JPH0871574A - Method and apparatus for controlled operation of ozone water purifying facility - Google Patents

Method and apparatus for controlled operation of ozone water purifying facility

Info

Publication number
JPH0871574A
JPH0871574A JP6214485A JP21448594A JPH0871574A JP H0871574 A JPH0871574 A JP H0871574A JP 6214485 A JP6214485 A JP 6214485A JP 21448594 A JP21448594 A JP 21448594A JP H0871574 A JPH0871574 A JP H0871574A
Authority
JP
Japan
Prior art keywords
ozone
value
water
amount
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6214485A
Other languages
Japanese (ja)
Inventor
Masamitsu Nakazawa
正光 中沢
Naoto Komatsu
直人 小松
Minoru Suzuki
実 鈴木
Shigeo Shiono
繁男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6214485A priority Critical patent/JPH0871574A/en
Priority to CN95116254A priority patent/CN1123247A/en
Priority to KR1019950029390A priority patent/KR960010549A/en
Publication of JPH0871574A publication Critical patent/JPH0871574A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE: To provide a method and apparatus for the controlled operation of an ozone water purifying facility in which water temperature characteristic values, water quality characteristic values, ozone injection rate values, treatment water quantity values, necessary ozone quantity values, and the actuation values of ozone generation values of more than one unit are displayed together on CRT so that the data can be easily seen, and used easily by an operator. CONSTITUTION: An ozone injection rate 16C is obtained from water temperature 11 and water quality 12, the necessary quantity of ozone 17B is calculated from the quantity of treatment water, a power adjustment rate is obtained by obtaining a necessary ozone quantity Ox point and an intersection 0Zx from the relation between the number of units of an ozone generator and a power adjuster 14 so that parallel operation conditions are constituted. A proper ozone injection rate is controlled by the fine adjustment of the 0Zx point from the output of an effective ozone control part 13, from a corrective adjuster 17C, and the present values of these correlation diagrams and the histogram of the past data are displayed on the same CRT scope to facilitate operation monitoring by an operator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾン浄水施設の制御
運転装置及び方法に係り、オゾン接触池へ適正なオゾン
量を散気するにあたり、前処理施設の水温・水質・処理
水量とによりオゾン注入率演算器を用いて複数台のオゾ
ン発生器の運転条件(台数と運転電力%)を指令すると
共に、オゾン接触池と活性炭吸着池の排オゾン量より有
効オゾン量演算器により、運転条件を補正調整するフィ
ードバックを行い、これらの運転制御状態を一画面上に
CRT表示して、オペレータがプロセス系全体を見やす
くした制御運転装置とその方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control operation apparatus and method for an ozone water purification facility, and in diffusing an appropriate amount of ozone to an ozone contact pond, the ozone temperature is adjusted according to the water temperature, water quality, and amount of treated water in the pretreatment facility. The operating conditions (number of units and operating power%) of multiple ozone generators are commanded using the injection rate calculator, and the operating conditions are calculated by the effective ozone amount calculator based on the amount of ozone discharged from the ozone contact tank and activated carbon adsorption tank. The present invention relates to a control operation apparatus and a method thereof in which feedback for correction and adjustment is performed, and these operation control states are displayed on a CRT on a single screen so that an operator can easily see the entire process system.

【0002】[0002]

【従来の技術】オゾン酸化力を利用する各種プラントに
は、化学パルプの無塩素漂白・半導体設備の洗浄工程・
産業用廃水の2次処理・上下水道施設の脱臭殺菌処理な
どがある。
2. Description of the Related Art Chlorine-free bleaching of chemical pulp, cleaning process of semiconductor equipment, etc.
Secondary treatment of industrial wastewater, deodorization and sterilization of water and wastewater facilities.

【0003】これらは、大規模処理となるとオゾン発生
器を複数台用いて制御することが、一般的で特開昭56−
14403 号公報や、特開昭55−126506号公報などで、オゾ
ン発生器の運転台数制御の経済性が述べられている。
In the case of large-scale processing, these are generally controlled by using a plurality of ozone generators.
The economics of controlling the number of operating ozone generators are described in Japanese Patent No. 14403 and Japanese Patent Laid-Open No. 55-126506.

【0004】一方、近年浄水施設で処理水量が1日当り
50〜100万トンという大規模なプラントに、オゾン
を1時間当り30〜80kgも多量に散気するオゾン接触
池を追加して、脱臭殺菌によりおいしい水づくりが始め
られている。
On the other hand, in recent years, in a large-scale plant with a treated water capacity of 500 to 1 million tons per day in a water purification facility, an ozone contact pond which diffuses a large amount of ozone of 30 to 80 kg per hour is added to deodorize and sterilize. Has started making delicious water.

【0005】従来、浄水場施設は中央監視集中制御盤に
よりオペレータが24時間勤務体制で運用しており、主
としてポンプの運転・処理水量や水位の監視および配水
池のオフライン水質チェックなどを主業務としていた。
Conventionally, water purification plant facilities have been operated by a 24-hour working system by a central monitoring centralized control panel, and the main business is mainly to operate pumps, monitor the amount of treated water and water level, and check offline water quality of distribution reservoirs. I was there.

【0006】[0006]

【発明が解決しようとする課題】更に、オゾン接触池を
追加プロセスとすることで、オゾン発生器と電源盤及び
オゾン接触池や活性炭吸着池などのオゾン化学反応プロ
セスとなり、制御運転の一元化が望まれている。また、
オゾン発生器のオゾン発生効率は5%程度(他は排熱と
して冷却処理)で、ランニングコストの削減より、適正
な運転管理の自動化が望まれている。
Furthermore, by making the ozone contact pond an additional process, it becomes an ozone chemical reaction process such as an ozone generator, a power panel, an ozone contact pond and an activated carbon adsorption pond, and it is desired to unify the control operation. It is rare. Also,
The ozone generator has an ozone generation efficiency of about 5% (others are cooled as waste heat), and there is a demand for automation of proper operation management in order to reduce running costs.

【0007】本発明の目的は、複数台のオゾン発生器の
運転状態を一目で作業員が認識できる使い勝手が良いオ
ゾン浄水施設の制御運転装置を提供することにある。
An object of the present invention is to provide a user-friendly control operation device for an ozone water purification facility, which allows an operator to recognize the operating states of a plurality of ozone generators at a glance.

【0008】[0008]

【課題を解決するための手段】本発明のオゾン浄水施設
の制御運転装置は、原水を複数台のオゾン発生器からの
オゾンをオゾン接触池に散気すると共に、オゾン接触池
の入力側水路にオゾン処理装置を設け、入力側水路に設
けた水温計及び水質計と流量計の測定値を取込み、この
測定値に相当するオゾン注入値を決定する水質オゾン注
入率演算器と、水質オゾン注入率演算器の出力値により
処理オゾンを求め、かつオゾン発生群台数運転表により
複数台のオゾン発生器の運転台数を決定する運転台数制
御演算器と、運転台数制御演算器の出力値により複数台
のオゾン発生器に運転指令を与え、発生しオゾン総量を
注入して散気するオゾン接触池と、オゾン接触池及び活
性炭吸着池からのオゾン排気量を入力し、オゾン排気量
が基準値であるか否かを判断する有効オゾン量演算器と
を備え、有効オゾン量演算器からの出力値は複数台のオ
ゾン発生器を調整する補正調整器の調整値を上記運転台
数制御演算器に入力し、運転台数制御演算器の出力値を
入力したCRTに上記複数台のオゾン発生器の動作値と
に必要な測定値を表示することにある。
A control and operating apparatus for an ozone water purification facility according to the present invention diffuses raw water from ozone from a plurality of ozone generators into an ozone contact basin and also supplies water to the input side water channel of the ozone contact basin. A water quality ozone injection rate calculator for determining the ozone injection value corresponding to the measured values of the water temperature meter, the water quality meter and the flow meter installed in the water channel of the input side, and the water quality ozone injection rate Calculate the treated ozone from the output value of the computing unit, and determine the operating number of multiple ozone generators based on the ozone generation group unit operation table. Input the ozone contact amount that gives an operation command to the ozone generator, injects the generated total amount of ozone and diffuses it, and the amount of ozone exhaust from the ozone contact reservoir and the activated carbon adsorption reservoir. It is equipped with an effective ozone amount calculator that determines whether or not the output value from the effective ozone amount calculator is the input value of the correction adjuster that adjusts multiple ozone generators to the operation number control calculator and This is to display the measured values necessary for the operating values of the plurality of ozone generators on the CRT to which the output values of the unit control calculator are input.

