JPS60179196A - Device for controlling aeration blower in waste water treating equipment - Google Patents

Device for controlling aeration blower in waste water treating equipment

Info

Publication number
JPS60179196A
JPS60179196A JP59035854A JP3585484A JPS60179196A JP S60179196 A JPS60179196 A JP S60179196A JP 59035854 A JP59035854 A JP 59035854A JP 3585484 A JP3585484 A JP 3585484A JP S60179196 A JPS60179196 A JP S60179196A
Authority
JP
Japan
Prior art keywords
aeration
blower
value
air volume
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59035854A
Other languages
Japanese (ja)
Inventor
Hatsuhiro Yamaguchi
山口 初宏
Takashi Nagase
高志 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59035854A priority Critical patent/JPS60179196A/en
Publication of JPS60179196A publication Critical patent/JPS60179196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To reduce the power to be needed, and to stabilize biological treatment by providing an airflow controller for determining the necessary amt. of aeration air on the basis of the control deviation from the desired DO value, a number controller for determining the number of aeration blowers to be needed, and an inverter, etc. CONSTITUTION:When the manipulated variable of an inverter reaches the upper limit value and specified hours elapse, the capacity of a blower in operation is deficient. Consequently, one constant airflow type blower is additionally started by a relay control panel 30 on the basis of the output signal of an airflow controller 28. The manipulated variable of the airflow controller 28 is elevated to the upper limit by the signal of completion of starting from the relay controller 30, and the manipulated variable of the inverter rises to the upper limit. When the DO value is regulated within the limits of gap, the manipulated variable is naintained constant, and the airflow for aeration is fixed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、生活排水等の有tIs排水を活性汚泥法に
よって処理する際の曝気槽内での曝気態量を制′nする
装置に関するものであり、排水処理あるいは公害防止の
分野で利用することができる。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a device for controlling the amount of aeration in an aeration tank when treating wastewater with TIs such as domestic wastewater by an activated sludge method. , can be used in the field of wastewater treatment or pollution prevention.

従来技術 周知のように、活性汚泥法は、排水中の汚濁物質を活性
汚泥によって酸化分解し、しかる後活性汚泥を沈澱分離
して清浄な上澄みを放流する方法である。すなわちこの
方法では、汚泥が排水中に溶存する酸素を消費して汚濁
物質を分解するから、排水中の汚濁物質の量(BOD濃
度)や排水の量あるいは温度等に基づく汚泥の活性度等
に応じた量の酸素を排水中に供給づる必要がある。この
ような酸素の供給は、排水中にブロワによって空気を吹
き込む曝気によって行なうが、−気1!liが少ない場
合には、排水の浄化を充分に行なうことができず、逆に
曝気風量が多過ぎる場合には、曝気ブロワの駆動エネル
ギを不必要に消費づることになる。
As is well known in the prior art, the activated sludge method is a method in which pollutants in wastewater are oxidized and decomposed by activated sludge, and then the activated sludge is separated by sedimentation, and a clean supernatant is discharged. In other words, in this method, sludge consumes oxygen dissolved in wastewater to decompose pollutants, so the amount of pollutants in wastewater (BOD concentration) and the activity of sludge based on the amount of wastewater or temperature etc. It is necessary to supply a corresponding amount of oxygen into the wastewater. This supply of oxygen is done by aeration, which blows air into the waste water using a blower, but -1! When li is small, the waste water cannot be purified sufficiently, and on the other hand, when the amount of aeration air is too large, the driving energy of the aeration blower is unnecessarily consumed.

そのため、従来、曝気槽におけるDO値(溶存酸素量)
が、BOD+!!度等に応じた所定の値(設定値)にな
るよう曝気風量を制御している。第1図はそのための従
来装置の一例を示1′模式図であって、曝気槽1の内部
には排水2のDO値を測定して電気信号として出力する
DO計3および活性汚泥の山を測定して電気信号として
出力するMLSS計4ならびに散気器5が配置されてお
り、DO計3おびMLSS計4はΔ−D変換器6を介し
てマイクロコンビコータ7に接続され、また散気器5は
、用色可変型ブロワ8および複数台(図では2台)の定
風量型ブロワ9に連通ずるエアー母管10に取付けられ
ている。また排水流入管11に流量計12が設けられて
J3す、その1tHt12は検出値をM気信号として出
力づる出ツノ器13および前記A−D変換器6を介して
マイクロコンビ1−タフに接続されている。さらに前記
PAA相可変ブロワ8は、マイクロコンピュータ7の出
力信号をD−△変19!器14を介してインバータ15
に入力し、その出力信号による周波数変換方式によって
制御されるようになっており、これに対し各定1!II
型ブロワ9はマイクロコンピュータ7によってAン・オ
フ制御されるようになっている。づなりち第1図に示す
装置では、Do計3およびMLSS計4ならびに流B計
12による検出値を、予め設定しであるプログラムに従
ってマイクロコンピュータ7により処理し、その値に応
じてffl量可変可変型ブロワ8る送風量や定風量型ブ
ロワ9の駆動台数の制御を行なって、曝気11内のDO
’値を設定値に近付けるよう制御する。
Therefore, conventionally, the DO value (dissolved oxygen amount) in the aeration tank
But BOD+! ! The aeration air volume is controlled to a predetermined value (set value) depending on the temperature, etc. FIG. 1 is a schematic diagram 1' showing an example of a conventional device for this purpose. Inside the aeration tank 1, there is a DO meter 3 that measures the DO value of the waste water 2 and outputs it as an electric signal, and a pile of activated sludge. An MLSS meter 4 that measures and outputs it as an electric signal and an aeration diffuser 5 are arranged, and the DO meter 3 and the MLSS meter 4 are connected to a micro combi coater 7 via a Δ-D converter 6, and an aeration diffuser. The device 5 is attached to an air main pipe 10 that communicates with a color variable blower 8 and a plurality of (two in the figure) constant air volume blowers 9. In addition, a flow meter 12 is provided in the wastewater inflow pipe 11, and its 1tHt12 is connected to the microcombi 1-tough via the output horn 13 that outputs the detected value as an M signal and the A-D converter 6. has been done. Furthermore, the PAA phase variable blower 8 changes the output signal of the microcomputer 7 to D-Δ19! Inverter 15 via converter 14
It is controlled by a frequency conversion method based on the output signal, and each constant 1! II
The mold blower 9 is controlled to be turned on and off by the microcomputer 7. In the device shown in Zunarichi Figure 1, the detected values from the Do meter 3, the MLSS meter 4, and the flow B meter 12 are processed by the microcomputer 7 according to a preset program, and the amount of ffl is varied according to the values. By controlling the amount of air blown by the variable blower 8 and the number of units driven by the constant air amount blower 9, the DO in the aeration 11 is controlled.
'Control the value to bring it closer to the set value.

