JP2008161850A - Dissolved oxygen controller - Google Patents

Dissolved oxygen controller Download PDF

Info

Publication number
JP2008161850A
JP2008161850A JP2007000192A JP2007000192A JP2008161850A JP 2008161850 A JP2008161850 A JP 2008161850A JP 2007000192 A JP2007000192 A JP 2007000192A JP 2007000192 A JP2007000192 A JP 2007000192A JP 2008161850 A JP2008161850 A JP 2008161850A
Authority
JP
Japan
Prior art keywords
value
deviation
dissolved oxygen
amount
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007000192A
Other languages
Japanese (ja)
Other versions
JP5001659B2 (en
Inventor
Katsuhiko Morimoto
克彦 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIJU KANSAI SHISETSU KANRI K
SUMIJU KANSAI SHISETSU KANRI KK
Sumiju Environmental Engineering Co Ltd
Original Assignee
SUMIJU KANSAI SHISETSU KANRI K
SUMIJU KANSAI SHISETSU KANRI KK
Sumiju Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIJU KANSAI SHISETSU KANRI K, SUMIJU KANSAI SHISETSU KANRI KK, Sumiju Environmental Engineering Co Ltd filed Critical SUMIJU KANSAI SHISETSU KANRI K
Priority to JP2007000192A priority Critical patent/JP5001659B2/en
Publication of JP2008161850A publication Critical patent/JP2008161850A/en
Application granted granted Critical
Publication of JP5001659B2 publication Critical patent/JP5001659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dissolved oxygen (DO) controller, capable of stabilizing the amount of dissolved oxygen in a waste water treatment tank. <P>SOLUTION: The DO controller 1 evaluates reference air quantity, by adding an air quantity set value calculated by a multiplier 2 to an air quantity correction value calculated by an integrator 8, and from the reference air quantity the DO controller obtains, for example, an air quantity deviation which is a control command value for controlling the air quantity of a blower. The air quantity correction value is changed, by using a DO deviation value, only when the integrated value of the absolute value of the DO deviation is K1, where the integrated value of the absolute value of the DO deviation is the absolute value of the deviation between the DO set value and the DO detected value. Hence, the DO deviation value affects the air quantity, only when the air quantity is changed, regardless of the DO deviation between the changing which enables on-off control of the DO value in the waste water treatment tank. Furthermore, since the air quantity correction value is changed based on the DO deviation value at the changing, the DO value can be corrected by taking into consideration the deviation of the DO value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排水処理槽における溶存酸素量を制御する溶存酸素量制御装置に関するものである。   The present invention relates to a dissolved oxygen amount control device that controls the amount of dissolved oxygen in a wastewater treatment tank.

排水を処理する方法としては、例えば、排水処理槽内で、排水中の有機性窒素を生物学的な硝化反応及び脱窒反応により窒素ガスに還元する方法が知られている。この硝化反応は溶存酸素量が一定以上の好気状態で行われる一方、脱窒反応は溶存酸素量がほぼ0の嫌気状態で行われる。   As a method of treating wastewater, for example, a method of reducing organic nitrogen in wastewater to nitrogen gas by biological nitrification reaction and denitrification reaction in a wastewater treatment tank is known. This nitrification reaction is performed in an aerobic state in which the amount of dissolved oxygen exceeds a certain level, while the denitrification reaction is performed in an anaerobic state in which the amount of dissolved oxygen is substantially zero.

また、一般的な排水処理設備においては、脱窒反応を行う排水処理槽と硝化反応を行う排水処理槽とを多段に連結して配置する多段型や、長手方向に長い排水処理槽内における排水の流れの中で脱窒、硝化反応を行うプラグフロー型が多く採用されている。そのため、硝化反応を進めるために排水処理槽内に供給する空気の風量である散気量を増やして溶存酸素量を高くし過ぎると、脱窒反応における嫌気状態を維持するのが困難になり、脱窒反応が低下してしまう場合がある。よって、従来、溶存酸素量を一定の範囲に保つよう制御する溶存酸素量制御装置が用いられている。   In general wastewater treatment facilities, wastewater treatment tanks that perform denitrification reactions and wastewater treatment tanks that perform nitrification reactions are connected in multiple stages, and wastewater in wastewater treatment tanks that are long in the longitudinal direction. Many plug flow types are used that perform denitrification and nitrification reactions in the flow. Therefore, if the amount of air diffused, which is the amount of air supplied to the wastewater treatment tank in order to advance the nitrification reaction, is increased to make the dissolved oxygen amount too high, it becomes difficult to maintain the anaerobic state in the denitrification reaction, The denitrification reaction may decrease. Therefore, conventionally, a dissolved oxygen amount control device for controlling the dissolved oxygen amount so as to keep it in a certain range is used.

この溶存酸素量制御装置としては、例えば非特許文献1に記載されているPID制御型の溶存酸素量制御装置が知られている。この溶存酸素量制御装置は、設定された溶存酸素量と検出された溶存酸素量との偏差にPID制御を施して排水処理槽に散気する散気量を求め、この散気量に基づいて排水処理槽に散気して曝気するものである。
湯川和夫、浜本陽一、「回分式活性汚泥法におけるDO制御方法」、社団法人日本下水道協会、昭和60年、第22回下水道研究発表会講演集、454頁−456頁
As this dissolved oxygen amount control device, for example, a PID control type dissolved oxygen amount control device described in Non-Patent Document 1 is known. This dissolved oxygen amount control device performs PID control on the deviation between the set dissolved oxygen amount and the detected dissolved oxygen amount to determine the amount of air diffused to the wastewater treatment tank, and based on this amount of diffused air. Aeration is performed by aeration in a wastewater treatment tank.
Kazuo Yukawa, Yoichi Hamamoto, “DO control method in batch activated sludge process”, Japan Sewerage Association, 1985, 22nd Sewerage Research Conference Lecture, pp. 454-456

ところで、排水処理槽の溶存酸素量は、酸素の消費量と供給量との微妙なバランスの上に存在する値である。そして、酸素の消費量は、例えば、排水処理槽の送水量、水質、水温、返送汚泥量、循環汚泥量、及び微生物の量やその種類、活性度等により変動する一方、酸素の供給量は、排水の槽内滞留時間、排水の酸素持込量、排水の水温や水質等により変動する。そのため、例えば散気量の変更量(操作量)に対する溶存酸素量の応答(フィードバック量)の間には、大きな時間の遅れが生じ、しかもこの遅れは、上述の変動要因により変化してしまう。   By the way, the amount of dissolved oxygen in the wastewater treatment tank is a value that exists on a delicate balance between the consumption and supply of oxygen. The oxygen consumption varies depending on, for example, the amount of water supplied to the wastewater treatment tank, water quality, water temperature, amount of returned sludge, amount of circulating sludge, and the amount and type of microorganisms, activity, etc. It varies depending on the residence time of the drainage tank, the amount of oxygen brought into the drainage, the temperature and quality of the drainage. For this reason, for example, a large time delay occurs between the response (feedback amount) of the dissolved oxygen amount to the change amount (manipulation amount) of the aeration amount, and this delay changes due to the above-described fluctuation factors.