【0009】[0009]

【作用】CRTに上記動作値として例えば水温特性値,
水質特性値,オゾン注入率値,処理水量値,必要オゾン
量値と複数台のオゾン発生器の動作値を一括して表示す
ることとしたので、オーペレタが見やすく、使い勝手が
良い。
[Function] For the CRT, for example, the water temperature characteristic value as the operation value,
The water quality characteristic value, ozone injection rate value, treated water amount value, required ozone amount value and operating values of multiple ozone generators are displayed collectively, so the operator can easily see and operate.

【0010】[0010]

【実施例】以下本発明の実施例を図1乃至図6により説
明する。図1はオゾン浄水施設の制御装置である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows a control device of an ozone water purification facility.

【0011】水路は原水1より入力側から出力側に向か
って、順次、前処理施設2,オゾン接触池4、及び活性
炭吸着池5を配置している。
In the water channel, a pretreatment facility 2, an ozone contact basin 4, and an activated carbon adsorption basin 5 are sequentially arranged from the raw water 1 from the input side to the output side.

【0012】前処理施設2は着水井2Aと凝集沈殿池2
Bとより成り、オゾン接触池4と着水井2Aの水路1に
設けた水温計11及び水質計12と流量計3の測定値
は、プロセス量入力器13に入力し、水質オゾン注入率
演算器16に出力する。
The pretreatment facility 2 is a landing well 2A and a coagulation sedimentation basin 2.
B, and the measured values of the water temperature meter 11, the water quality meter 12, and the flow meter 3 provided in the water channel 1 of the ozone contact pond 4 and the landing well 2A are input to the process amount input device 13 to calculate the water quality ozone injection rate calculator. Output to 16.

【0013】水質オゾン注入率演算器16は水質オゾン
注入演算器16Bの測定値と基準器16Aとで変換して
オゾン注入率出力器16Cよりオゾン注入率量を運転台
数制御演算器17に入力する。
The water quality ozone injection rate calculator 16 converts the measured value of the water quality ozone injection calculator 16B and the reference value 16A and inputs the ozone injection rate amount to the operating number control calculator 17 from the ozone injection rate output device 16C. .

【0014】運転台数制御演算器17はオゾン注入率量
を入力すると、処理水量と必要オゾン量(図2の17
B)とによってオゾン発生器8の運転台数とを演算器1
7Aで電力制御する。また、補正調整器17Cはオゾン
発生器8の電力を微調整して演算器17Aに入力する。
一方、オゾン発生器8群の台数に対してオゾン発生量と
電力調整量とを換算する運転表17Bを演算器17Aに
入力する。
When the ozone injection rate amount is input, the operating unit control calculator 17 inputs the treated water amount and the required ozone amount (17 in FIG. 2).
B) and the number of operating ozone generators 8 according to
Power is controlled at 7A. The correction adjuster 17C finely adjusts the electric power of the ozone generator 8 and inputs it to the calculator 17A.
On the other hand, the operation table 17B for converting the ozone generation amount and the electric power adjustment amount with respect to the number of ozone generator 8 groups is input to the calculator 17A.

【0015】運転台数制御演算器17からの出力信号は
制御出力器14及び操作盤10を介して配置された現場
盤9A,9Bによりオゾン発生器8を構成する補機8A
とオゾナイザー8Bに入力する。
The output signal from the operating number control computing unit 17 is an auxiliary device 8A which constitutes the ozone generator 8 by the site panels 9A and 9B arranged via the control output unit 14 and the operation panel 10.
And input to the ozonizer 8B.

【0016】複数台のオゾナイザー8Bからの出力オゾ
ンがオゾン接触池4に散気する間の配管に設けたオゾン
流量計4B及びオゾン濃度計7Aと、オゾン接触池4か
らの排オゾン装置6A及び活性炭吸着池6Bからの排オ
ゾンを検出する排オゾン計7B,7Cとの測定値を、オ
ゾン量入力器15を介して有効オゾン量制御部18に入
力する。
An ozone flow meter 4B and an ozone concentration meter 7A, which are provided in a pipe during which ozone output from a plurality of ozonizers 8B diffuses into the ozone contact basin 4, an ozone discharge device 6A from the ozone contact basin 4 and activated carbon. The measured values of the exhaust ozone meters 7B and 7C that detect the exhaust ozone from the adsorption basin 6B are input to the effective ozone amount control unit 18 via the ozone amount input device 15.

【0017】有効オゾン量制御部18は測定値を有効オ
ゾン量演算器18Bに入力する。有効オゾン量演算器1
8Bは、オゾン流量計4B及びオゾン及び濃度計7Aと
排オゾン計7B〜7Cとの差分からの検出値を基準器1
8Aで変換する。基準器18Aはオゾン濃度計7A−〔排
オゾン計7B+排オゾン計7C〕=一定(20%)ある
ことが適正値である。つまり有効オゾンが80%との時
に、排オゾンが20%であれば、適正値であり、適正値
の増減によりオゾン調整器18Cに指示をする。
The effective ozone amount controller 18 inputs the measured value to the effective ozone amount calculator 18B. Effective ozone amount calculator 1
8B is the reference device 1 based on the detected value from the difference between the ozone flow meter 4B, the ozone and concentration meter 7A, and the exhaust ozone meters 7B to 7C.
Convert at 8A. The appropriate value for the reference device 18A is that the ozone concentration meter 7A− [exhaust ozone meter 7B + exhaust ozone meter 7C] = constant (20%). That is, when the effective ozone is 80% and the exhaust ozone is 20%, it is an appropriate value, and the ozone adjuster 18C is instructed by increasing or decreasing the appropriate value.

【0018】オゾン調整器18Cは適正時は零出力、プ
ラス(+)時はオゾン電力減少し、マイナス(−)時は
オゾン電力増加の指令を補正器17Cに送る。その結
果、制御出力器14〜操作盤〜現場盤9Bを介して、オ
ゾン発生器8のオゾン電力の増減指示が伝達される。
The ozone adjuster 18C sends a command to the corrector 17C to output zero when appropriate, decrease ozone power when plus (+), and increase ozone power when minus (-). As a result, the increase / decrease instruction of the ozone power of the ozone generator 8 is transmitted via the control output device 14-the operation panel-the site panel 9B.