しかるに上記の装置では、マイクロコンピュータ7を用
いていることにより、多種類のデータを利用して曝気1
!lff1を制御できるが、全てのデータが寒気mmの
制御に必ずしも有効に機能するものではないため、以下
に述べる問題があった。すなわち上記従来の装置は、排
水の流入量を検出することによるフィードフォワード制
御を行なうが、雨天時には流入量が増えるものの、その
DO漢度は低くなく、また逆に濃厚排水流入時は、流入
量の増加は特にはないが、DO!!!度が低くなり、こ
のように排水の流入量とDO値との相関関係がない場合
が多い。また活性汚泥の量に比例して曝気I’llを多
くすることが望ましいが、現状のMLSS計4の出力信
号は、センサーの信頼性が低いために活性汚泥の吊を必
ずしも正確に示すものとはならない。したがって上記の
装置では、マイクロコンピュータ7に入力したデータの
全てが曝気風量の制御に有効に機能しない場合があり、
高度な制御を行なうにも拘わらず、DO値のバラつきが
大きかったり、それに伴って曝気ブロワの駆動エネルギ
(現実には電力量)が嵩んだりし、また設備費が高いも
のとなるなどの問題があった。
However, in the above device, by using the microcomputer 7, various types of data are used to determine the aeration level.
! Although it is possible to control lff1, not all data necessarily function effectively in controlling cold air mm, which causes the following problems. In other words, the conventional device described above performs feedforward control by detecting the amount of inflow of wastewater, but although the amount of inflow increases during rainy weather, the DO efficiency is not low, and conversely, when concentrated wastewater flows in, the amount of inflow Although there is no particular increase in DO! ! ! In this way, there is often no correlation between the amount of inflow of wastewater and the DO value. Also, it is desirable to increase the aeration I'll in proportion to the amount of activated sludge, but the output signal of the current MLSS total 4 does not necessarily accurately indicate the amount of activated sludge due to the low reliability of the sensor. Must not be. Therefore, in the above device, all of the data input to the microcomputer 7 may not function effectively to control the aeration air volume.
Despite advanced control, there are problems such as large variations in the DO value, resulting in an increase in the driving energy (in reality, electric power) of the aeration blower, and high equipment costs. was there.

発明の目的 この発明は上述した従来技術の問題を解消するためにな
されたもので、DO値を目標どする設定値に可及的に近
付けて生物処理の安定化を図ることができるとともに、
曝気ブロワの運転に要する動力を低減することのできる
曝気ブロワ制御装置を提供することを目的とするもので
ある。
Purpose of the Invention The present invention has been made to solve the problems of the prior art described above, and it is possible to stabilize biological treatment by bringing the DO value as close as possible to the target set value, and
It is an object of the present invention to provide an aeration blower control device that can reduce the power required to operate an aeration blower.

発明の構成 この発明の制御装置は、曝気槽内での溶存酸素量を測定
して電気信号として出力するDO計と、DO計の出力値
を一定時間毎にサンプルしかつその値が目標DO値を中
心とした所定のギャップ幅を外れている場合にその制御
偏差に基づいて必要曝気1!lfiを比例積分制御によ
って決定する風量制御器と、必要曝気用量を得るために
必要な風聞可変型曝気ブロワによる送I!l量および定
風量型曝気ブロワの駆動の要否もしくは必要駆動台数を
決定する台数制御器と、前記風量可変型曝気ブロワを周
波数変換制御によって制御するインバータとを具備し、
Illll変可変型曝気ブロワる送I!1mが−定時間
下限である場合に前記走風吊型曝気ブロワの駆動台数を
減らすとともに風量可変型寒気プロ′ノによる送風量を
一七限に引き上げ、また眉間可変を曝気ブロワによる送
ff1fiが所定時間上限である場合に定風量曝気ブロ
ワの駆動台数を増やすとともに風量可変型曝気ブロワに
よる送I!I吊を下限に下げるよう構成したことを特徴
とするものである。
Composition of the Invention The control device of the present invention includes a DO meter that measures the amount of dissolved oxygen in an aeration tank and outputs it as an electrical signal, and samples the output value of the DO meter at regular intervals and sets the value as a target DO value. Required aeration based on the control deviation if it deviates from a predetermined gap width centered on 1! An air flow controller that determines lfi by proportional-integral control and a variable air flow type aeration blower that is necessary to obtain the required aeration amount. a number controller that determines whether or not to drive the variable air volume and constant air volume aeration blowers or the required number of them to be driven, and an inverter that controls the variable air volume aeration blower by frequency conversion control,
Illll variable type aeration blower I! When 1 m is the lower limit for a certain period of time, the number of driven suspended aeration blowers is reduced, and the air flow rate by the variable air volume cold air pro' is increased to 17 limits, and the air flow ff1fi by the aeration blower is increased between the eyebrows. When the specified time limit is reached, the number of constant air volume aeration blowers driven is increased, and the air volume variable type aeration blower is used to send I! It is characterized by being configured to lower the I-hang to the lower limit.