ここで、上記従来技術においては、排水処理槽における溶存酸素量をリアルタイムに制御するため、この時間の遅れに対応できないおそれがあった。さらに、この遅れは変動要因により変化するものであるため、制御定数を合わせて対応することは不可能である。従って、排水処理槽における溶存酸素量は、目標値に対してオーバーシュートやハンチングする等不安定なものになる場合があった。   Here, in the said prior art, since the amount of dissolved oxygen in a waste water treatment tank was controlled in real time, there existed a possibility that it could not respond to this time delay. Further, since this delay varies depending on the fluctuation factor, it is impossible to cope with the control constants together. Therefore, the dissolved oxygen amount in the wastewater treatment tank may become unstable such as overshooting or hunting with respect to the target value.

そこで、本発明は、排水処理槽における溶存酸素量を安定化することができる溶存酸素量制御装置を提供することを課題とする。   Then, this invention makes it a subject to provide the dissolved oxygen amount control apparatus which can stabilize the dissolved oxygen amount in a waste water treatment tank.

上記課題を達成するために、本発明に係る溶存酸素量制御装置は、排水処理槽に酸素を供給する酸素供給手段を制御して、排水処理槽における溶存酸素量を目標値に制御するための溶存酸素量制御手段であって、設定された溶存酸素量設定値に基づいて、酸素供給手段を制御するための基準設定値を求める基準設定値取得手段と、溶存酸素量設定値と検出された溶存酸素量検出値との偏差を求める偏差取得手段と、偏差の絶対値を積分した積分絶対値を求める積分絶対値取得手段と、偏差及び積分絶対値に基づいて、基準設定値を補正する補正値を求める補正手段と、基準設定値及び補正値に基づいて、酸素供給手段を制御する制御手段と、を備え、補正手段は、積分絶対値が所定値のときに、偏差を用いて補正値を変更することを特徴とする。   In order to achieve the above object, a dissolved oxygen amount control device according to the present invention controls an oxygen supply means for supplying oxygen to a wastewater treatment tank to control the dissolved oxygen amount in the wastewater treatment tank to a target value. Dissolved oxygen amount control means, based on the set dissolved oxygen amount set value, a reference set value obtaining means for obtaining a reference set value for controlling the oxygen supply means, and a dissolved oxygen amount set value detected Deviation acquisition means for obtaining the deviation from the dissolved oxygen amount detection value, integral absolute value acquisition means for obtaining the integral absolute value obtained by integrating the absolute value of the deviation, and correction for correcting the reference set value based on the deviation and the integral absolute value A correction means for obtaining a value, and a control means for controlling the oxygen supply means based on the reference set value and the correction value. The correction means uses a deviation when the integral absolute value is a predetermined value. It is characterized by changing .

このような本発明の溶存酸素量制御装置では、設定値取得手段により求められた基準設定値と、補正手段により求められた補正値とに基づいて、排水処理槽に酸素を供給する酸素供給手段が制御手段により制御される。この補正値は、溶存酸素量設定値と溶存酸素量検出値との偏差の絶対値を積分した積分絶対値が所定値のときに、偏差を用いて変更される。従って、酸素供給手段は、偏差の積算が所定値のときに、その供給量を変更することになる。すなわち、排水処理槽における溶存酸素量は、従来のリアルタイム制御ではなく、いわゆるON、OFF制御されることになる。   In such a dissolved oxygen amount control device of the present invention, the oxygen supply means for supplying oxygen to the wastewater treatment tank based on the reference set value obtained by the set value obtaining means and the correction value obtained by the correction means. Is controlled by the control means. This correction value is changed using the deviation when the integrated absolute value obtained by integrating the absolute value of the deviation between the dissolved oxygen amount setting value and the dissolved oxygen amount detection value is a predetermined value. Accordingly, the oxygen supply means changes the supply amount when the accumulated deviation is a predetermined value. That is, the amount of dissolved oxygen in the wastewater treatment tank is controlled so-called ON and OFF, not the conventional real-time control.

このとき、補正手段が求める補正値は、積分絶対値が所定値のときにおける偏差を用いて変更される。これにより、例えば偏差が大きかったり小さかったりする場合には、この偏差に見合う分だけ補正値を大きく又は小さく増減でき、すなわち酸素供給手段が供給する酸素量を偏差に見合う分だけ大きく又は小さく増減することが可能となる。また、例えば積分絶対値が所定値のときにおける偏差がプラスの値又はマイナスの値である場合でも、この偏差に応じて補正値をマイナス又はプラスの方向に変更、すなわち酸素量を偏差に応じてマイナス又はプラスの方向に変更することができる。従って、溶存酸素量の変動を考慮した補正が可能となる。   At this time, the correction value obtained by the correction means is changed using a deviation when the integral absolute value is a predetermined value. Thereby, for example, when the deviation is large or small, the correction value can be increased or decreased by an amount corresponding to the deviation, that is, the amount of oxygen supplied by the oxygen supply means can be increased or decreased by an amount corresponding to the deviation. It becomes possible. Further, for example, even when the deviation when the integral absolute value is a predetermined value is a positive value or a negative value, the correction value is changed in a negative or positive direction according to this deviation, that is, the oxygen amount is changed according to the deviation. It can be changed in the negative or positive direction. Therefore, it is possible to perform correction in consideration of fluctuations in the dissolved oxygen amount.

加えて、偏差の絶対値が大きい、すなわち溶存酸素量の変動が大きい場合には、積分絶対値が所定値となり易く、よって基準設定値を補正する間隔が短くなる。一方、偏差の絶対値が小さい、すなわち溶存酸素量の変動が小さい場合には、積分絶対値が所定値となり難く、よって基準設定値を補正する間隔が長くなる。これにより、溶存酸素量の変動を一層考慮した補正が可能となる。   In addition, when the absolute value of the deviation is large, that is, when the fluctuation of the dissolved oxygen amount is large, the integral absolute value tends to be a predetermined value, and thus the interval for correcting the reference set value is shortened. On the other hand, when the absolute value of the deviation is small, that is, when the variation of the dissolved oxygen amount is small, the integral absolute value is unlikely to be a predetermined value, and therefore the interval for correcting the reference set value becomes long. Thereby, the correction | amendment which considered further the fluctuation | variation of the amount of dissolved oxygen becomes possible.

