned cost-increasing measures for semiconductor elements that require a large current.

このようなギヤングボンディング方式の半導体装置の従
来例を第1図a及びbに示す。第1図すは第1図aの八
−A′断面図である。
A conventional example of such a gigantic bonding type semiconductor device is shown in FIGS. 1a and 1b. FIG. 1 is a sectional view taken along line 8-A' in FIG. 1a.

半導体素子1の周辺部に設けられた突起電極2にベース
フィルム4から伸延したそれとでフィルムキャリアを構
成する導電リード3が接続される。
Conductive leads 3 extending from a base film 4 and constituting a film carrier are connected to protruding electrodes 2 provided on the periphery of the semiconductor element 1 .

また、電源ライン用の突起電極6,6a及び6bを半導
体素子1の内部及び周辺部に設け、ベースフィルム4か
ら伸延した導電リード5及び6aをこの突起電極6,6
a及び6bに接続する。この一連の接続は第1図すに示
すボンディングツール7でもって突起電極2,6.6a
及び6bと導電リード3,5及び6aを同時に熱圧着す
ることでなされる。
Further, protruding electrodes 6, 6a and 6b for power supply lines are provided inside and around the semiconductor element 1, and conductive leads 5 and 6a extending from the base film 4 are connected to the protruding electrodes 6, 6a and 6b.
Connect to a and 6b. This series of connections is made using the bonding tool 7 shown in FIG.
6b and conductive leads 3, 5, and 6a at the same time by thermocompression bonding.

尚、突起電極6bは半導体素子1の内部へ伸延した導電
リード5と半導体素子1の端面部分の電気的短絡(以下
エツジタッチと称す)の発生を防止する役割を持つ。
Incidentally, the protruding electrode 6b has the role of preventing the occurrence of an electrical short circuit (hereinafter referred to as edge touch) between the conductive lead 5 extending into the interior of the semiconductor element 1 and the end face portion of the semiconductor element 1.

この第1図の従来例により、′龜諒ラインの取出しを半
導体素子1の内部及び周辺部で、かつ任意の複数の場所
で行える。1だ、導電リードら、5aは通常18μm1
36μmの銅箔を用いるため、コストアンプを招かずに
電圧降下を無視できる効果がある。
According to the conventional example shown in FIG. 1, the lead lines can be taken out inside and around the semiconductor element 1 at any number of locations. 1, conductive leads etc., 5a is usually 18μm1
Since a 36 μm copper foil is used, there is an effect that the voltage drop can be ignored without incurring a cost amplifier.

しかし、突起電極6と突起電極6b間に導電リード6が
、また突起電極6と突起電極68間に導電リード6aが
接続されることにより、半導体素子1の主材料(通常S
i )と導電リード6及び5aの主材料(通常Cu )
の熱膨張係数の違いによる熱ストレスが発生し、突起電
極6,6a及び6bの剥離や、導電リード5及び5aが
剥離または断線するといった問題がある。
However, by connecting the conductive lead 6 between the protruding electrode 6 and the protruding electrode 6b and the conductive lead 6a between the protruding electrode 6 and the protruding electrode 68, the main material of the semiconductor element 1 (usually S
i) and the main material of the conductive leads 6 and 5a (usually Cu)
Thermal stress occurs due to the difference in the coefficient of thermal expansion of the conductive leads 6, 6a and 6b, and the conductive leads 5 and 5a are separated or disconnected.

発明の目的 本発明はこのような従来例の欠点を除去すべくなされた
ものであり、コストアップを招くことなく、各材料の熱
膨張係数の違いによる熱ストレスの問題を完全に解決で
きる半導体装置を提供しようとするものである。
Purpose of the Invention The present invention has been made to eliminate the drawbacks of the conventional example, and provides a semiconductor device that can completely solve the problem of thermal stress caused by differences in the coefficient of thermal expansion of each material without increasing costs. This is what we are trying to provide.