実施例 以■この発明の実施例を第2図ないし第4図を一参照し
て説明する。
EMBODIMENTS Embodiments of the present invention will be described with reference to FIGS. 2 to 4.

第2図はこの発明の〜実施例を示φ模式図であって、曝
気槽20は型理1べき排水21を所定の個所から流入さ
れるとともに、その流入部とは反対側の開所から処理水
22を流出させる構成とされ、その曝気lW2Oの底部
に配置した散気器23は、エアー母管24に連通される
とともに、そのエアー母管24は、風亀可変型ブロワ2
5および複数台(図では3台)の定風量型ブロワ26a
、26’b、26cに並列に接続されでいる。曝気槽2
0における排水21の流入部から処理水22の流出部に
到る全長βに対し、流入部から!×2/3の位置に、罐
気槽20の内部のDOfiaを測定するDO計27が設
けられているうここで流入部からI X 2/3の位置
にDo計27を設けた理由は、排水21が曝気槽20に
流入した1多、その全長!の2.′3程度を流れる間に
、曝気に伴う活性汚泥の増殖、すなわち汚濁物質の分解
が終了し、それ以降は汚泥の生存のみに溶存酸素を消費
するため、前述した位置におけるDO値が排水21の浄
化度合を適切に表わす指標となるからである。そのDO
計27は、測定値を電気信号として出ノjする構成であ
って、I!lfJ制陣器2制御接続され−Cいる。
FIG. 2 is a schematic diagram showing an embodiment of the present invention, in which an aeration tank 20 receives wastewater 21 from a molded structure from a predetermined location, and processes it from an opening on the opposite side of the inflow section. The air diffuser 23, which is configured to cause water 22 to flow out and is placed at the bottom of the aeration lW2O, is communicated with an air main pipe 24, and the air main pipe 24 is connected to a variable wind blower 2.
5 and multiple (three in the figure) constant air volume blowers 26a
, 26'b, and 26c in parallel. Aeration tank 2
From the inflow part to the total length β from the inflow part of the waste water 21 to the outflow part of the treated water 22 at 0! The DO meter 27 for measuring the DOfia inside the canister tank 20 is installed at the x2/3 position. The total length of the waste water 21 flowing into the aeration tank 20! 2. While the activated sludge flows through approximately 1.3', the multiplication of activated sludge due to aeration, that is, the decomposition of pollutants, is completed, and after that, dissolved oxygen is consumed only for the survival of the sludge, so the DO value at the above-mentioned position is This is because it serves as an index that appropriately represents the degree of purification. That DO
Total 27 has a configuration that outputs the measured value as an electrical signal, and has an I! lfJ control unit 2 control is connected to -C.

その風量制御器28に台数制御器29が接続されるとと
もに、これらIuIffi制御il器28と台数制御P
II器2つとのそれぞれにリレー制御盤30が接続され
ている。
A number controller 29 is connected to the air volume controller 28, and these IuIffi controllers 28 and the number controller P
A relay control panel 30 is connected to each of the two II units.