従って、本発明の溶存酸素量制御装置は、例えば、現状の溶存酸素量から勘案して排水処理槽に供給する酸素供給量を所定量だけ増減させた後、溶存酸素量の変化を監視し、そしてさらに酸素供給量を所定量だけ増減させて溶存酸素量を一定の範囲に保つという人間の操作感覚に近いものになる。従って、操作量とフィードバック量とに遅れ時間が存在し、さらに外乱によりその遅れ時間が変動する場合であっても、従来のリアルタイム制御に比し、遅れ時間を考慮した精度良い溶存酸素量の制御が可能となり、排水処理槽における溶存酸素量を安定化させることができる。   Therefore, the dissolved oxygen amount control device of the present invention monitors, for example, the change in the dissolved oxygen amount after increasing or decreasing the oxygen supply amount supplied to the wastewater treatment tank in consideration of the current dissolved oxygen amount, Further, it becomes close to the human sense of operation of increasing or decreasing the oxygen supply amount by a predetermined amount to keep the dissolved oxygen amount within a certain range. Therefore, even if there is a delay time between the manipulated variable and the feedback amount, and the delay time fluctuates due to disturbance, the dissolved oxygen amount can be controlled more accurately considering the delay time compared to conventional real-time control. And the amount of dissolved oxygen in the waste water treatment tank can be stabilized.

ここで、例えば溶存酸素量が目標値に対して増え過ぎてしまったとき、この溶存酸素量が目標値になるように制御されると、供給する酸素量が比較的急激に減らされるため、逆に溶存酸素量が目標値に対して少なくなり過ぎる、すなわち溶存酸素量が目標値に対して少ない方向にオーバーシュートしてしまう場合があり、また、例えば溶存酸素量が目標値に対して減り過ぎてしまったとき、この溶存酸素量が目標値になるように制御されると、供給する酸素量が比較的急激に増やされるため、逆に溶存酸素量が目標値に対して増え過ぎる、すなわち溶存酸素量が目標値に対して大きい方向にオーバーシュートしてしまう場合がある。   Here, for example, when the amount of dissolved oxygen is excessively increased with respect to the target value, if the amount of dissolved oxygen is controlled to become the target value, the amount of oxygen to be supplied is decreased relatively abruptly. In other cases, the amount of dissolved oxygen may be too small relative to the target value, that is, the amount of dissolved oxygen may overshoot in a direction that is less than the target value. For example, the amount of dissolved oxygen is too small relative to the target value. If the amount of dissolved oxygen is controlled to reach the target value, the amount of oxygen to be supplied is increased relatively rapidly. Conversely, the amount of dissolved oxygen is excessively increased with respect to the target value. In some cases, the amount of oxygen overshoots in a direction larger than the target value.

そこで、偏差を積分した積分値を求める積分値取得手段と、溶存酸素量検出値が目標値に達する前の所定値のときに、積分値に基づいて、補正値の補正度合いを小さくするように補正値を変更する予測制御手段と、を更に備えることが好ましい。これによれば、溶存酸素量検出値が目標値に達する前の所定値のときに、積分値に基づいて例えば当該積分値に見合った分だけ補正値を増減させる等して補正値の補正度合いを小さくするように補正値を変更することで、オーバーシュートする方向と逆方向の補正を加えることになる。従って、溶存酸素量の目標値に対するハンチングを防止することが可能となり、排水処理槽における溶存酸素量を一層安定化させることができる。   Therefore, when the integral value obtaining means for obtaining the integral value obtained by integrating the deviation and the predetermined value before the dissolved oxygen amount detection value reaches the target value, the correction degree of the correction value is reduced based on the integral value. It is preferable to further include prediction control means for changing the correction value. According to this, when the dissolved oxygen amount detection value is a predetermined value before reaching the target value, the correction degree of the correction value is increased or decreased by an amount corresponding to the integration value based on the integration value, for example. By changing the correction value so as to decrease the value, correction in the direction opposite to the overshooting direction is added. Therefore, it becomes possible to prevent hunting for the target value of the dissolved oxygen amount, and the dissolved oxygen amount in the waste water treatment tank can be further stabilized.

本発明によれば、排水処理槽における溶存酸素量を安定化することが可能な溶存酸素量制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dissolved oxygen amount control apparatus which can stabilize the dissolved oxygen amount in a wastewater treatment tank can be provided.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.

まず、本発明の第1実施形態に係る溶存酸素量(DO値)制御装置であるDO制御装置について、図1〜図3に基づいて説明する。図1は本発明の第1実施形態に係るDO制御装置を示す概略回路図であり、図2は図1のDO制御装置の処理手順を示すフローチャートであり、図3は図1に示すDO制御装置の作用を説明するための線図である。このDO制御装置1は、排水を生物的に処理する排水処理施設に用いられるものであり、具体的には、排水処理槽に酸素を供給する酸素供給手段である、例えば送風機の風量調整弁の開度を制御して供給する風量を制御し、この処理槽の溶存酸素量であるDO値を制御するものである。   First, a DO control device that is a dissolved oxygen amount (DO value) control device according to a first embodiment of the present invention will be described with reference to FIGS. 1 is a schematic circuit diagram showing a DO control device according to the first embodiment of the present invention, FIG. 2 is a flowchart showing a processing procedure of the DO control device of FIG. 1, and FIG. 3 is a DO control shown in FIG. It is a diagram for demonstrating the effect | action of an apparatus. The DO control device 1 is used in a wastewater treatment facility that biologically treats wastewater. Specifically, the DO control device 1 is an oxygen supply unit that supplies oxygen to a wastewater treatment tank, for example, an air volume adjustment valve of a blower. The amount of air supplied by controlling the opening is controlled, and the DO value, which is the amount of dissolved oxygen in the treatment tank, is controlled.

図1に示すように、DO制御装置1は、乗算器(基準設定値取得手段)2と減算器(偏差取得手段)3とを備えている。乗算器2は、例えば実験等により予め求められた比例定数αと、予め設定されたDO設定値とを掛け合せて設定風量(基準設定値)を求める。この乗算器2には、加算器4が接続されており、設定風量を加算器4に出力する。   As shown in FIG. 1, the DO control device 1 includes a multiplier (reference set value acquisition means) 2 and a subtracter (deviation acquisition means) 3. The multiplier 2 obtains a set air volume (reference set value) by multiplying, for example, a proportionality constant α obtained in advance by experiments or the like and a preset DO set value. An adder 4 is connected to the multiplier 2, and the set air volume is output to the adder 4.