【0019】ここに、有効オゾン量とは、処理水量Q3
に対し、このオゾン接触池4において散気管4Aより放
出されるオゾン量(オゾン流量計4Bとオゾン濃度計7
A)が処理水中の有機物汚濁物質に化学反応して、残留
オゾン量がオゾン接触池4の上部密封空間に上昇して滞
留するので、排オゾン装置6AのFanより吸引してM
n2触媒でオゾン分解して大気中に放出する過程におい
て、入口部の排オゾン計7Bで検出する。すなわちオゾ
ン濃度計7Aと排オゾン計7Bとの差が一定であれば適
正なオゾン量が散気されていることになる。
Here, the effective ozone amount is the treated water amount Q3.
On the other hand, in the ozone contact pond 4, the amount of ozone released from the air diffuser 4A (the ozone flow meter 4B and the ozone concentration meter 7
A) chemically reacts with organic pollutants in the treated water, and the amount of residual ozone rises and stays in the upper sealed space of the ozone contact basin 4, so it is sucked from the fan of the exhaust ozone device 6A
In the process of decomposing ozone into ozone by the n O 2 catalyst and releasing it into the atmosphere, it is detected by the exhaust ozone meter 7B at the inlet. That is, if the difference between the ozone concentration meter 7A and the exhaust ozone meter 7B is constant, an appropriate amount of ozone is diffused.

【0020】更に活性炭吸着池5は、2槽を図示してい
るが、左側で活性炭でろ過した処理水は配水池7へ至
る。しかし、経年的に塵埃でつまると右側へ切替えて活
性炭でろ過すると共に、左側は図示のない逆洗装置によ
り水と空気を逆方向(図示では上方へ)に噴射してゴミ
取りをする。その圧力により排オゾン量が押し出される
ので、排オゾン装置6Bの活性炭を介してオゾン分解し
て大気に放出するので、入力側に排オゾン計7Cを配置
し、基準値に対し一定であれば、適正な残留オゾンが活
性炭吸着池5に流れていることが判る。
Further, although the activated carbon adsorption basin 5 is shown as two tanks, the treated water filtered with activated carbon on the left side reaches the distribution reservoir 7. However, when it is clogged with dust over time, it is switched to the right side and filtered with activated carbon, and the left side is sprayed with water and air in opposite directions (upward in the figure) by a backwashing device (not shown) to remove dust. Since the amount of discharged ozone is pushed out by the pressure, it is decomposed into ozone through the activated carbon of the discharged ozone device 6B and released to the atmosphere. Therefore, if the discharged ozone meter 7C is arranged on the input side and is constant with respect to the reference value, It can be seen that proper residual ozone is flowing to the activated carbon adsorption basin 5.

【0021】したがって、7A−〔7B+7C〕が一定
であることが適正値として有効オゾン量制御部18で判
定されるのである。
Therefore, the effective ozone amount control section 18 determines that 7A- [7B + 7C] is constant as an appropriate value.

【0022】さて、CRT表示器20は記憶装置19を
介して表示データが与えられるが、記憶装置19には水
質オゾン注入率演算器16と、運転台数制御演算器17
と有効オゾン量制御部18のデータ信号が入力され、一
部は記憶され現在値はCRT表示器20へ出力される。
一部の記憶データとはCRT表示器側からのアクセスに
より合わせ頻度グラフとして出力することができる機能
である。
The display data is given to the CRT display device 20 via the storage device 19. The storage device 19 has a water ozone injection rate calculator 16 and an operating unit number control calculator 17.
The data signal of the effective ozone amount control unit 18 is input, a part of the data signal is stored, and the current value is output to the CRT display 20.
Part of the stored data is a function that can be output as a matching frequency graph by accessing from the CRT display side.

【0023】図2は、前述した図1の装置構成におい
て、CRT表示器20の画面表示パターン例である。
FIG. 2 shows an example of a screen display pattern of the CRT display 20 in the above-mentioned apparatus configuration of FIG.

【0024】図2の頻度グラフ29について説明する。
11は水温特性図、12は水質特性図、16Cはオゾン
注入率特性図である。これらの特性図縦軸A′,B′,
C′,D′は夏×1から冬×2の四季変化を示してい
る。水温特性図11は、冬×2から夏×1に向かって水
温が高くなり、それに判い水質特性図12の水質が悪く
なってくるので、オゾン注入率特性図16CのC′,
D′ではオゾン注入量を増加して水質を浄化すべき指標
となる。
The frequency graph 29 of FIG. 2 will be described.
11 is a water temperature characteristic diagram, 12 is a water quality characteristic diagram, and 16C is an ozone injection rate characteristic diagram. These characteristic diagram vertical axes A ', B',
C'and D'indicate four season changes from summer x1 to winter x2. Water temperature characteristics FIG. 11 shows that the water temperature rises from winter × 2 to summer × 1 and the water quality in the water quality characteristics chart 12 deteriorates.
D'is an index for increasing the ozone injection amount to purify the water quality.

【0025】尚、頻度グラフ29において、1点鎖線は
傾向パターンを示し、実線は(棒グラフ)過去データの
頻度パターンを示している。
In the frequency graph 29, the alternate long and short dash line indicates the tendency pattern, and the solid line (bar graph) indicates the frequency pattern of past data.

【0026】水温計11からの水温と水質計12からの
水質とオゾン注入率16Cとは、現在値は×印表示と
し、それらの頻度グラフ値(棒グラフ表示)は記憶装置
19より、過去の実績記録として重ねて表示すること
で、現在〜過去の状況を(色別表示して項目内容を分類
してもよい)一目で判り易くしている。
The water temperature from the water temperature gauge 11, the water quality from the water quality meter 12 and the ozone injection rate 16C are shown by the current values, and the frequency graph values (bar graph display) are stored in the storage device 19 in the past. By displaying them as a record in an overlapping manner, the present to past situations (which may be displayed in different colors to classify the item contents) can be easily understood at a glance.

【0027】なお、水質計12の水質とはBOD(生物
酸素要求量)やアンモニア性窒素量などである。
The water quality of the water quality meter 12 is BOD (demand for biological oxygen), the amount of ammonia nitrogen, and the like.

【0028】また、点線表示のグラフは、水温依存で水
質変化があることと、水質変化依存により、オゾン注入
率が与えられる相関関係を示し、四季変化において頻度
グラフとしては中央部(春・秋)が多く、冬期は下側
で、夏期は上側の頻度となることを図示している。
Further, the dotted line graph shows that there is a water quality change depending on the water temperature and the correlation in which the ozone injection rate is given depending on the water quality change. In the four seasons change, the frequency graph shows the central part (spring / fall). ), The frequency is lower in winter and higher in summer.

【0029】一方、必要オゾン量(kg/Hr)=処理水
量Q〔m3 /Hr〕×オゾン注入率(mg/l)×0.00
1で与えられるから、例えば、オゾン注入率16Cが×
印の1.5 のとき処理水量がQxのとき必要オゾン量は
Oxとなる。
On the other hand, required ozone amount (kg / Hr) = treated water amount Q [m 3 / Hr] × ozone injection rate (mg / l) × 0.00
Since it is given by 1, for example, the ozone injection rate 16C is ×
When the amount of treated water is 1.5 when the mark is 1.5, the required ozone amount is Ox.

【0030】ここに、処理水量において、E−E′軸上
の棒グラフは過去の処理水量頻度グラフで、保守上分割
池の一部停止に伴い処理水量がQ1より、Q2に減少した
時の頻度である。〔Q1−Q1′〕特性は同一処理水量に
対して前述の計算式より求めたオゾン注入率(O−D特
性)と必要オゾン量〔O−F、及びG−G′特性〕との
関係図となる。
Here, in the treated water amount, the bar graph on the EE 'axis is a past treated water amount frequency graph, and when the treated water amount decreases from Q 1 to Q 2 due to partial stoppage of the dividing pond for maintenance. Is the frequency of. The [Q 1 -Q 1 ′] characteristic is the relationship between the ozone injection rate (OD characteristic) and the required ozone amount [OF and GG ′ characteristic] obtained from the above-mentioned calculation formulas for the same amount of treated water. It becomes a relationship diagram.