これら各制御器28.29およびリレー制御盤30の機
能について説明すると、I!1m制御器28は前記DO
計27から入力されたDO値と目標とするDO値である
設定値との偏差量に基づいて必要呼気I@吊をA慣・ツ
ブ1ノンプルP I制御づる構成である。ここでギVツ
ブとは、設定値を中心とし−C定めた所定の範囲(ギヤ
・・17範囲)内(=DO値カ人、でいるときは、たと
えD O噴と設定値とに偏差があっても操作色を変化さ
けず(二様前の操作用を樽続させるための設定幅で゛あ
る。またサンプルとは、予め定めた所定のり゛ンブル時
間(例えば30秒間)ごとに入力値であるDO1泊を区
切り、そのサンプル時間内で[)0値に幅差が生じてい
る場合に、その勺ンプル時間内の一定時間(例えば10
秒間)だけ制御を実行し、残りの時間【ユ操作量を変化
させないことを意味する。さらにl) Iとは、制御動
作が比例・積分動作であることを示すしたがって風量制
御器28は、風量制御時の応答がDo測定値に対し1次
遅れで伝達するとともにD OKt 27の応答庁れに
よる無駄時間を補正し、かつDO計27の測定値の一時
的な変動が操作色に影響しないようになっている。また
台数制御l器29は、風量制御器28によって決定され
た必要曝気1!Htとなるよう前記ブロワ25.26a
−26cを制tyt+−a−るものであり、より具体的
には、DO値が大きく変化することにより風(3)可変
型ブロワ25によろ用量制御では不充分となった場合に
、定風量型ブロワ26(1〜26cのオン・A)制御を
行なう構成である。−すなわち用量制御中に前記FJ1
fi制御器28の操作員が、予め定めた所定時間(例え
ば600秒)以上、」−限鳴停一とどまった場合に、定
態吊型ブロワ26a〜26cのいずれか、もしくは総て
を動作させるべくリレー制御130に起動信号を出力し
、かつリレー制御盤30からiE動完了信号が入力され
ることにより、風ハ可変型ブ目ワ25にJ:る用量を下
限に下げ、l、た逆にM fi Itl+御器28の操
作色が、予め定めた所定時間(例えば600秒) L/
上、下限値にとどまった場合に、定風昂型ブ[1ワ26
a〜26cのいずれか、もしくは総てを停止させるへく
リレー制御fl]盤301ご停止信号を出力し、かつリ
レー制御盤30から停止完了信号が入力されることによ
り、風量可変型ブロワ25によるIl門を上限に上げる
よう構成されている。
To explain the functions of each of these controllers 28, 29 and relay control panel 30, I! 1m controller 28 is the DO
The configuration is such that the required exhalation I @ suspension is controlled based on the amount of deviation between the DO value input from the total 27 and the set value which is the target DO value. Here, the gear V point is within a predetermined range (gear...17 range) centered around the set value (= DO value), even if there is a deviation between the DO injection and the set value. The operation color does not change even if the operation color is changed (this is a setting width to allow two different operations to continue. Also, a sample is a set of input colors that are input every predetermined recombination time (for example, 30 seconds). If there is a difference in the width of the [)0 value within the sample time, the DO value is divided into one night, and if there is a difference in the width of the [)0 value within that sample time, then
This means that the control is executed for only one second) and the manipulated variable is not changed for the remaining time. Furthermore, l) I indicates that the control action is a proportional/integral action. Therefore, the air volume controller 28 transmits the response during air volume control with a first-order delay with respect to the Do measurement value, and the response time of the D OKt 27. This corrects the wasted time caused by this, and prevents temporary fluctuations in the measured value of the DO meter 27 from affecting the operation color. In addition, the number controller 29 controls the required aeration 1! determined by the air volume controller 28! The blower 25.26a so that Ht
-26c tyt+-a-, and more specifically, when the DO value changes significantly and the amount control by the variable blower 25 becomes insufficient, the constant air amount is This configuration controls the mold blower 26 (ON/A of 1 to 26c). - i.e. during dose control the FJ1
The operator of the fi controller 28 operates any or all of the stationary suspended blowers 26a to 26c when the sound remains at a limited stop for a predetermined period of time (for example, 600 seconds) or more. By outputting a start signal to the relay control 130 and inputting an iE operation completion signal from the relay control panel 30, the amount of air flowing to the variable air flow meter 25 is lowered to the lower limit, and the flow is reversed. The operation color of M fi Itl + control 28 is set for a predetermined period of time (for example, 600 seconds) L/
When the upper and lower limit values are reached, the constant air pressure valve [1W26
By outputting a stop signal from the relay control panel 301 and inputting a stop completion signal from the relay control panel 30, the variable air volume blower 25 is activated to stop any or all of a to 26c. It is configured to raise the Il gate to the upper limit.

前記夙示可変型ブロワ25はインバータ(周波数変換器
)31を介してり1./−制υ■器30に接続され、貝
吊昏゛(劉器2Bの1桑1゛「帛(二基づく周波数の変
換(Jよって送凧磨を増減シ72、したがって風伊制胛
i”!1i28の操作量が上限値あるいは下限館になる
口とにより、送風量が最大もしくけ最少どなるよう構成
されている。
The variable indication blower 25 is connected to an inverter (frequency converter) 31.1. /- is connected to the control device 30, and the shell hanging control (Liu device 2B's 1 2 1 2B frequency conversion (J) increases or decreases the kite sending power 72, so the wind control device i) The amount of air blown is configured to be maximum or minimum depending on whether the operation amount of !1i28 reaches the upper limit or the lower limit.

なお、台数制御器29は定凪但型ブ[コ「)26aへ・
26Cのオン・オフ制御機能以外に、インターロック(
幾能、駆動台数増減懇能、およびサイクリック運転枯能
ならびに飛び越し運転ll!門を具備しているっリ−な
わちインター[コツクル%能は、定J!1. ffiを
ブロワ26a〜26cのいず壜1かが停止した場合、そ
のブロワをタイマ等によって一定時間停止状態に保持づ
る機能であって、同一のブ[]ワのみが碩繁にオン・オ
フすることによる故V?を防」トJるようになっている
。また駆動台数増組1シは、tilt可変型ブロワ25
以外に1台の定JUL’S型ブロワをil′1llvi
lするだけでは不充分な場合に、他の1台もしくは複数
台の走風m型ブロワを制御する機能である。さらにザイ
クリック運転機能は、複数台ある定風量型ブロワ26a
〜260の起動停止順序を自動的に切替える機能であり
、この機能によって各定J!In型)[]ワ26a〜2
6Cの運転時間が平均化され、特定のブロワが早期に寿
命到来となることか防止される。またさらに、飛び越し
運転機能は、ブロワに事故が起きた場合、そのブロワの
次の順位のブロワを動作させる機能である。
In addition, the number controller 29 is connected to the constant calm type block 26a.
In addition to the on/off control function of 26C, there is also an interlock (
Functionality, increase/decrease in the number of drive units, cyclic operation capacity, and intermittent operation! It is equipped with a gate, that is, an intermediary function is fixed J! 1. If one of the ffi blowers 26a to 26c stops, it is a function that keeps that blower in a stopped state for a certain period of time using a timer, etc., and only the same blower is turned on and off frequently. Maybe the late V? It is designed to prevent In addition, if the number of drives is increased (1), the tilt variable blower 25
In addition, one fixed JUL'S type blower is installed.
This is a function to control one or more other M-type blowers in cases where it is not sufficient to control the M-type blowers. In addition, the zaiclic operation function uses multiple constant air volume blowers 26a.
This is a function that automatically switches the starting and stopping order of ~260, and this function allows each fixed J! In type) [ ] Wa 26a~2
The operating time of the 6C is averaged and a particular blower is prevented from reaching the end of its life prematurely. Furthermore, the skip operation function is a function that, when an accident occurs with a blower, operates the blower next to the blower.