減算器3は、DO設定値から、例えば検出器で検出されたDO検出値を減算して、DO設定値とDO検出値とのDO偏差を求める。この減算器3には、乗算器5と絶対値変換器6とが接続されており、これらのそれぞれにDO偏差を出力する。   The subtracter 3 subtracts, for example, the DO detection value detected by the detector from the DO setting value, and obtains the DO deviation between the DO setting value and the DO detection value. A multiplier 5 and an absolute value converter 6 are connected to the subtracter 3 and outputs a DO deviation to each of them.

乗算器5は、入力されたDO偏差と、例えば実験等により予め求められた比例定数βとを掛け合せてDO偏差に応じた風量を求める。この乗算器5には、スイッチ7aを介して積分器8が接続されており、積分器8にこのDO偏差に応じたDO偏差風量を出力する。   The multiplier 5 multiplies the input DO deviation by a proportionality constant β obtained in advance, for example, by an experiment or the like to obtain an air volume corresponding to the DO deviation. An integrator 8 is connected to the multiplier 5 via a switch 7a, and a DO deviation air volume corresponding to the DO deviation is output to the integrator 8.

一方、絶対値変換器6は、入力されたDO偏差の絶対値であるDO偏差絶対値を求める。この絶対値変換器6には、積分器(積分絶対値取得手段)9が接続されており、積分器9にこのDO偏差絶対値を出力する。積分器9は、入力されたDO偏差絶対値を積分してDO偏差絶対値の積分値を求める。この積分器9には、比較器10が接続されていると共にスイッチ7bを介してリセット器11が接続されており、比較器10にDO偏差絶対値の積分値を出力する。   On the other hand, the absolute value converter 6 obtains a DO deviation absolute value that is an absolute value of the inputted DO deviation. The absolute value converter 6 is connected to an integrator (integral absolute value acquisition means) 9, and outputs the DO deviation absolute value to the integrator 9. The integrator 9 integrates the input DO deviation absolute value to obtain an integral value of the DO deviation absolute value. A comparator 10 is connected to the integrator 9 and a reset device 11 is connected via a switch 7b. The integrator 9 outputs an integrated value of the DO deviation absolute value to the comparator 10.

比較器10は、入力されたDO偏差絶対値の積分値と、例えば実験等により予め求められた定数K1とを比較する。なお、K1は0より大きい値であり、ここでは、好ましいとして、300ppm・sとしている。この比較器10には、リレー12を介して上記スイッチ7a,7bが接続されている。リセット器11は、入力されたDO偏差絶対値の積分値をリセットして0にする。   The comparator 10 compares the input integral value of the DO deviation absolute value with, for example, a constant K1 obtained in advance by experiments or the like. In addition, K1 is a value larger than 0, and is preferably 300 ppm · s here. The comparator 10 is connected to the switches 7 a and 7 b through a relay 12. The reset device 11 resets the integrated value of the input DO deviation absolute value to zero.

積分器8は、入力されたDO偏差風量を積分し、DO偏差風量の積分値を求める。この積分器8には、加算器4が接続され、求められたDO偏差風量の積分値を補正風量として加算器4に出力する。   The integrator 8 integrates the input DO deviation air volume to obtain an integrated value of the DO deviation air volume. The adder 4 is connected to the integrator 8, and the obtained integrated value of the DO deviation air volume is output to the adder 4 as a corrected air volume.

加算器4は、入力された設定風量にDO偏差風量の積分値である補正風量を加算して基準風量を求め、後続の減算器13に基準風量を出力する。そして、減算器13は、入力された基準風量から、例えば風量計により検出された風量検出値を減算して風量偏差を求め、この風量偏差を制御指令値として外部へ出力する。   The adder 4 adds a correction air volume that is an integral value of the DO deviation air volume to the input set air volume to obtain a reference air volume, and outputs the reference air volume to the subsequent subtractor 13. Then, the subtractor 13 subtracts an airflow detection value detected by, for example, an airflow meter from the input reference airflow to obtain an airflow deviation, and outputs the airflow deviation as a control command value to the outside.

ここで、DO制御装置1では、リレー12は、DO偏差絶対値の積分値が定数K1より小さいときにはスイッチ7a,7bを開き、偏差絶対値の積分値が定数K1以上のときにはスイッチ7a,7bを閉じるように接続されている。すなわち、偏差絶対値の積分値が定数K1より大きいときに、乗算器5と積分器8と、積分器9とリセット器11と、がそれぞれ接続されることになる。   Here, in the DO control device 1, the relay 12 opens the switches 7a and 7b when the integral value of the DO deviation absolute value is smaller than the constant K1, and switches 7a and 7b when the integral value of the deviation absolute value is greater than or equal to the constant K1. Connected to close. That is, when the integrated value of the deviation absolute value is larger than the constant K1, the multiplier 5, the integrator 8, the integrator 9, and the reset device 11 are connected to each other.

なお、絶対値変換器6、積分器9は積分絶対値取得手段を構成し、乗算器5、スイッチ7a,7b、積分器8、比較器10、リセット器11、及びリレー12は補正手段を構成し、加算器4及び減算器13は制御手段を構成する。ちなみに、制御手段としては、加算器4だけで構成されていてもよく、この場合、基準風量を制御指令値として外部に出力して風量を制御してもよい。   The absolute value converter 6 and the integrator 9 constitute an integral absolute value acquisition means, and the multiplier 5, the switches 7a and 7b, the integrator 8, the comparator 10, the reset device 11 and the relay 12 constitute a correction means. The adder 4 and the subtracter 13 constitute control means. Incidentally, the control means may be configured by only the adder 4, and in this case, the reference air volume may be output to the outside as a control command value to control the air volume.

このDO制御装置1により排水処理槽のDO量を制御する場合、図2に示すように、まず、減算器3によりDO設定値とDO検出値とのDO偏差を求め(S1)、絶対値変換器6によりDO偏差絶対値を求め(S2)、積分器9によりこのDO偏差絶対値を積分して、DO偏差絶対値の積分値を求める(S3)。   When the DO amount of the wastewater treatment tank is controlled by the DO control device 1, first, as shown in FIG. 2, the DO deviation between the DO set value and the DO detection value is obtained by the subtractor 3 (S1), and the absolute value conversion is performed. The absolute value of DO deviation is obtained by the device 6 (S2), and the DO deviation absolute value is integrated by the integrator 9 to obtain the integrated value of the DO deviation absolute value (S3).