【0031】この時のオゾン発生器8の台数は同一定格
のオゾン発生器が6台あるとしたグラフが〔100%−
i〕特性である。〔O−H〕特性はオゾン発生器8の電
力調整器の%で5〜100(%)まで可変することで比
例したオゾン発生量が得られ100(%)の時定格オゾ
ン発生量が得られる。
The graph of the number of ozone generators 8 at this time is [100%-
i] Characteristics. The [O-H] characteristic is obtained by varying the percentage of the power regulator of the ozone generator 8 from 5 to 100 (%) to obtain a proportional ozone generation amount, and when 100 (%), the rated ozone generation amount is obtained. .

【0032】故に、Ox点の必要オゾン量はOZxの交
点が各々のオゾン発生器の運転条件を示し、図中では5
0%電力調整値で6台のオゾン発生器が運転すればよい
ことを示している。尚、電力調整5〜100(%)は図
1の操作盤10に与えれば、後述の図5の現場盤9内の
インバータ8−8で制御される。
Therefore, regarding the required ozone amount at the Ox point, the intersection of OZx indicates the operating condition of each ozone generator, and in the figure, it is 5
It shows that 6 ozone generators should be operated at 0% power adjustment value. If the power adjustment 5 to 100 (%) is given to the operation panel 10 in FIG. 1, it is controlled by the inverter 8-8 in the field panel 9 in FIG. 5 described later.

【0033】〔O−j〕特性は各々のオゾナイザー6台
に対し、過去の運転頻度グラフを示すことで、オゾン発
生器8が台数運転回数来歴を示すものである。
The [O-j] characteristic shows a history of the number of times the ozone generator 8 has been operated by showing a past operation frequency graph for each of the six ozonizers.

【0034】〔O−k〕特性はオゾン調整出力器18C
の動作出力(増減)を頻度グラフ来歴と現在値とを表示
しているのでオゾン注入率16Cに対し+か−かの適正
値制御状態を一目でオペレータは把握できる。
The [Ok] characteristic is the ozone adjusting output device 18C.
Since the operation output (increase / decrease) of the frequency graph history and the present value are displayed, the operator can grasp at a glance the proper value control state of + or-for the ozone injection rate 16C.

【0035】図3は電力調整器14の適正な組合せを行
う運転台数制御演算器17の内容例である。
FIG. 3 shows an example of the contents of the operating number control computing unit 17 for performing the proper combination of the power regulators 14.

【0036】即ち、log−log特性図で表示している
が、グラフの見方を説明する。縦軸iでは同一定格〔電
力調整値100(%)の特に定格オゾン発生量が得られ
る〕のオゾン発生器がNo.1〜6の6台であり、図2の
必要オゾン量特性G−G′を連続的に可変追従する為に
は、14Aのようにのこぎり波の組合せとなる。つま
り、No.1のみを運転する時は電力調整器を50(%)
→100(%)と上昇して100(%)の時に定格オゾ
ン量を発生する。
That is, although it is displayed in the log-log characteristic diagram, the way of viewing the graph will be described. On the vertical axis i, there are six ozone generators of Nos. 1 to 6 having the same rating [especially the rated ozone generation amount of the power adjustment value 100 (%) is obtained, and the required ozone amount characteristic GG of FIG. In order to continuously and variably follow ′, a combination of sawtooth waves such as 14A is used. In other words, when operating only No. 1, set the power regulator to 50 (%)
→ Rise to 100 (%) and generate rated ozone amount when 100 (%).

【0037】更に、増やす時はNo.2を運転することに
なるが、G−G′特性を直線にする為にはNo.2とNo.
1とを50(%)運転状態に同時に戻して、オゾン発生
量を増やす時には共に電力調整値を50(%)→100
(%)と上昇して、100(%)以上の時にNo.3も並
列運転とするが、電力調整値は70(%)にNo.1〜3
共減少し、その後漸増してゆくことで、以下6台までの
並列運転は〔(G)−(G′)〕特性を直接的に得るこ
とができる。これらを更に図3で詳細に説明する。
Further, when increasing the number, No. 2 is operated, but in order to make the GG 'characteristic linear, No. 2 and No. 2 are required.
When 1 and 50 are simultaneously returned to the operating state of 50 (%) and the amount of ozone generation is increased, the power adjustment value is set to 50 (%) → 100.
(%) Rises, and when it is 100 (%) or more, No. 3 is also operated in parallel, but the power adjustment value is 70 (%) No. 1-3.
By decreasing the total amount and then gradually increasing, the parallel operation of up to 6 units can directly obtain the [(G)-(G ')] characteristic. These will be further described in detail with reference to FIG.

【0038】運転方法14Aでは、Ox点指令が交点O
Zxとなり、その下側へのNo.3〜1の交点×印の電力
調整値71(%)で3代並列運転すればよい。
In the operating method 14A, the Ox point command is the intersection point O.
It becomes Zx, and it is sufficient to carry out parallel operation for three generations with the power adjustment value 71 (%) indicated by the cross point X of No. 3 to 1 on the lower side.

【0039】運転方法14Bでは、オゾン発生器8へ与
える電力調整器の出力を90(%)上限とすることで、
グロー放電管の劣化を防止して長寿命運転とする為の場
合で、No.1〜5までは90(%)上限組合せとしG指
令のmax 値の時のみ100(%)とするように制御した
もので、Ox点指令はOZx点となり、その下側へNo.
3〜1の交点X印の電力調整値78(%)で3台並列運
転すればよい。
In the operating method 14B, by setting the output of the electric power regulator applied to the ozone generator 8 to the upper limit of 90 (%),
In the case of preventing the deterioration of the glow discharge tube and operating for a long life, it is controlled so that No. 1 to 5 are 90 (%) upper limit combination and 100 (%) only when the maximum value of G command. The Ox point command becomes the OZx point, and the No.
It is sufficient to operate three units in parallel with the power adjustment value 78 (%) indicated by the intersection X mark of 3 to 1.

【0040】運転方法14Cでは、オゾン発生器8の運
転効率が60〜90(%)で設計されていることより、
No.1〜5は同一定格値のオゾン発生器とし、No.A1
をA2とは1/2定格値のオゾン発生器との組合せで同
じように図式化して、電力調整値の下限を14Bよりあ
げる為には、No.1とNo.A1とNo.2とNo.3〜No.
5,No.A2とする組合せとすることで、Ox点指令
で、Ox点となり、70(%)値でNo.3,No.2,N
o.A1,No.1とを並列運転すればよい。これらの14
A〜14Cはいずれも初期条件して与えられるので、図
2の電力調整器14とi特性図におきかえられ、並列運
転状態はOZx点の交点と下側に交互する台数No.との
交点×印が表示されるので、一目で運転状態をオペレー
タは把握することができる。
In the operating method 14C, since the operating efficiency of the ozone generator 8 is designed to be 60 to 90 (%),
No. 1 to 5 are ozone generators with the same rated value, and No. A1
A2 is the same as the diagram of the combination with an ozone generator of 1/2 rated value, and in order to raise the lower limit of the power adjustment value from 14B, No. 1, No. A1, No. 2 and No. .3 ~ No.
No. 3, No. 2, N at 70 (%) value by the Ox point command by the combination of No. 5 and No. A2.
It is sufficient to operate o.A1 and No.1 in parallel. These 14
Since all of A to 14C are given as initial conditions, they are replaced by the power regulator 14 and the i characteristic diagram of FIG. 2, and the parallel operation state is the intersection of the intersection of the OZx points and the number of vehicles No. alternating with the lower side. Since the mark is displayed, the operator can grasp the operating state at a glance.