つきに上述した装置の作用について説明づる。First, the operation of the above-mentioned device will be explained.

第3図はDO計27によって得られたDO値、風帛可変
型ブUワ25に対りるインバータ操作量、ブロワ運転台
数および曝気amの経時変化を示す線図である。曝気槽
20内のDO値はDO計27によって測定され、その測
定値は風量制御器28に入力される。DO値が、風量制
御器28に設定しである設定値を中心とした所定のギャ
ップ幅以下であれば、その偏差に基づいて風量制御器2
8 ゛が信号を出力し、その結果インバータ操作量が増
太し、l!1間可変可変型ブロワ25転数が上がるため
、曝気風量が増える。曝気風足の増大に伴ってDO値が
上品するが、DO値がギャップ範囲内に入ると、引lり
神器28が躬差量を君と見曹して操作員を一定に保ち、
その結果、インバータ操作量が一定となるから、瞠気用
病も一定になる。このように1ノて岡気槽20内の18
[水21中に供給)る醇素吊が、浄化の進行などによっ
て活性汚泥による酸素の消費量を越えていシ]ば、DO
値が上昇し。
FIG. 3 is a diagram showing changes over time in the DO value obtained by the DO meter 27, the inverter operation amount for the variable air flow blower 25, the number of blowers in operation, and the aeration am. The DO value in the aeration tank 20 is measured by a DO meter 27, and the measured value is input to the air volume controller 28. If the DO value is equal to or less than a predetermined gap width centered around a set value set in the air volume controller 28, the air volume controller 2
8 ゛ outputs a signal, and as a result, the inverter operation amount increases, and l! Since the rotation speed of the variable blower 25 is increased, the aeration air volume increases. As the aeration flow increases, the DO value improves, but when the DO value falls within the gap range, the pulling sacred treasure 28 detects the amount of error and keeps the operator constant.
As a result, since the inverter operation amount becomes constant, the amount of dizziness also becomes constant. In this way, the 18 in the tank 20
[If the amount of sulfur supplied to the water 21 exceeds the amount of oxygen consumed by activated sludge due to progress of purification, etc.], DO
The value increases.

続ける。()0値が前記ギャップ範囲を越えれは、排水
21中の溶存耐素吊が不必要に多いことになるから、風
量制御器28はその偏差量に基づいて呼気用量を減じる
よう信号を出力し、その結果インバータ操作量が低下し
て曝気凧nが少なくなる。
continue. ( ) If the 0 value exceeds the gap range, the amount of dissolved element in the waste water 21 will be unnecessarily large, so the air volume controller 28 outputs a signal to reduce the expiratory volume based on the amount of deviation. As a result, the inverter operation amount decreases and the number of aeration kites n decreases.

その場合、用吊制n器28はギセップ普ナンブルPl制
御を行1.【う構成であるから、例えは30秒のサンプ
ル時間のうち10秒間だけ制御偏差に基づく制量を実行
し、残りの20秒間は制胛実行後の操作員に維持する。
In that case, the suspension control unit 28 performs the Giseppu number Pl control. [Because of this configuration, for example, control based on the control deviation is executed for only 10 seconds out of a sample time of 30 seconds, and the remaining 20 seconds are maintained by the operator after the control is executed.

したがってインバータ操作量(すなわF、、J!l量可
変可変型ブロワ25転数)が第3図に示すように階段状
に変化する。
Therefore, the inverter operation amount (that is, the variable F, J!l variable number of rotations of the variable blower 25) changes stepwise as shown in FIG.