発明の構成 この目的を達成するために本発明における半導体装置は
、可撓性のベースフィルムに第1 、第2の導電リード
を形成したフィルムキャリアと、突起電極を周辺部及び
内部に形成した半導体素子とを具備し、前記半導体素子
の周辺部に形成した前記突起電極に前記第1の導電リー
ドが接続され、前記半導体素子の周辺部よりも内側に張
り出した前記ベースフィルムの張り出し部から前記半導
体素子の内部に形成した前記突起電極に接続される前記
第2の導電リードが伸延されている構成としたものであ
る。この構成によれば、半導体素子の内部に形成された
突起電極に第2の導電リードが接続されているだけの構
成のために熱ストレスは発生せず、かつ第2の導電リー
ドと半導体素子端面とのエツジタッチは、半導体素子内
へ張り出したベースフィルムの張り出し部によって完全
に防止されることとなる。
Structure of the Invention In order to achieve this object, a semiconductor device according to the present invention includes a film carrier in which first and second conductive leads are formed on a flexible base film, and a semiconductor device in which protruding electrodes are formed on the periphery and inside. the semiconductor element, the first conductive lead is connected to the protruding electrode formed on the periphery of the semiconductor element, and the semiconductor The second conductive lead connected to the protruding electrode formed inside the element is extended. According to this configuration, thermal stress does not occur because the second conductive lead is simply connected to the protruding electrode formed inside the semiconductor element, and the second conductive lead and the end face of the semiconductor element are connected to each other. Edge touch with the base film is completely prevented by the overhanging portion of the base film that overhangs into the semiconductor element.

実施例の説明 以下、本発明の一実施例を第2図a及びbで説明する。Description of examples An embodiment of the present invention will be described below with reference to FIGS. 2a and 2b.

第2図すは第2図aの八−へ′断面図である。また、従
来例と同一箇所には同一番号を付しである。
FIG. 2 is a sectional view along line 8' of FIG. 2a. Also, the same numbers are given to the same parts as in the conventional example.

半導体素子1の周辺部に設けられた突起電極2にベース
フィルム4から伸延したそれとでフィルムキャリアを構
成する導電リード3が接続される。
Conductive leads 3 extending from a base film 4 and constituting a film carrier are connected to protruding electrodes 2 provided on the periphery of the semiconductor element 1 .

また、電源ライン用の導電リード8はベースフィルム4
から半導体素子1の内部へと伸延し、分岐され、半導体
素子1の内部に設けられた突起′電極6及び6aに接続
される。ここで、導電リード8はベースフィルム4の一
部が半導体素子1の内部へ張り出した張り出し部4aか
ら伸延されており、その張り出し部4aが導電リード8
の支持台となり、エツジタッチ防止に効果がある。
In addition, the conductive lead 8 for the power line is connected to the base film 4.
It extends into the interior of the semiconductor element 1, is branched off, and is connected to protrusion electrodes 6 and 6a provided inside the semiconductor element 1. Here, the conductive lead 8 extends from a projecting portion 4a in which a portion of the base film 4 projects into the inside of the semiconductor element 1, and the projecting portion 4a extends from the conductive lead 8.
It serves as a support base and is effective in preventing edge touch.

以上の突起電極2と導電リード3、突起電極6及び6a
と導電リード8は第2図すに示すボンディングツール9
によって同時に熱圧着される。
The above protruding electrodes 2, conductive leads 3, protruding electrodes 6 and 6a
and the conductive lead 8 are connected to the bonding tool 9 shown in FIG.
At the same time, they are thermocompressed.

ここで、通常突起電極2,6及び6aの高さは数μm〜
3oμm程度であるのに対し、ベースフィルム4の厚さ
は50μm〜200μm程度であるので、第3図に示す
ように先端部に凹み部分10を設けたボンディングツー
ル9によって熱圧着するO 以上、説明した実施例の構造にすることにより、エツジ
タッチを防止できる以外に、突起電極6及び6aに導電
リード8が接続されているだけのため、半導体素子1と
導電リード8の熱膨張係数の違いによる熱ストレスが発
生せず、突起電極6及び6aの剥離、捷たに導電リード
8の断線は発生しない。ここで、前述のように導電リー
ド8はベースフィルム4の張り出し部4aで固定されな
いので、半導体素子1と導電リード8の熱膨張係数の違
いによる熱ストレスは問題ないが、導電1,1−ド8は
導電リード3に比べ長いため、ベースフィルム4と導電
リードの熱膨張係数の違いによる熱ストレスを受け易く
、問題発生の恐れがある。この問題は第2図すのB部分
に示すようにボンディングツール10によって導電リー
ド8が湾曲され、この湾曲部でベースフィルム4と導電
リード8の熱膨張係数の違いによる熱ストレスを吸収す
ることにより解決できる。また、前記湾曲部は前述の半
導体素子1と導電リード8の熱膨張係数の違いによる熱
ストレスも吸収できる効果がある。
Here, the height of the protruding electrodes 2, 6 and 6a is usually several μm to
The base film 4 has a thickness of about 50 μm to 200 μm, so the bonding tool 9 is thermocompression bonded with a concave portion 10 at the tip as shown in FIG. By adopting the structure of the embodiment described above, in addition to being able to prevent edge touching, since the conductive leads 8 are only connected to the protruding electrodes 6 and 6a, heat due to the difference in thermal expansion coefficient between the semiconductor element 1 and the conductive leads 8 can be prevented. No stress is generated, and the protruding electrodes 6 and 6a do not peel off, nor does the conductive lead 8 break. Here, as described above, since the conductive leads 8 are not fixed by the overhanging portions 4a of the base film 4, thermal stress due to the difference in thermal expansion coefficient between the semiconductor element 1 and the conductive leads 8 is not a problem, but the conductive leads 8 Since the conductive leads 8 are longer than the conductive leads 3, they are susceptible to thermal stress due to the difference in coefficient of thermal expansion between the base film 4 and the conductive leads, which may cause problems. This problem is solved because the conductive lead 8 is curved by the bonding tool 10 as shown in part B of Figure 2, and this curved part absorbs the thermal stress due to the difference in thermal expansion coefficient between the base film 4 and the conductive lead 8. Solvable. Further, the curved portion has the effect of absorbing thermal stress due to the difference in thermal expansion coefficient between the semiconductor element 1 and the conductive lead 8 described above.