【0041】図4は、オゾン発生器群の組合せ構成の詳
細図で、図5はオゾン発生器の内部構成の詳細図であ
る。
FIG. 4 is a detailed view of the combined construction of the ozone generator group, and FIG. 5 is a detailed view of the internal construction of the ozone generator.

【0042】まず、図4の構成は図1のオゾン発生器8
の内容を示し、No.1〜6の6台で並列運転できるもの
で、補機8Aとオゾナイザー8Bとより成り、電磁弁2
1を介して集合管22に一度集めて、オゾン接触池4の
散気管4Aよりオゾンガスを放出する。
First, the configuration of FIG. 4 has the ozone generator 8 of FIG.
The following shows the contents of No. 1 to 6, which can be operated in parallel with 6 units, and consists of an auxiliary machine 8A and an ozonizer 8B.
The gas is once collected in the collecting pipe 22 via 1 and the ozone gas is discharged from the diffuser pipe 4A of the ozone contact reservoir 4.

【0043】このオゾン濃度7A及びオゾンガス流量4
Bとにより、排オゾン装置6Aの排オゾン量はオゾン濃
度計7Bにより計測される。電磁弁21は運転中のオゾ
ナイザー8Bの運転台数該当に合せ「開」とする。
This ozone concentration 7A and ozone gas flow rate 4
With B, the amount of ozone discharged from the ozone discharge device 6A is measured by the ozone concentration meter 7B. The solenoid valve 21 is "opened" according to the number of operating ozonizers 8B.

【0044】図5では、補機8Aの構成は原料空気を取
込むブロア8−1により、散気管4Aの圧力を得る為の
もので、断熱圧縮するので、脱湿とドレン抜きの為に冷
却器8−2があり、更に、圧縮空気を乾燥する為にドラ
イヤー8−3があって、出口で露点が−50℃の乾燥空
気としオゾナイザー8B側のフィルター8−4を介し
て、グロー放電空隙函体8−5を通るとオゾン化空気
〔O2+O3〕が発生出力する。
In FIG. 5, the structure of the auxiliary machine 8A is for obtaining the pressure of the diffuser pipe 4A by the blower 8-1 for taking in the raw material air, and since it is adiabatically compressed, it is cooled for dehumidification and drain removal. There is also a container 8-2, and a dryer 8-3 for drying compressed air, which is a dry air having a dew point of -50 ° C. at the outlet and is passed through a filter 8-4 on the ozonizer 8B side to form a glow discharge gap. When passing through the box 8-5, ozonized air [O 2 + O 3 ] is generated and output.

【0045】これらのユニットは効率上不要部分は排熱
処理しなければならないので、補機8A側は冷却水ポン
プ8−10により、オゾナイザー8B側は、間接冷却器
8−6(熱交換器HEXとクッション用タンクとポンプ
2 )により排熱する。
In these units, unnecessary parts must be subjected to waste heat treatment for efficiency. Therefore, the auxiliary machine 8A side uses the cooling water pump 8-10, and the ozonizer 8B side uses the indirect cooler 8-6 (heat exchanger HEX and heat exchanger HEX). Heat is exhausted by the cushion tank and pump P 2 ).

【0046】また、ドライヤー8−3は乾燥材を用いた
筒の為、一定吸湿すると切替えてDRYAよりDRYB
側を使う。この時、DRYA側は現場盤19A内にある
再生器によりヒータ乾燥して脱湿処理をする。この切替
えに伴う、DRYAとDRYBとは約8時間交互となるの
で、ホットスタンバイ条件では8時間前にドライヤー8
−3は現場盤19Aより指令を受けて起動準備していな
ければならない。それはブロアや冷却器は指令により立
上りは早いからである。
Further, since the dryer 8-3 is a cylinder made of a desiccant, it is switched from DRYA to DRYB when a certain amount of moisture is absorbed.
Use the side. At this time, on the DRYA side, the heater is dried by the regenerator in the site panel 19A to perform dehumidification processing. Due to this switching, DRYA and DRYB alternate for about 8 hours, so under hot standby conditions, dryer 8
-3 must be ready for start-up in response to a command from the site board 19A. This is because the blower and cooler start up faster according to the command.

【0047】オゾナイザーの電力調整は操作盤により制
御信号Sig iを受けると制御ユニット(CE)8−9を
介して、インバータ(INV)8−8を電力調整制御し
て高圧トランス(TR)8−7より、昇圧して函体8−
5のグロー放電管へ印加し、グロー放電管は約2mm円筒
ギャップ内に一様なグロー放電を発生させて、清浄な乾
燥空気がフィルター(F0)8−4を介して流入すると、
オゾン化空気に変換される。すなわち、グロー放電の強
さがオゾン化空気量を比例して可変することができ、一
般に5〜100%可変の制御能力を有している。
In the power adjustment of the ozonizer, when the control signal Sig i is received from the operation panel, the power adjustment control of the inverter (INV) 8-8 is performed through the control unit (CE) 8-9 to control the high voltage transformer (TR) 8-. From 7, pressure is increased to a box 8-
5 to the glow discharge tube, the glow discharge tube generates a uniform glow discharge within a cylindrical gap of about 2 mm, and when clean dry air flows in through the filter (F 0 ) 8-4,
Converted to ozonized air. That is, the intensity of the glow discharge can proportionally change the amount of ozonized air, and generally has a control ability of 5 to 100%.

【0048】しかしながら、図6の如くオゾン発生器8
の運転シーケンスは、まず、Sig aにより補機8A側を
立上げ、次にSig Pにより、間接冷却器8−6を立上げ
た後、Sig iによりグロー放電を開始させるので、補機
8A運転で定格電力の消費電力約20(%)と間接冷却
器8−6で更に電力消費するので、38(%)が運転負
準備の為電力消費され続ける。これに、Sig iよりグロ
ー放電系にはオゾン化空気出力に比例して5〜100
(%)電力調整出力するので、約〔100−38〕=62
(%)がオゾン出力の為の電力消費となる。
However, as shown in FIG. 6, the ozone generator 8
In the operating sequence, first, the auxiliary machine 8A side is started by Sig a, then the indirect cooler 8-6 is started by Sig P, and then the glow discharge is started by Sig i. Since about 20 (%) of the rated power is further consumed by the indirect cooler 8-6, 38 (%) continues to be consumed due to the preparation for the negative operation. In addition, from 5 to 100 in proportion to the output of ozonized air in the glow discharge system from Sig i
(%) Since power output is adjusted, approx. [100-38] = 62
(%) Is the power consumption for ozone output.

【0049】したがって、電力調整器14の5〜100
(%)が可変域であって、50(%)の時の消費電力は6
9(%)となり、オゾン出力が50(%)以上の方がオ
ゾン発生に寄与する電力が有効に働いていることが判
る。
Therefore, 5 to 100 of the power regulator 14
(%) Is the variable range, power consumption at 50 (%) is 6
It becomes 9 (%), and it can be seen that the electric power that contributes to ozone generation works more effectively when the ozone output is 50 (%) or more.

【0050】図3に前述した電力調整器14の運転条件
は5(%)〜30(%)でなく、50(%)以上を使う
方が有効な理由の1つもここにある。
This is also one of the reasons why it is more effective to use the operating condition of the power regulator 14 described above with reference to FIG. 3 not to be 5 (%) to 30 (%) but to be 50 (%) or more.