インバータ操作量を減じて下限値になった後、予め定め
た所定時間(例えば600秒)を経過すると、r@最副
制御器28らの出力信号によってりしノ=制n盤30が
、定風量型ブロワ26a−260のうちの1台を停止さ
せ、したかってブロワの運転台数が0台から(n−1)
台に減る。またリレー制御盤30からの停止完了信号に
より風量制御器28の操作員が上限値に上界し、その結
果インバータ操作員が上限値に上がる。づなわち定態コ
型ブロワの1台の停止による呼気用量の減少を、同量可
変型ブ[1ワ25の回転数を最大【こすることによりカ
バーする。そしてそれ以時、DO値の設定値からの偏差
に基づ゛いてインバータ操作量をサンプル時間ごとに段
階的に下げる。こうしてDO値がギャップ範囲内に入る
と、風量制御器28が偏差量を零と見m−uためのイン
バータ操作量が一定となり、その結果呼気風−が直前の
F@最に維持される。その場合の排水21に対する酸素
供給量が、活性汚泥による酸素消費量より少な【プれば
、Do値が減少し続ける。Do値がギャップ範囲以下と
なると、インバータ操作量が増大して曝気風量が増大す
るが、インバータ操作量が上限値に達してそのまま所定
の時間(例えば600秒)が経過すると、運転中のブロ
ワでは容量が不足していること【Jなるから、リレー制
胛盤30が風最制計器28の出力信号に基づいて走風昂
里ブロワを新たに1台起動させる。またリレー制郭盤3
oがらの起動完了信号によって風量側回器28の操作量
が゛上限に上昇し、それに伴ってインパーク操作量が上
限値になる。以降、ギャップザンプルP■制罪によって
インバータ操作量が段階的に上昇し、曝気ff1ffi
が次第に増大する。そして、Do値がギャップ範囲内ど
なれば、前述したようにインバータ操作量が一定に相持
され、呼気用量が一定となる。
After a predetermined time (for example, 600 seconds) has elapsed after the inverter operation amount has been reduced to reach the lower limit value, the output signal from the r@most secondary controller 28 causes the control board 30 to set the One of the air volume blowers 26a-260 is stopped, and the number of operating blowers changes from 0 to (n-1).
Reduced to the table. Further, the air volume controller 28 operator reaches the upper limit due to the stop completion signal from the relay control panel 30, and as a result, the inverter operator reaches the upper limit. In other words, the decrease in expiratory volume due to the stoppage of one of the stationary type blowers is compensated for by increasing the rotational speed of the same volume variable type blower 25 to the maximum. After that, the inverter operation amount is lowered stepwise at each sample time based on the deviation of the DO value from the set value. When the DO value falls within the gap range, the air volume controller 28 considers the deviation amount to be zero, and the inverter operation amount for mu becomes constant, and as a result, the exhaled air is maintained at the previous F@most. If the amount of oxygen supplied to the waste water 21 in that case is less than the amount of oxygen consumed by activated sludge, the Do value continues to decrease. When the Do value falls below the gap range, the inverter operation amount increases and the aeration air volume increases, but if the inverter operation amount reaches the upper limit and a predetermined period of time (for example, 600 seconds) has passed, the operating blower Since the capacity is insufficient [J], the relay control board 30 activates one new air flow blower based on the output signal of the wind control instrument 28. Also, relay control board 3
The operation amount of the air volume side circuit 28 increases to the upper limit due to the startup completion signal from O, and accordingly, the impark operation amount becomes the upper limit value. After that, the inverter operation amount increased step by step due to the gap sample P■ control, and the aeration ff1ffi
gradually increases. When the Do value falls within the gap range, the inverter operation amount remains constant as described above, and the expiratory volume becomes constant.

なお、」二記のように制御している間において、ブロワ
の運転台数をn台から(旧−1)台に減じ、それでもな
おり 011fが下がらない場合、インバータ制御0が
再度下限値になるため、ブロワの運転台数が更に1台減
る。またブロワの運転台数が1台増え、それでもなおり
o値が上昇しない場合は、インバータ操作量が再度上限
値になるため、ブロワの運転台数が更に1台増える。
In addition, while controlling as described in section 2, if the number of blowers in operation is reduced from n to (old -1) and 011f still does not decrease, inverter control 0 becomes the lower limit value again. Therefore, the number of operating blowers is further reduced by one. Further, if the number of operating blowers increases by one and the o value still does not rise, the inverter operation amount reaches the upper limit again, so the number of operating blowers increases by one more.

このように上記の装置ては、第3図のDo値および呼気
1!Ifiの変動から見られるように、風損制御の応答
が、DO値に対して1次荏れで伝達され、かつDO呂1
27の応答遅れによる無駄時間を補正でき、さらにD 
O!t 27による測定かが操作量に特に影響しないた
め、風量制御を確実に行なうことかできる。したがって
活性汚泥による処理を安定させることができ、また呼気
風聞が過大とならないから、ブロワをインバータ制御す
ることと相まって、ブロワによる消費エネルギも必要最
小限に抑λることができる。
In this way, the above-mentioned device has a Do value of 1! As can be seen from the fluctuations in Ifi, the response of windage control is transmitted in a linear manner with respect to the DO value, and
27, the wasted time due to response delay can be corrected, and D
O! Since the measurement at t27 does not particularly affect the amount of operation, the air volume can be controlled reliably. Therefore, the treatment with activated sludge can be stabilized, and since the exhaled air pressure does not become excessive, combined with the inverter control of the blower, the energy consumption by the blower can be reduced to the necessary minimum.

つぎにこの弁明の装置による効果を確認プるために行な
った実験例を、比較例と共に示づ。
Next, an experimental example conducted to confirm the effect of this excuse device will be shown together with a comparative example.

本発明例 処理水量: 9.500m3/’日 ブロワ: 20〜58+n’ 7分X O,5kg(i
 ci x 75kw1基 581y13/分X O,5kQf/’cK X 75
kW ’I基20m3/分x O,5k!lf/ctX
55kw 2基運転時間: 241+r/日×100日
−2,400hr以上の設備において、Do値が1.6
ppmとなるJ:うギャップ(すン′プルPI制御によ
ってブロワの風晒を制御した。
Example of the present invention Processed water amount: 9.500 m3/'day Blower: 20-58+n' 7 minutes X O, 5 kg (i
ci x 75kw 1 group 581y13/minX O, 5kQf/'cK X 75
kW 'I group 20m3/min x O, 5k! lf/ctX
55kw 2 unit operation time: 241+r/day x 100 days - Do value is 1.6 for equipment with 2,400hr or more
ppm.