次に、図3に示すように、DO偏差絶対値の積分値がK1より小さい場合(矢印A1〜A4の範囲)には、スイッチ7aが開で補正風量は変更されず、現状の補正風量すなわち矢印A1〜A4の範囲において積分器8に蓄積されているDO偏差風量の積分値を補正風量として求める(図2のS4→S6)。   Next, as shown in FIG. 3, when the integrated value of the DO deviation absolute value is smaller than K1 (range of arrows A1 to A4), the switch 7a is opened and the correction air volume is not changed. An integrated value of the DO deviation air volume accumulated in the integrator 8 in the range of arrows A1 to A4 is obtained as a corrected air volume (S4 → S6 in FIG. 2).

一方、DO偏差絶対値の積分値がK1に達したとき(B1〜B3)にあっては、比較器10はリレー12を作動させてスイッチ7a,7bを閉とする。これにより、乗算器5と積分器8とが接続され、DO偏差に応じたDO偏差風量が積分器8に蓄積されて補正風量が変更される。これと同時に、積分器9とリセット器11とが接続され、積分器9で積分されたDO偏差絶対値の積分値が0となる。   On the other hand, when the integrated value of the DO deviation absolute value reaches K1 (B1 to B3), the comparator 10 operates the relay 12 to close the switches 7a and 7b. As a result, the multiplier 5 and the integrator 8 are connected, and the DO deviation air volume corresponding to the DO deviation is accumulated in the integrator 8 to change the corrected air volume. At the same time, the integrator 9 and the reset device 11 are connected, and the integrated value of the DO deviation absolute value integrated by the integrator 9 becomes zero.

DO偏差絶対値の積分値が0となったことより、比較器10では、DO偏差絶対値の積分値がK1より小さいと判定され、リレー12を作動して、スイッチ7a,7bを開とし、乗算器5と積分器8とを遮断し、積分器9とリセット器11とを遮断する。従って、実質的に、DO偏差絶対値の積分値がK1に達したときにのみ、DO偏差風量が積分器8に蓄積される。換言すると、DO偏差絶対値の積分値がK1に達したときを風量変更点B1〜B3として、当該風量変更点B1〜B3の時にのみ、補正風量は、DO偏差風量だけ加算されることになる(S4→S5)。   Since the integrated value of the DO deviation absolute value becomes 0, the comparator 10 determines that the integrated value of the DO deviation absolute value is smaller than K1, operates the relay 12, opens the switches 7a and 7b, The multiplier 5 and the integrator 8 are cut off, and the integrator 9 and the resetter 11 are cut off. Therefore, the DO deviation air volume is accumulated in the integrator 8 substantially only when the integral value of the DO deviation absolute value reaches K1. In other words, when the integrated value of the DO deviation absolute value reaches K1, the airflow change points B1 to B3 are used, and the correction airflow is added by the DO deviation airflow only at the airflow change points B1 to B3. (S4 → S5).

最後に、DO設定値から乗算器2により求められた設定風量と、積分器8により蓄積されている補正風量とを加算して、基準風量を求め(S6)、減算器13により基準風量と風量検出値との偏差である風量偏差を求める(S7)。これにより、この風量偏差を制御指令値として、例えば送風機の風量調整弁に出力し、風量調整弁における開度を制御し排水処理槽に供給する風量を制御して、排水処理槽におけるDO値を目標値であるDO設定値に制御することができる。   Finally, the set air volume obtained by the multiplier 2 from the DO set value and the corrected air volume accumulated by the integrator 8 are added to obtain the reference air volume (S6), and the reference air volume and air volume are obtained by the subtractor 13. An air flow deviation which is a deviation from the detected value is obtained (S7). Thereby, this air flow deviation is output as a control command value to, for example, the air flow adjusting valve of the blower, the opening in the air flow adjusting valve is controlled, the air flow supplied to the waste water treatment tank is controlled, and the DO value in the waste water treatment tank is set. It can be controlled to a DO set value that is a target value.

このように本実施形態によれば、乗算器2で求められた設定風量と、積分器8で求められた補正風量とを加算することにより基準風量を求め、この基準風量と風量検出値との偏差から、例えば風量調整弁を制御する制御指令値である風量偏差が求められる。補正風量は、DO設定値とDO検出値とのDO偏差絶対値の積分値がK1に達したときのみに、DO偏差を用いて変更される。従って、風量調整弁は、DO偏差の積分値がK1に達したとき、すなわち風量変更点のときのみに、その開度を変更して供給する風量を変更することになる。従って、風量変更点のDO偏差のみが風量に反映され、風量変更点から次の風量変更点までのDO偏差は風量に関係しない。その結果、風量をいわゆるON、OFF制御することができ、排水処理槽におけるDO値をいわゆるON、OFF制御することが可能となる。   As described above, according to the present embodiment, the reference air volume is obtained by adding the set air volume obtained by the multiplier 2 and the corrected air volume obtained by the integrator 8, and the reference air volume and the detected air volume value are calculated. From the deviation, for example, an air flow deviation which is a control command value for controlling the air flow adjusting valve is obtained. The corrected air volume is changed using the DO deviation only when the integrated value of the DO deviation absolute value of the DO setting value and the DO detection value reaches K1. Therefore, the air volume adjusting valve changes the air volume to be supplied by changing the opening degree only when the integrated value of the DO deviation reaches K1, that is, at the air volume changing point. Therefore, only the DO deviation at the airflow change point is reflected in the airflow, and the DO deviation from the airflow change point to the next airflow change point is not related to the airflow. As a result, the air volume can be controlled on and off, and the DO value in the waste water treatment tank can be controlled on and off.

このとき、補正風量は、風量変更点におけるDO偏差を用いて変更される。これにより、このDO偏差が大きかったり(例えば、図3の矢印R1)、このDO偏差が小さかったり(例えば、矢印Z1)する場合には、このDO偏差に見合う分だけ補正風量を大きく(例えば、矢印R2)、又は小さく(例えば、矢印Z2)増減でき、すなわち送風機が供給する風量をDO偏差に見合う分だけ大きく又は小さく増減することが可能となる。   At this time, the corrected air volume is changed using the DO deviation at the air volume changing point. As a result, when the DO deviation is large (for example, arrow R1 in FIG. 3) or the DO deviation is small (for example, arrow Z1), the correction air volume is increased by an amount corresponding to the DO deviation (for example, Arrow R2) or small (for example, arrow Z2) can be increased or decreased, that is, the air volume supplied by the blower can be increased or decreased by an amount corresponding to the DO deviation.