【0051】実際の運転条件は図1に前述した如く四季
で変化してオゾン注入率が変化〜必要オゾン量が変化〜
オゾン発生器の台数運転条件が変化と相互関連するが、
補機8Aの消費電力を最小とすることは省エネルギーと
してランニングコストに直接ひびくことになる。
As described above with reference to FIG. 1, the actual operating conditions are changed in four seasons and the ozone injection rate is changed.
Although the operating conditions of the number of ozone generators correlate with changes,
Minimizing the power consumption of the auxiliary machine 8A directly leads to running costs as energy saving.

【0052】従って、表1の如く表すことができる。Therefore, it can be expressed as shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】この表1で、〔A〕は必要オゾン量Ox値
に対し、No.1〜2のオゾナイザー8B1,8B2の運転
で充分な時は、必要オゾン量の増加要求の準備に対応す
る為にNo.3のオゾナイザー8B3,補機8A3のみを運
転して、ドライヤー8−3を立上げておき、オゾナイザ
ー(8B3)と電磁弁(M3)はホットスタンバイ状態と
しておけばよい。
In Table 1, [A] corresponds to the preparation of a request for increasing the required ozone amount when the operation of the ozonizers 8B 1 and 8B 2 of Nos. 1 and 2 is sufficient for the required ozone amount Ox value. In order to do so, if only the ozonizer 8B 3 and auxiliary machine 8A 3 of No. 3 are operated, the dryer 8-3 is started up, and the ozonizer (8B 3 ) and solenoid valve (M 3 ) are set to the hot standby state. Good.

【0055】また、〔B〕は補正調整器17Cの指令で
必要オゾン量Oxが増加指令時に、No.3のオゾン発生
器が運転した後は直ちにNo.4の補機8A4 を運転し、
オゾナイザー(8B4)と電動弁(M4)とはホットスタ
ンバイで待期していればよい。尚、Ox指令が減の時
で、No.3→No.2まででよい時は、8A3 のみの運転
を残し8B3とM3を止めればよい。
[B] is a command from the correction regulator 17C, and when the required ozone amount Ox is commanded to increase, immediately after the ozone generator of No. 3 is operated, the auxiliary machine 8A 4 of No. 4 is operated,
The ozonizer (8B 4 ) and the motor-operated valve (M 4 ) need only be in standby by hot standby. Incidentally, Ox command when a reduced, when good until No.3 → No.2 may be stopped and 8B 3 and M 3 leave the operation of only 8A 3.

【0056】また、〔C〕は必要オゾン量Oxが一定で
数ケ月運転が継続する時には、オゾン発生器No.1〜6
を均一運転時間とする為に、2〜3週間毎のオゾン発生
器の運転をNo.順毎にサイクリック移動運転指定をすれ
ばよい。
[C] is the ozone generator Nos. 1 to 6 when the required ozone amount Ox is constant and the operation is continued for several months.
In order to make the operation time uniform, the operation of the ozone generator should be specified every 2 to 3 weeks in cyclic No. order.

【0057】以上のように、ランニングコスト低減や省
エネルギー運転の為に、運転台数制御演算器17で
〔A〕〜〔C〕の表1のようなホットスタンバイ制御を
行わしめている。
As described above, the hot standby control shown in Table 1 of [A] to [C] is performed by the operating unit control calculator 17 in order to reduce running costs and save energy.

【0058】本発明の一変形例として、図1において、
プロセス量入力器13と制御出力器14とオゾン量入力
器15とを従来の中央監視集中制御盤の入出力端に加え
て、中央側のCPU内に水質オゾン注入率演算器16と
運転台数制御演算器17と有効オゾン量制御部18と記
憶装置19とを収納し、CRT表示器20のCRT1画
面表示を従来のCRT表示器に兼用させることも有効で
ある。
As a modification of the present invention, in FIG.
The process quantity input device 13, the control output device 14, and the ozone amount input device 15 are added to the input / output terminals of the conventional central monitoring central control panel, and the water quality ozone injection rate calculator 16 and the operating number control are provided in the central CPU. It is also effective to house the computing unit 17, the effective ozone amount control unit 18, and the storage unit 19 so that the CRT 1 screen display of the CRT display 20 is also used as a conventional CRT display.

【0059】また、図1〜図2ではオゾン発生器8を6
台の例で表示したが、処理水量とオゾン注入率16Cと
より必要オゾン量17Bが計算できるので、オゾン発生
器8の複数台の定義は少なくとも3台以上が信頼性と安
全運転より必要と定義される。即ち、表1の如く少なく
とも2台運転の定格値が最大で必要オゾン量とする時、
2台のうちの1台が故障しても、3台目がホットスタン
バイ条件とできるので、故障により、オゾン量を「減」
とするハプニングは生じない。
Further, in FIGS.
Although it is shown as an example of the number of units, the required amount of ozone 17B can be calculated from the amount of treated water and the ozone injection rate 16C. Therefore, at least three or more ozone generators are defined as being necessary for reliability and safe operation. To be done. That is, as shown in Table 1, when the rated value of at least two units is the maximum and the required ozone amount is,
Even if one of the two units fails, the third unit can be in a hot standby condition, so the failure reduces the amount of ozone.
There is no happening.

【0060】故に、必要オゾン量よりオゾン発生器は少
なくとも3台以上でシステム設計の施設仕様とすること
が、信頼性と安全運転より有効なことが判る。また、図
1の構成の水路を図2のCRT画面に入れて計測・制御
点を明示することもプロセス把握に有益である。
Therefore, it can be seen from the required ozone amount that it is more effective than reliability and safe operation to have facility specifications for system design with at least three ozone generators. It is also useful for grasping the process to put the channel having the configuration shown in FIG. 1 on the CRT screen shown in FIG. 2 to clearly indicate the measurement / control points.

【0061】[0061]

【発明の効果】以上、本発明によれば次の効果がある。As described above, the present invention has the following effects.

【0062】(1)浄水場のオゾン処理特有の相関関係
の監視項目を一画面表示して、過去〜現在値を色表示や
マーク別表示するので、オペレータが見易く判り易いの
で、正常・非常の可否や傾向を即時に判断できる。
(1) The monitoring items of the correlation peculiar to the ozone treatment of the water purification plant are displayed on one screen, and the past to present values are displayed in color or by mark, so that it is easy for the operator to see and understand easily. Whether or not it is possible or not can be judged immediately.

【0063】(2)記憶装置によりプロセス入力量と有
効オゾン量とオゾン発生器の適正運転条件とが1画面上
に表示すると共に、現在値と過去のヒストグラムとを重
ねて見ることもできるので、原水変化によるオゾン処理
状態が浄水場特有の四季対応の前年度比較と年々の傾向
変化が1目で判り、オペレータが浄水場の運転来歴を把
握しやすい。
(2) Since the process input amount, the effective ozone amount, and the proper operating condition of the ozone generator are displayed on one screen by the storage device, and the present value and the past histogram can be viewed in an overlapping manner, Compared to the previous year when the ozone treatment status due to changes in raw water is unique to the water treatment plant and the trend changes from year to year can be seen at a glance, making it easy for the operator to understand the operating history of the water treatment plant.

【0064】(3)水温に関係した水質変化と水質変化
に関係したオゾン注入率と処理水量と必要オゾン量とか
ら、複数台のオゾン発生器の運転状態とを1画面上に相
関関係図を示せるので、オペレータはオゾンプロセスの
運転状態が判り易い。
(3) From the water quality change related to the water temperature, the ozone injection rate related to the water quality change, the amount of treated water, and the required ozone amount, the operating states of a plurality of ozone generators are shown on one screen in a correlation diagram. As a result, the operator can easily understand the operating state of the ozone process.