比較例 上記の例で示した設備において、DOliIが 1.6
pp+nとなるようブロワをフィードバック制御した。
Comparative Example In the equipment shown in the above example, DOliI is 1.6
The blower was feedback-controlled so that pp+n.

本発明例および比較例におけるDo値の経時変化は第4
図に示す通りであった。第4図に示す結果から明らかな
ように、本発明の装置によればDO値の変動幅が極めて
小さく、安定していることが認められる。また浄化度合
を調べたところ、第1表に示す結果が得られた。
The change in Do value over time in the inventive example and the comparative example is the fourth
It was as shown in the figure. As is clear from the results shown in FIG. 4, it is recognized that according to the apparatus of the present invention, the fluctuation range of the DO value is extremely small and stable. Furthermore, when the degree of purification was investigated, the results shown in Table 1 were obtained.

第1表に示す結果から明らかなように、本発明の装置で
は、BOD値の変動が少ないうえに、従来よりも34%
程度BOD値を低減でき、排水浄化が優れている。
As is clear from the results shown in Table 1, the device of the present invention has less fluctuation in BOD value and is 34% lower than the conventional device.
The BOD value can be reduced to a certain degree, and wastewater purification is excellent.

さらに比較例では、3,002kwH/日×30日/月
= 90.060kwH/月の電力を消費したが、本発
明例では、 1,910kwH/日×30日/月= 5
7,300kwH/月の電力を消費し、結局32.76
0kwH/’月の省エネ効果があることが認められた。
Furthermore, in the comparative example, 3,002 kwH/day x 30 days/month = 90.060 kwH/month of power was consumed, but in the inventive example, 1,910 kwH/day x 30 days/month = 5
Consuming 7,300kwH/month of electricity, the total amount was 32.76
It was recognized that there was an energy saving effect of 0 kwH/' month.

発明の効果 以上の説明から明らかなようにこの発明の曝気ブロワ制
御装置によれば、Do値およびBOD値の変動幅が小さ
く、かつ小さい植に安定し、しIζがつτ活性汚泥によ
る沈埋を宥定イヒでろことができ、また不必要に呼気を
行/ンうことがないから、演乃Iオルギを(,1来に比
較し一τ人幅(二削派イることが′Cさる。
Effects of the Invention As is clear from the above explanation, the aeration blower control device of the present invention has a small range of fluctuations in Do and BOD values, stabilizes small plants, and prevents siltation caused by activated sludge. Since it can be done in a calm manner and there is no need to exhale unnecessarily, the performance is 1τ width compared to the previous one. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(,1来の炉気ブロワ制tel目1厄の一例を
示ン づ模式図、第斗図はこの弁明の−1を示づ模式図、第3
図はDO値、インバータ操作間、ブ[1ワ運転台数およ
び曝気I!l最の時間的変化を示す線図、第1図1=1
*発明例と比較例どにJ、; t−する実F’l [’
) O賄の変動を示づ綜目である。 20・・・が気相、 25・・・I!′l酊可変型ブロ
ワ、26a 、26b 、26cm・・定」@シブロワ
、28−1!1節制御器、 29・・・台数制御il器
、 31・・・インバータ。 出願人 トヨタ自動車株式会社 代理人 弁理士 誓 1)武 久 (1,Tか1名) 第1図 5 t。 第2図
Figure 1 is a schematic diagram showing an example of a conventional reactor air blower control.
The figure shows DO value, inverter operation time, number of units in operation, and aeration I! Diagram showing the most temporal change, Figure 1 1=1
*Invention example and comparative example J, ; t-fruit F'l ['
) This is a graph showing the fluctuation of O bribe. 20...is the gas phase, 25...I! 'l variable type blower, 26a, 26b, 26cm...fixed' @ Siblowa, 28-1! 1 section controller, 29... number control unit, 31... inverter. Applicant Toyota Motor Corporation Representative Patent Attorney Oath 1) Hisashi Takeshi (1, T or 1 person) Figure 1 5 t. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 風量可変型曝気ブロワと定[i型曝気ブロワとによって
曝気構内の被処理排水中に空気を吹き込んで活性汚泥処
理を行な−)排水処理設備において、曝気構内での溶存
酸素量を測定して電気信号として出力するDO計と、D
o計の出力値を一定時間毎にサンプルしかつその値が目
IDO値を中心とした所定のギャップ幅を外れている場
合にその制御偏差に基づいて必要1気同量を比例積分制
御によって決定する凧1 !制御器と、必要曝気用量を
得るために必要な風量可変型曝気ブロワによる送風量お
よび定風量型曝気ブロワの駆動の要否もしくは必要駆動
台数を決定する台数制御器と、前記風員可変型關気ブロ
ワを周波数変換制御によって制御するインバータどを具
備し、風量可変型曝気ブロワによる送風量が一定時間下
限である場合に前記定風量型曝気ブロワの駆動台数を減
らすとともにJ!I量可変可変型曝気ブロワる送風量を
上限に引き上げ、また風量可変型曝気ブロワによる送風
量が所定時間上限である場合に定風量型曝気ブロワの駆
動台数を増やすとともに風量可変型曝気ブロワによる送
風量を下限に下げるよう構成したことを特徴とする排水
処理設備における曝気ブロワ制御装置。
In wastewater treatment equipment, the amount of dissolved oxygen in the aeration plant was measured using a variable air volume aeration blower and a fixed type (I-type aeration blower blows air into the wastewater to be treated in the aeration plant to perform activated sludge treatment). A DO meter that outputs as an electrical signal, and a D
The output value of the o meter is sampled at regular intervals, and if the value is out of a predetermined gap width centered on the IDO value, the required one-ki equivalent amount is determined by proportional-integral control based on the control deviation. Kite 1! a controller, a number controller that determines the amount of air blown by the variable air volume aeration blower necessary to obtain the required aeration amount, and whether or not to drive the constant air volume aeration blower or the required number of units to be driven; The J! I raise the air flow rate of the variable air volume aeration blower to the upper limit, and increase the number of constant air flow type aeration blowers driven when the air flow rate of the variable air volume aeration blower is at the upper limit for a predetermined time, and increase the air flow rate of the variable air volume aeration blower. An aeration blower control device for wastewater treatment equipment, characterized in that it is configured to lower the air volume to a lower limit.
JP59035854A 1984-02-27 1984-02-27 Device for controlling aeration blower in waste water treating equipment Pending JPS60179196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035854A JPS60179196A (en) 1984-02-27 1984-02-27 Device for controlling aeration blower in waste water treating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035854A JPS60179196A (en) 1984-02-27 1984-02-27 Device for controlling aeration blower in waste water treating equipment