また、風量変更点におけるDO偏差がプラスの値(例えば、図3の矢印R1)、又はマイナスの値(例えば、図3の矢印Z1)であったりする場合でも、このDO偏差に応じて補正風量をマイナスの方向に変更(例えば、矢印R2)、又はプラスの方向に変更(例えば、矢印Z2)する、すなわち酸素量を偏差に応じてマイナス又はプラスの方向に変更することができる。従って、DO値の変動を考慮したDO値の補正が可能となる。   Even when the DO deviation at the air volume change point is a positive value (for example, the arrow R1 in FIG. 3) or a negative value (for example, the arrow Z1 in FIG. 3), the corrected air volume is adjusted according to the DO deviation. Can be changed in a negative direction (for example, arrow R2), or can be changed in a positive direction (for example, arrow Z2), that is, the oxygen amount can be changed in a negative or positive direction according to the deviation. Therefore, the DO value can be corrected in consideration of the fluctuation of the DO value.

加えて、DO偏差絶対値が大きい、すなわちDO値の変動が大きい場合には、DO偏差絶対値の積分値がK1に達し易く、よって設定風量を補正する間隔が短くなる(例えば、矢印A2)。一方、DO偏差絶対値が小さい、すなわちDO値の変動が小さい場合には、DO偏差絶対値の積分値がK1に達し難く、よって設定風量を補正する間隔が長くなる(例えば、矢印A3)。これにより、DO値の変動を考慮したDO値の補正が一層可能となる。   In addition, when the DO deviation absolute value is large, that is, when the fluctuation of the DO value is large, the integrated value of the DO deviation absolute value easily reaches K1, and therefore the interval for correcting the set air volume becomes short (for example, arrow A2). . On the other hand, when the DO deviation absolute value is small, that is, the fluctuation of the DO value is small, the integrated value of the DO deviation absolute value does not easily reach K1, and therefore the interval for correcting the set air volume becomes long (for example, arrow A3). Thereby, it is possible to further correct the DO value in consideration of the fluctuation of the DO value.

従って、DO制御装置1は、現状のDO値から勘案して排水処理槽に供給する風量を増減させ、DO値の変化を所定の時間だけ監視しつつ、その変化を考慮して再び風量を増減させてDO値を一定の範囲に保つという人間の操作感覚に近いものになる。すなわち、排水処理槽のように風量変化量(操作量)とそれに対応するDO値の変化量(フィードバック量)とに遅れ時間が存在し、さらに外乱によりその遅れ時間が変動する場合であっても、遅れ時間を考慮した精度良いDO値の制御が可能となり、排水処理槽におけるDO値を安定化させることができる。その結果、一般的な排水処理施設における排水処理槽のDO値制御に採用されている従来のリアルタイム制御に比し、好適にDO値を制御できる。   Accordingly, the DO control device 1 increases or decreases the air volume supplied to the wastewater treatment tank in consideration of the current DO value, and monitors the change in the DO value for a predetermined time, and increases or decreases the air volume again in consideration of the change. It is close to the human sense of operation to keep the DO value within a certain range. That is, even when there is a delay time between the airflow change amount (operation amount) and the DO value change amount (feedback amount) corresponding to the amount of change (feedback amount) as in a wastewater treatment tank, the delay time fluctuates due to disturbance. The DO value can be accurately controlled in consideration of the delay time, and the DO value in the waste water treatment tank can be stabilized. As a result, the DO value can be suitably controlled as compared with the conventional real-time control adopted for the DO value control of the waste water treatment tank in a general waste water treatment facility.

また、排水処理槽におけるDO値は、たとえ供給する酸素量が一定であっても前述の変動要因により常に変化する特有のものであり、よって同一の排水処理槽内であっても、その箇所によって大きな違いが生じる。さらに、排水処理工程には脱窒反応や硝化反応等の種々の反応が含まれており、各処理工程で必要とされる酸素量も異なる。そこで、本実施形態におけるDO検出値は、例えばプラグフロー型の処理槽である場合にはその槽内を流れる排水の後流側、例えば多段型の処理槽である場合には後段側の処理槽で検出されており、このように排水の流れの後側位置でDO値を検出して制御することにより、排水処理槽全域において、DO値を十分に確保でき、好適にDO値を安定化することが可能となる。   Also, the DO value in the wastewater treatment tank is unique because it always changes due to the aforementioned fluctuation factors even if the amount of oxygen to be supplied is constant, so even in the same wastewater treatment tank, depending on the location There is a big difference. Furthermore, the wastewater treatment process includes various reactions such as denitrification reaction and nitrification reaction, and the amount of oxygen required in each treatment process is also different. Therefore, the DO detection value in the present embodiment is, for example, a plug flow type treatment tank, a downstream side of waste water flowing in the tank, for example, a multistage type treatment tank, and a subsequent stage treatment tank. In this way, by detecting and controlling the DO value at the rear position of the waste water flow, the DO value can be sufficiently secured in the entire waste water treatment tank, and the DO value is preferably stabilized. It becomes possible.

また、DO制御装置1は、結果として排水処理槽におけるDO値を制御するものであるが、実際には、酸素供給手段である例えば送風機が排水処理槽に供給する風量を制御する。風量制御は、その制御の応答性に優れるものであり、精度良い制御が可能なものである。従って、このように酸素供給手段を制御してDO値を制御することにより、DO値を精度良く制御して安定化させることが可能である。   The DO control device 1 controls the DO value in the wastewater treatment tank as a result, but actually controls the amount of air supplied to the wastewater treatment tank by, for example, a blower which is an oxygen supply means. The air volume control is excellent in the responsiveness of the control, and can be accurately controlled. Therefore, by controlling the oxygen supply means and controlling the DO value in this way, it is possible to accurately control and stabilize the DO value.

さらに、このDO制御装置1は、既設の一般的なDO制御装置に代えて用いることが可能であり、汎用性に非常に優れている。   Furthermore, this DO control device 1 can be used in place of an existing general DO control device, and is extremely excellent in versatility.

次に、本発明の第2実施形態に係る溶存酸素量制御装置であるDO制御装置20について、図4〜図6に基づいて説明する。図4は本発明の第2実施形態に係るDO制御装置を示す概略回路図であり、図5は図4のDO制御装置の処理手順を示すフローチャートであり、図6は図4に示すDO制御装置の作用を説明するための線図であり、図4及び図5においては点線で囲んだものが上記第1実施形態に追加した構成である。ここでは、第1実施形態と同一の説明は省略し、異なる点についてのみ説明する。   Next, a DO control device 20 that is a dissolved oxygen amount control device according to a second embodiment of the present invention will be described with reference to FIGS. 4 is a schematic circuit diagram showing a DO control device according to a second embodiment of the present invention, FIG. 5 is a flowchart showing a processing procedure of the DO control device of FIG. 4, and FIG. 6 is a DO control shown in FIG. FIG. 6 is a diagram for explaining the operation of the device, and in FIG. 4 and FIG. 5, what is surrounded by a dotted line is a configuration added to the first embodiment. Here, the same description as in the first embodiment is omitted, and only different points will be described.