また、前記実施例においてベースフィルム4の張り出し
部4aの下部に突起電極2と同じ製造工程で形成される
バンプ端子を付加したものも本発明の範囲に含まれるこ
とはもちろんである。
Further, it goes without saying that the scope of the present invention includes a bump terminal formed in the same manufacturing process as the protruding electrode 2 at the lower part of the protruding portion 4a of the base film 4 in the above embodiment.

発明の詳細 な説明した本発明の具体例を実施することにより、フィ
ルムキャリアの製造工程及び熱圧着における工数を従来
の壕まで、消費電力が大なる半導体装置でも半導体素子
の面積を犬とすることなく、配線による電圧降下を抑え
ることが可能な半導体装置を提供することができる。そ
して、従来問題であったエツジタッチや、各材料の熱膨
張係数の違いによる熱ストレスの問題を完全に解決でき
ることが本発明の大きな利点である。
By implementing the detailed embodiment of the present invention, it is possible to reduce the number of man-hours in the film carrier manufacturing process and thermocompression bonding to the conventional level, and reduce the area of semiconductor elements even in semiconductor devices with large power consumption. Therefore, it is possible to provide a semiconductor device that can suppress voltage drop due to wiring. A great advantage of the present invention is that it can completely solve the conventional problems of edge touch and thermal stress caused by differences in the coefficient of thermal expansion of each material.

尚、実施例の説明では電源用配線について記述したが、
本発明は信号用配線についても適用できることに明らか
である。
In addition, in the explanation of the embodiment, the power supply wiring was described, but
It is clear that the present invention can also be applied to signal wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aに従来の半導体素子内へ導電リードを伸延した
ギヤングボッディング方式の半導体装置を示す平面図、
第1図すは第1図aのA −A’断面図、第2図aは本
発明の半導体装置の一実施例を示す平面図、第2図すは
第2図aのA−A’断面図、第3図は本発明の半導体装
置に用いるボンディングツールの先端形状を示す図であ
る0 1−・・半導体素子、2・・・・・周辺部の突起電極、
3−・・・・第1の導電リード、4・・・・・ベースフ
ィルム、4a・・・張り出し部、6.6a・・・・内部
の突起電極、8・・・・・第2の導電リード。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名纂1
FIG. 1a is a plan view showing a conventional gigantic boarding type semiconductor device in which conductive leads are extended into a semiconductor element;
FIG. 1 is a sectional view taken along the line A-A' in FIG. 1a, FIG. 2a is a plan view showing an embodiment of the semiconductor device of the present invention, and FIG. The cross-sectional view and FIG. 3 are diagrams showing the shape of the tip of the bonding tool used in the semiconductor device of the present invention.
3-...First conductive lead, 4...Base film, 4a...Protruding portion, 6.6a...Internal protruding electrode, 8...Second conductive lead Lead. Name of agent: Patent attorney Toshio Nakao and 1 other person Compilation 1
figure

Claims (3)