Publications (1)

Publication Number Publication Date
JPS60179196A true JPS60179196A (en) 1985-09-13

Family

ID=12453574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035854A Pending JPS60179196A (en) 1984-02-27 1984-02-27 Device for controlling aeration blower in waste water treating equipment

Country Status (1)

Country Link
JP (1) JPS60179196A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188202A (en) * 1987-01-30 1988-08-03 Hitachi Plant Eng & Constr Co Ltd Blower control system
JP2007105664A (en) * 2005-10-14 2007-04-26 Asahi Breweries Ltd Aeration equipment
JP2008161850A (en) * 2007-01-04 2008-07-17 Sumiju Kansai Shisetsu Kanri Kk Dissolved oxygen controller
JP2021013892A (en) * 2019-07-12 2021-02-12 株式会社Lixil Wastewater treatment system, and construction method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488646A (en) * 1977-12-24 1979-07-13 Sumitomo Heavy Ind Ltd Control system for controlling airflow rate for aeration
JPS5645796A (en) * 1979-09-21 1981-04-25 Daido Steel Co Ltd Aerating air supply apparatus for activated sludge type aeration tank
JPS57102290A (en) * 1980-12-16 1982-06-25 Nippon Poriyuuensu:Kk Regulating device for rate of aeration in activated sludge method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488646A (en) * 1977-12-24 1979-07-13 Sumitomo Heavy Ind Ltd Control system for controlling airflow rate for aeration
JPS5645796A (en) * 1979-09-21 1981-04-25 Daido Steel Co Ltd Aerating air supply apparatus for activated sludge type aeration tank
JPS57102290A (en) * 1980-12-16 1982-06-25 Nippon Poriyuuensu:Kk Regulating device for rate of aeration in activated sludge method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188202A (en) * 1987-01-30 1988-08-03 Hitachi Plant Eng & Constr Co Ltd Blower control system
JP2007105664A (en) * 2005-10-14 2007-04-26 Asahi Breweries Ltd Aeration equipment
JP2008161850A (en) * 2007-01-04 2008-07-17 Sumiju Kansai Shisetsu Kanri Kk Dissolved oxygen controller
JP2021013892A (en) * 2019-07-12 2021-02-12 株式会社Lixil Wastewater treatment system, and construction method therefor

Similar Documents

Publication Publication Date Title
CN110577275B (en) Intelligent aeration control system and method for sewage treatment
US9011690B2 (en) Orbital wastewater treatment system and associated method of operating an orbital wastewater treatment system
US4280910A (en) Method and apparatus for controlling aeration in biological treatment processes
CN202758178U (en) Intelligent dynamic aeration control system
CN108644972A (en) A kind of furred ceiling fresh air ventilator anti-freeze control system and its anti-freeze control method
JPS60179196A (en) Device for controlling aeration blower in waste water treating equipment
CN113387442A (en) Full-flow automatic control system and method based on sludge double-reflux AOA (argon oxygen decarburization) process
JP4464851B2 (en) Operation control method for aeration apparatus
CN203269649U (en) Novel automatic biological reaction tank control system for sewage treatment plant
JP2015104712A (en) Sewage treatment system and method
CN109775845B (en) Method and device for controlling oxygen exposure in sewage treatment
CN215327224U (en) Full-flow automatic control system based on sludge double-reflux AOA (argon oxygen decarburization) process
JP4302909B2 (en) Control method in intermittent sewage treatment
CN210229422U (en) Device for increasing oxygen content of high-pressure air of oxidation fan
CN112645415A (en) Method and device for adjusting water quality and water purifier
JP2841409B2 (en) DO control device
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JPH0871574A (en) Method and apparatus for controlled operation of ozone water purifying facility
CN206188603U (en) Treatment of domestic sewage , cyclic utilization system
CN219950676U (en) Aeration quantity control system of sewage treatment reactor
JPS58124596A (en) Apparatus for controlling active sludge process
JPS60248291A (en) Apparatus for treating activated sludge
JPS6117446Y2 (en)
JPS5826073Y2 (en) water treatment equipment
CN203275951U (en) Automatic controlled aeration system with stable dissolved oxygen