図4に示すように、DO制御装置20は、絶対値変換器21と積分器(積分値取得手段)22とを備えている。絶対値変換器21は、減算器3に接続されており、減算器3からDO偏差が入力される。そして、絶対値変換器21は、入力されたDO偏差の絶対値であるDO偏差絶対値を求め、後続の比較器23にこのDO偏差絶対値を出力する。   As shown in FIG. 4, the DO control device 20 includes an absolute value converter 21 and an integrator (integral value acquisition means) 22. The absolute value converter 21 is connected to the subtracter 3, and the DO deviation is input from the subtracter 3. Then, the absolute value converter 21 calculates the DO deviation absolute value that is the absolute value of the input DO deviation, and outputs this DO deviation absolute value to the subsequent comparator 23.

比較器23は、入力されたDO偏差絶対値と、例えば実験等により予め求められた定数K2とを比較する。なお、K2は0より大きい値であり、ここでは、好ましいとして、0.05ppmとしている。この比較器23には、リレー24を介してスイッチ25a,25bが接続されている。   The comparator 23 compares the input DO deviation absolute value with a constant K2 obtained in advance, for example, through experiments. Note that K2 is a value larger than 0, and is preferably 0.05 ppm here. Switches 25 a and 25 b are connected to the comparator 23 via a relay 24.

一方、積分器22は、減算器3に接続されており、減算器3からDO偏差が入力される。そして、DO偏差を積分してDO偏差の積分値を求める。この積分器22には、反転器26が接続されると共にスイッチ25bを介してリセット器27が接続されており、反転器26にDO偏差の積分値を出力する。   On the other hand, the integrator 22 is connected to the subtracter 3, and the DO deviation is input from the subtractor 3. Then, the DO deviation is integrated to obtain an integrated value of the DO deviation. The integrator 22 is connected to an inverter 26 and is connected to a reset device 27 via a switch 25b, and outputs an integrated value of DO deviation to the inverter 26.

反転器26は、入力されたDO偏差の積分値に、例えば−1を乗算してその極性を反転させる。なお、反転器26としては、DO偏差の積分値を0から減算してその極性を反転させてもよい。この反転器26には、スイッチ25aを介して乗算器28が接続されており、乗算器28に、このDO偏差の積分値を出力する。リセット器27は、入力されたDO偏差の積分値をリセットして0にする。   The inverter 26 multiplies the integrated value of the input DO deviation by, for example, −1 to invert the polarity. The inverter 26 may reverse the polarity by subtracting the integral value of the DO deviation from 0. A multiplier 28 is connected to the inverter 26 via a switch 25a, and an integrated value of the DO deviation is output to the multiplier 28. The reset unit 27 resets the integrated value of the input DO deviation to zero.

乗算器28は、入力されたDO偏差の積分値と、例えば実験等により予め求められた比例定数γとを掛け合せてDO偏差の積分値に応じた風量を求める。この乗算器28には、加算器29が接続されており、加算器29にこのDO偏差の積分値に応じた風量を出力する。   The multiplier 28 multiplies the input integrated value of the DO deviation by a proportionality constant γ determined in advance by an experiment or the like to determine the air volume according to the integrated value of the DO deviation. An adder 29 is connected to the multiplier 28, and an air volume corresponding to the integrated value of the DO deviation is output to the adder 29.

加算器29は、前述したスイッチ7aと積分器8との間に接続されており、乗算器5からスイッチ7aを介して入力されたDO偏差に応じた風量に、DO偏差の積分値に応じた風量を加算する。そして、この加算されたDO偏差に応じた風量を後続の積分器8に出力する。   The adder 29 is connected between the switch 7a and the integrator 8 described above, and the air volume according to the DO deviation input from the multiplier 5 through the switch 7a is set in accordance with the integrated value of the DO deviation. Add air volume. Then, the air volume corresponding to the added DO deviation is output to the subsequent integrator 8.

このDO制御装置20においては、リレー24は、DO偏差絶対値が定数K2より大きいときには、スイッチ25a,25bを開き、DO偏差絶対値が定数K2以下のときにはスイッチ25a,25bを閉じるように接続されている。すなわち、偏差絶対値が定数K2以下のときに、反転器26と乗算器28及び積分器22とリセット器27とがそれぞれ接続されることになる。   In the DO control device 20, the relay 24 is connected to open the switches 25a and 25b when the DO deviation absolute value is larger than the constant K2, and to close the switches 25a and 25b when the DO deviation absolute value is less than the constant K2. ing. That is, when the deviation absolute value is equal to or smaller than the constant K2, the inverter 26 and multiplier 28, the integrator 22 and the reset device 27 are connected to each other.

なお、絶対値変換器21、比較器23、リレー24、スイッチ25a,25b、反転器26、リセット器27、乗算器28、及び加算器29は予測制御手段を構成する。ちなみに、絶対値変換器6,21を一つの絶対値変換器で兼用してもよく、この場合は、この絶対値変換器の後段には、積分器9と比較器23とが接続されることになる。   The absolute value converter 21, the comparator 23, the relay 24, the switches 25a and 25b, the inverter 26, the reset device 27, the multiplier 28, and the adder 29 constitute a prediction control means. Incidentally, the absolute value converters 6 and 21 may be shared by one absolute value converter. In this case, the integrator 9 and the comparator 23 are connected to the subsequent stage of the absolute value converter. become.

次に、このDO制御装置20により排水処理槽のDO量を制御する場合について説明する。なお、図5に示すように、S1〜S7の流れは上記第1実施形態と同様である。   Next, the case where the DO amount of the waste water treatment tank is controlled by the DO control device 20 will be described. In addition, as shown in FIG. 5, the flow of S1-S7 is the same as that of the said 1st Embodiment.

まず、上記第1実施形態と同様に、DO偏差を求める(S1)。次に、絶対値変換器21によりDO偏差絶対値を求める(S8)。積分器22によりDO偏差の積分値を求める(S9)。そして、DO偏差絶対値がK2より大きい場合、現状の積分器8に蓄積されている偏差風量の積分値を補正風量として求める(S10→S6)。   First, as in the first embodiment, the DO deviation is obtained (S1). Next, the absolute value converter 21 calculates the DO deviation absolute value (S8). An integral value of the DO deviation is obtained by the integrator 22 (S9). If the DO deviation absolute value is larger than K2, the integrated value of the deviation air volume accumulated in the current integrator 8 is obtained as the corrected air volume (S10 → S6).