【特許請求の範囲】[Claims] (1)可撓性のベースフィルムに第1.第2の導電リー
ドを形成したフィルムキャリアと、突起電極を周辺部及
び内部に形成した半導体素子とを具備し、前記半導体素
子の周辺部に形成した前記突起電極に前記第1の導電リ
ードが接続され、前記半導体素子の周辺部よりも内側に
張9出した前記ベースフィルムの張り出し部から前記半
導体素子の内部に形成した前記突起電極に接続される前
記第2の導電リードが伸延されていることを特徴とする
半導体装置。
(1) The first layer is attached to a flexible base film. The film carrier includes a film carrier on which a second conductive lead is formed, and a semiconductor element on which protruding electrodes are formed on the periphery and inside the semiconductor element, and the first conductive lead is connected to the protruding electrode formed on the periphery of the semiconductor element. and the second conductive lead connected to the protruding electrode formed inside the semiconductor element extends from an overhanging part of the base film extending inward from a peripheral part of the semiconductor element. A semiconductor device characterized by:
(2)第2の導電リードが湾曲されて半導体素子の内部
に形成した突起電極と接続されていることを特徴とする
特許請求の範囲第(1)項記載の半導体装置0
(2) The semiconductor device 0 according to claim (1), wherein the second conductive lead is curved and connected to a protruding electrode formed inside the semiconductor element.
(3)第2の導電リードが分岐され、半導体素子の内部
に形成した複数の突起電極と接続されていることを特徴
とする特許請求の範囲第(1)項記載の半導体装置。
(3) The semiconductor device according to claim (1), wherein the second conductive lead is branched and connected to a plurality of protruding electrodes formed inside the semiconductor element.
JP58109529A 1983-06-17 1983-06-17 Semiconductor device Granted JPS601838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58109529A JPS601838A (en) 1983-06-17 1983-06-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58109529A JPS601838A (en) 1983-06-17 1983-06-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS601838A true JPS601838A (en) 1985-01-08
JPH0469425B2 JPH0469425B2 (en) 1992-11-06

Family

ID=14512563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58109529A Granted JPS601838A (en) 1983-06-17 1983-06-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS601838A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195056U (en) * 1985-05-25 1986-12-04
US4684975A (en) * 1985-12-16 1987-08-04 National Semiconductor Corporation Molded semiconductor package having improved heat dissipation
JPS6435925A (en) * 1987-07-30 1989-02-07 Mitsubishi Electric Corp Integrated circuit element
JPH02161738A (en) * 1988-12-15 1990-06-21 Hitachi Cable Ltd Tape carrier for tab
US4989318A (en) * 1988-06-09 1991-02-05 Oki Electric Industry Co., Ltd. Process of assembling terminal structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512791A (en) * 1978-07-14 1980-01-29 Nec Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512791A (en) * 1978-07-14 1980-01-29 Nec Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195056U (en) * 1985-05-25 1986-12-04
US4684975A (en) * 1985-12-16 1987-08-04 National Semiconductor Corporation Molded semiconductor package having improved heat dissipation
JPS6435925A (en) * 1987-07-30 1989-02-07 Mitsubishi Electric Corp Integrated circuit element
US4989318A (en) * 1988-06-09 1991-02-05 Oki Electric Industry Co., Ltd. Process of assembling terminal structure
JPH02161738A (en) * 1988-12-15 1990-06-21 Hitachi Cable Ltd Tape carrier for tab
JPH0586065B2 (en) * 1988-12-15 1993-12-09 Hitachi Cable

Also Published As

Publication number Publication date
JPH0469425B2 (en) 1992-11-06

Similar Documents

Publication Publication Date Title
JP3258200B2 (en) Pressure contact type semiconductor device
JPH088330B2 (en) Semiconductor integrated circuit device having LOC type lead frame
JP3033227B2 (en) Semiconductor device
JP2828056B2 (en) Semiconductor device and manufacturing method thereof
JPS601838A (en) Semiconductor device
JP3614476B2 (en) Flexible wiring parts
JPH01298731A (en) Semiconductor device
JPS601968A (en) Semiconductor device
JP2819825B2 (en) Semiconductor device with built-in TAB
JPH04196555A (en) Tab package
JP3450590B2 (en) Terminal connection structure of integrated circuit
JP3216636B2 (en) Semiconductor device
JP3337781B2 (en) Lead frame and TAB tape
JPH01310549A (en) Semiconductor device
JP2697743B2 (en) Resin-sealed semiconductor device
JPS6115587B2 (en)
JP2596399B2 (en) Semiconductor device
JPH02253650A (en) Lead frame
JPS633159Y2 (en)
JPH0756890B2 (en) Method for manufacturing semiconductor device
JPS63169746A (en) Semiconductor device
JPH0738049A (en) Composite lead frame
JPS61137334A (en) Semiconductor device
JPH077817B2 (en) Manufacturing method of composite lead frame
JPH0513658A (en) Lead frame for semiconductor device