【0065】(4)前項の相関関係図の現在値と記憶装
置より、呼び出した過去の相関関係図とを単独又は重ね
合わせて表示できるので、オペレータはオゾンプロセス
の運転状態の来歴位置づけができ、変化があった項目に
ついて事前調査して原因解明等の対策などの処置をする
根拠とすることができ、予測保全活動が可能となる。故
に突発停止がなくなるので、信頼性のない運転監視制御
が達成できる。 (5)複数台のオゾン発生器の運転条件として、ホット
スタンバイできるので、必要オゾン量の変化に対して緊
急対応が自動的に可能となる。
(4) Since the current value of the correlation diagram of the preceding section and the recalled past correlation diagram can be displayed individually or in an overlapping manner, the operator can position the history of the operating state of the ozone process, The items that have changed can be used as a basis for preliminarily investigating and taking countermeasures such as elucidating the cause, and predictive maintenance activities can be performed. Therefore, there is no sudden stop, so unreliable operation monitoring control can be achieved. (5) Since hot standby can be used as an operating condition for a plurality of ozone generators, an emergency response can be automatically made to a change in the required ozone amount.

【0066】(6)2台の運転の時に、3台目の補機が
期待運転しているので、オゾン発生器のホットスタンバ
イの為の消費電力を最少にした省エネルギー運転が可能
となる。
(6) Since the third auxiliary machine is operating as expected when two units are in operation, it is possible to perform energy-saving operation in which the power consumption for hot standby of the ozone generator is minimized.

【0067】(7)有効オゾン量の補正をフィールドバ
ックして、過大なオゾン注入率をおさえて必要オゾン量
を適正とするので、オゾン処理全体の(省電力)運転で
ランニングコストが低減できる。
(7) Since the effective ozone amount is corrected back to the field to suppress the excessive ozone injection rate and make the necessary ozone amount proper, the running cost can be reduced in the entire ozone treatment (power saving) operation.

【0068】(8)有効オゾン量は散気するオゾン量に
対し排オゾン量を差し引きした値を基準値に対し増減指
示をする簡易計測値で確実に実測値を用いており、オゾ
ン発生器の電力調整器を微調自動補正しているのでオペ
レータには負担をかけずに監視していればよく、便利と
なる。
(8) The effective ozone amount is a simple measurement value that gives an increase / decrease instruction to the reference value by subtracting the exhausted ozone amount from the diffused ozone amount. Since the electric power regulator is finely and automatically corrected, it is convenient as long as the operator is monitored without burdening the operator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例として示したオゾン浄水施設の
制御運転装置の概略説明図である。
FIG. 1 is a schematic explanatory diagram of a control operation device of an ozone water purification facility shown as an embodiment of the present invention.

【図2】図1の制御運転装置によりCRTに表示したオ
ゾン水処理の総合特性図である。
FIG. 2 is an overall characteristic diagram of ozone water treatment displayed on a CRT by the control operation device of FIG.

【図3】図1の制御運転装置により得たオゾナイザー運
転台数と電力調整率との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the number of operating ozonizers and the power adjustment rate obtained by the control operation device of FIG.

【図4】図1でオゾン発生器群と補機群とより成るオゾ
ン浄水施設を示す構成図である。
FIG. 4 is a configuration diagram showing an ozone water purification facility including an ozone generator group and an auxiliary equipment group in FIG. 1.

【図5】図1のオゾン浄水施設の詳細構成を示す構成図
である。
5 is a configuration diagram showing a detailed configuration of the ozone water purification facility of FIG. 1. FIG.

【図6】図5の各機器からの制御信号により調整される
電力調整特性図である。
6 is a power adjustment characteristic diagram adjusted by a control signal from each device of FIG. 5;

【符号の説明】[Explanation of symbols]

3…流量計、4…オゾン接触池、6…排オゾン装置、7
A…オゾン濃度計、8…オゾン発生器、16…水質オゾ
ン注入率演算器、17…運転台数制御演算器、18…有
効オゾン量制御部、19…記憶装置、20…CRT表示
器。
3 ... Flowmeter, 4 ... Ozone contact pond, 6 ... Exhaust ozone device, 7
A ... Ozone concentration meter, 8 ... Ozone generator, 16 ... Water quality ozone injection rate calculator, 17 ... Operating number control calculator, 18 ... Effective ozone amount control unit, 19 ... Storage device, 20 ... CRT display.

フロントページの続き (72)発明者 塩野 繁男 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内Front Page Continuation (72) Inventor Shigeo Shiono 1-1-1 Kokubuncho, Hitachi City, Ibaraki Hitachi Kokubun Plant, Hitachi Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】原水を複数台のオゾン発生器からのオゾン
をオゾン接触池に散気すると共に、オゾン接触池の入力
側水路にオゾン前処理施設を設けたものにおいて、 水路に設けた水温計及び水質計と流量計の測定値を取込
み、この測定値に相当するオゾン注入値を決定する水質
オゾン注入率演算器と、 水質オゾン注入率演算器の出力値により必要オゾン量を
求め、かつオゾン発生群台数運転表により複数台のオゾ
ン発生器の運転台数を決定する運転台数制御演算器と、 運転台数制御演算器の出力値により複数台のオゾン発生
器に運転指令を与え、発生したオゾン総量を注入するオ
ゾン接触池と、 オゾン接触池からのオゾン排気量を入力し、オゾン排気
量が基準値であるか否かを判断する有効オゾン量演算器
とを備え、 有効オゾン量演算器からの出力値は複数台のオゾン発生
器を調整する補正調整器の調整値を運転台数制御演算器
の出力値を入力したCRTに上記複数台のオゾン発生器
の動作値と動作値に必要な測定値を表示することを特徴
とするオゾン浄水施設の制御運転装置。
1. A water thermometer provided in a water channel in which ozone from a plurality of ozone generators is diffused from raw water into an ozone contact tank and an ozone pretreatment facility is provided in an input side water path of the ozone contact tank. Also, the required ozone amount is obtained from the water quality ozone injection rate calculator that takes in the measured values of the water quality meter and the flow meter and determines the ozone injection value corresponding to this measurement value, and the output value of the water quality ozone injection rate calculator. The total number of ozone generated by the operation number control calculator that determines the operation number of multiple ozone generators based on the operation table of the number of generation groups, and the operation command given to the multiple ozone generators based on the output value of the operation number control calculator It is equipped with an ozone contact pond for injecting water and an effective ozone amount calculator that inputs the ozone discharge amount from the ozone contact reservoir and judges whether the ozone discharge amount is a reference value or not. The output value of is the adjustment value of the correction adjuster that adjusts the multiple ozone generators, and the operating value of the multiple ozone generators described above is input to the CRT in which the output value of the operating unit control calculator is input. A control operation device of an ozone water purification facility characterized by displaying a value.
【請求項2】上記測定値及び測定値を記憶する記憶装置
を設けることを特徴とする請求項1記載のオゾン浄水施
設の制御運転装置。
2. The control operation device of an ozone water purification facility according to claim 1, further comprising a storage device for storing the measured value and the measured value.
【請求項3】CRTに上記測定値として使用した水温特
性値,水質特性値,オゾン注入率値,処理水量値,必要
オゾン量値と複数台のオゾン発生器の動作値を一画面上
に表示することを特徴とする請求項1記載のオゾン浄水
施設の制御運転装置。
3. A water temperature characteristic value, a water quality characteristic value, an ozone injection rate value, a treated water amount value, a required ozone amount value, and operating values of a plurality of ozone generators used as the above measured values on a CRT are displayed on one screen. The control operation device of the ozone water purification facility according to claim 1, wherein
【請求項4】上記水温特性値,水質特性値,オゾン注入
率値,処理水量値,必要オゾン量値,複数台のオゾン発
生器の運転台数を記憶する記憶装置を設けることを特徴
とする請求項1記載のオゾン浄水施設の制御運転装置。
4. A storage device for storing the water temperature characteristic value, the water quality characteristic value, the ozone injection rate value, the treated water amount value, the required ozone amount value, and the operating number of a plurality of ozone generators. Item 1. A control operation device for an ozone water purification facility according to Item 1.
【請求項5】原水を複数台のオゾン発生器からのオゾン
をオゾン接触池に散気すると共に、オゾン接触池の入力
側水路にオゾン前処理施設を設けたものにおいて、 上記オゾン発生器に使用した補機の運転状態を、複数台
のオゾン発生器の運転台数より少なくとも1台以上余分
に運転状態を保持することを特徴とするオゾン浄水施設
の制御運転方法。
5. A method in which raw water is diffused with ozone from a plurality of ozone generators to an ozone contact pond, and an ozone pretreatment facility is provided in an input side water channel of the ozone contact pond, which is used for the ozone generator. The method for controlling operation of an ozone water purification facility, characterized in that the operating state of the auxiliary equipment is maintained at least one operating state more than the operating number of a plurality of ozone generators.
【請求項6】上記2台のオゾン発生器の運転台数より1
台以上余分に補機の運転状態を保持することを特徴とす
る請求項5記載のオゾン浄水施設の制御運転方法。
6. From the operating number of the two ozone generators, 1
The control operating method of an ozone water purification facility according to claim 5, wherein the operating state of the auxiliary equipment is maintained for an extra number of units or more.
【請求項7】上記2台のオゾン発生器の運転台数より有
効オゾン量演算器の出力で動作する補正調整器により、
2台のオゾン発生器の動作点を適正として、排オゾン総
量が基準値と合致されることを特徴とする請求項5記載
のオゾン浄水施設の制御運転方法。
7. A correction adjuster that operates with the output of an effective ozone amount calculator from the number of operating two ozone generators,
The control operating method of an ozone water purification facility according to claim 5, wherein the total amount of discharged ozone is matched with a reference value by setting the operating points of the two ozone generators to be proper.
【請求項8】原水を複数台のオゾン発生器からのオゾン
をオゾン接触池に散気すると共に、オゾン接触池の入力
側水路にオゾン前処理施設を設けたものにおいて、 上記オゾン接触池に散気する複数台のオゾン発生器から
の出力オゾンを測定するオゾン流量計とオゾン濃度計
と、オゾン接触池からの排オゾン装置及び活性炭吸着池
からの排オゾン装置を検出する排オゾン計と、 オゾン流量計及び排オゾン量計から検出値を基準値に変
換し、運転台数のオゾン発生器の入力電力を制御するオ
ゾン制御部を備えたことを特徴とするオゾン浄水施設の
制御運転装置。
8. A method in which raw water is diffused with ozone from a plurality of ozone generators into an ozone contact pond, and an ozone pretreatment facility is provided in an input side water channel of the ozone contact pond. An ozone flow meter and an ozone concentration meter that measure the output ozone from multiple ozone generators, an exhaust ozone meter that detects the ozone exhaust device from the ozone contact pond and an ozone exhaust device from the activated carbon adsorption pond, and ozone A control operation device for an ozone water purification facility, comprising an ozone control unit for converting a detected value from a flow meter and an exhaust ozone meter into a reference value and controlling the input power of an operating number of ozone generators.
JP6214485A 1994-09-08 1994-09-08 Method and apparatus for controlled operation of ozone water purifying facility Pending JPH0871574A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6214485A JPH0871574A (en) 1994-09-08 1994-09-08 Method and apparatus for controlled operation of ozone water purifying facility
CN95116254A CN1123247A (en) 1994-09-08 1995-09-07 Device and method for controlling operation of ozone water cleaning apparatus
KR1019950029390A KR960010549A (en) 1994-09-08 1995-09-07 Control driving device of ozone water purification facility and control driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6214485A JPH0871574A (en) 1994-09-08 1994-09-08 Method and apparatus for controlled operation of ozone water purifying facility

Publications (1)

Publication Number Publication Date
JPH0871574A true JPH0871574A (en) 1996-03-19

Family

ID=16656498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6214485A Pending JPH0871574A (en) 1994-09-08 1994-09-08 Method and apparatus for controlled operation of ozone water purifying facility

Country Status (3)

Country Link
JP (1) JPH0871574A (en)
KR (1) KR960010549A (en)
CN (1) CN1123247A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076375A (en) * 2011-09-30 2013-04-25 Ihi Corp Ozone generation apparatus
JP2014195799A (en) * 2013-03-04 2014-10-16 株式会社Ihiシバウラ Ozone water generator
JP6150954B1 (en) * 2015-12-28 2017-06-21 株式会社栃木日化サービス Sewage treatment equipment
WO2017115476A1 (en) * 2015-12-28 2017-07-06 株式会社栃木日化サービス Sewage water treatment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094147A (en) * 2003-10-30 2003-12-11 임진희 A multipurpose ball-marker for golf
CN102267687B (en) * 2010-06-07 2013-05-08 西安费斯达自动化工程有限公司 Control method of adaptable intelligent ozone generator
CN118026097A (en) * 2021-03-22 2024-05-14 佛山市玉凰生态环境科技有限公司 Ozone generating equipment suitable for sewage treatment plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076375A (en) * 2011-09-30 2013-04-25 Ihi Corp Ozone generation apparatus
JP2014195799A (en) * 2013-03-04 2014-10-16 株式会社Ihiシバウラ Ozone water generator
JP6150954B1 (en) * 2015-12-28 2017-06-21 株式会社栃木日化サービス Sewage treatment equipment
WO2017115476A1 (en) * 2015-12-28 2017-07-06 株式会社栃木日化サービス Sewage water treatment device

Also Published As

Publication number Publication date
CN1123247A (en) 1996-05-29
KR960010549A (en) 1996-04-20

Similar Documents

Publication Publication Date Title
CN102913918B (en) Catalytic combustion processing method of high-concentration organic exhaust gas
EP1129989A1 (en) Ozone storage method and ozone storage apparatus
CN104990138B (en) Air cleaning unit, household electrical appliance and air purification method
JPH0871574A (en) Method and apparatus for controlled operation of ozone water purifying facility
CN102933910A (en) Air purifier and humidifier
CN108636070B (en) Exhaust gas treatment system
CN112044270B (en) Desulfurization oxidation air system control method based on data-driven multiple models
CN106545870B (en) Electrolytic aluminum smoke amount and pollutant become Zero discharging system
JP2010176946A (en) Fuel battery device
Bellamy et al. Economics of ozone systems: new installations and retrofits
EP0446011A1 (en) Humidification apparatus
CN214096626U (en) Testing device for ozone removal performance of air purifier
JP3368751B2 (en) Reaction bag filter system and operating method thereof
KR101089399B1 (en) A self diagnosic type gas deodorization method
JPH0873203A (en) Air source feed unit of ozone generating device
JP2005525854A (en) Air cleaning method and equipment
CN112284786A (en) Device and method for testing ozone removal performance of air purifier
JP3087572B2 (en) Ozone generation and supply device
Rakness et al. Start-Up and Operation of the Indianapolis Ozone Disinfection Wastewater Systems
CN111905546B (en) Multi-flue ozone-spraying denitration system and operation control method
JPH08155472A (en) Ozone treatment system
JPH06329401A (en) Ozone generator/feeder in water purification plant and method for generating/feeding ozone
JP2600584Y2 (en) Exhaust gas treatment equipment
JPH0924244A (en) Exhaust ozone gas processing apparatus and method for its operation
JP2008302337A (en) Ozone treatment system