一方、DO偏差絶対値がK2以下のときに(図6の矢印C1,C2)、リレー24が作動してスイッチ25a,25bを閉とし、DO偏差の積分値の極性を反転させて、この積分値に応じた風量を補正風量に加算する。これと同時に、リセット器27により積分器22に蓄積されているDO偏差の積分値が0となる。すなわち、実質的には、補正風量は、DO偏差絶対値がK2以下になったときのみに加算されることになる(図5のS10→S11)。換言すると、DO偏差絶対値がK2以下でも、K2以下になったとき以外はDO偏差の積分値は0であるため補正風量は変更されない。その後、DO偏差絶対値がK2より大きくなると、再びリレー24が作動されてスイッチ25a,25bが開とされ、積分器22には再びDO偏差が蓄積される。   On the other hand, when the DO deviation absolute value is less than or equal to K2 (arrows C1 and C2 in FIG. 6), the relay 24 is actuated to close the switches 25a and 25b, and the polarity of the integral value of the DO deviation is reversed, and this integration is performed. The air volume corresponding to the value is added to the corrected air volume. At the same time, the integrated value of the DO deviation accumulated in the integrator 22 by the resetter 27 becomes zero. That is, substantially, the corrected air volume is added only when the DO deviation absolute value is equal to or smaller than K2 (S10 → S11 in FIG. 5). In other words, even if the DO deviation absolute value is equal to or less than K2, the corrected air volume is not changed because the integrated value of the DO deviation is 0 except when it is equal to or less than K2. Thereafter, when the DO deviation absolute value becomes larger than K2, the relay 24 is actuated again, the switches 25a and 25b are opened, and the DO deviation is accumulated in the integrator 22 again.

このように、本実施形態にあっても、上記第1実施形態と同様の効果を得ることができる。加えて、例えばDO値が目標値であるDO設定値に対して増え過ぎてしまったとき、このDO値が目標値になるように風量が制御されると、供給する風量が比較的急激に減らされるため、逆にDO値が目標値に対して小さくなり過ぎる、すなわちDO値が目標値に対して小さい方向にオーバーシュートしてしまう場合があり、また、例えばDO値が目標値に対して減り過ぎてしまったとき、このDO値が目標値になるように制御されると、供給する風量が比較的急激に増やされるため、逆にDO値が目標値に対して増え過ぎる、すなわちDO値が目標値に対して大きい方向にオーバーシュートしてしまう場合があるが、本実施形態においては、DO偏差絶対値がK2以下になったときD1,D2、すなわちDO検出値が目標値に達する前のときD1,D2に、DO偏差の積分値に見合った分だけの風量を補正風量に加算することで、このオーバーシュートする方向と逆方向の補正を加えることができる。換言すると、例えば、電車のオーバーランを防止するために駅の手間でブレーキを掛けるように補正を加えることが可能となる。従って、DO値の目標値に対するハンチングを防止することが可能となり、排水処理槽におけるDO値を一層安定化させることができる。   Thus, even in the present embodiment, the same effect as in the first embodiment can be obtained. In addition, for example, when the DO value increases too much with respect to the DO setting value that is the target value, if the air volume is controlled so that the DO value becomes the target value, the supplied air volume is decreased relatively abruptly. Therefore, on the contrary, the DO value may be too small with respect to the target value, that is, the DO value may overshoot in a direction smaller than the target value. For example, the DO value decreases with respect to the target value. If the DO value is controlled so that it becomes the target value, the supplied air volume is increased relatively abruptly, so that the DO value increases excessively with respect to the target value. In this embodiment, when the DO deviation absolute value becomes equal to or less than K2, D1 and D2, that is, before the DO detection value reaches the target value, the target value may be overshot. When To D1, D2, by adding the correction air volume air volume of an amount corresponding commensurate with the integral value of the DO deviation can be added to a direction opposite to the direction of correction for the overshoot. In other words, for example, it is possible to make corrections so that the brakes are applied in the trouble of the station in order to prevent overrun of the train. Therefore, it is possible to prevent hunting of the DO value with respect to the target value, and the DO value in the waste water treatment tank can be further stabilized.

次に、上記第2実施形態に係るDO制御装置を含む排水処理プラントについて、図7及び図8に基づいて説明する。図7は本発明の第2実施形態に係るDO制御装置を含む排水処理プラントを示す概略構成図であり、図8は図7の排水処理プラントの排水処理槽におけるDO値の制御結果を示す図である。この排水処理プラント30は、有機性窒素を含む排水を生物学的に処理する施設であり、既設の排水処理プラントに上記第2実施形態に係るDO制御装置20を組み込んだものである。なお、ここでは、排水処理プラント30にはDO制御装置20が組み込まれているが、これに代えて、上記第1実施形態のDO制御装置1が組み込まれていても良い。   Next, the wastewater treatment plant including the DO control device according to the second embodiment will be described with reference to FIGS. FIG. 7 is a schematic configuration diagram showing a wastewater treatment plant including a DO control device according to the second embodiment of the present invention, and FIG. 8 is a diagram showing a control result of the DO value in the wastewater treatment tank of the wastewater treatment plant of FIG. It is. The wastewater treatment plant 30 is a facility that biologically treats wastewater containing organic nitrogen, and incorporates the DO control device 20 according to the second embodiment in an existing wastewater treatment plant. Here, the DO control device 20 is incorporated in the wastewater treatment plant 30, but the DO control device 1 of the first embodiment may be incorporated instead.

図7に示すように、排水処理プラント30は、送風機における風量調節弁31を備えており、排水処理槽におけるDO値及び風量を検出する検出器32と、検出値を表示する排水処理槽計器盤33と、風量調節弁31を制御するコントローラ34と、コントローラ34の出力を増幅する補助継電器盤35と、を有している。ここで、コントローラ34には、DO制御装置20及び従来のPID制御型DO制御装置40が組み込まれており、DO制御装置20又はPID制御型DO制御装置40は切替スイッチ36により切り替え可能とされている。   As shown in FIG. 7, the wastewater treatment plant 30 includes an air volume control valve 31 in the blower, a detector 32 that detects the DO value and the air volume in the wastewater treatment tank, and a wastewater treatment tank instrument panel that displays the detected value. 33, a controller 34 that controls the air volume control valve 31, and an auxiliary relay panel 35 that amplifies the output of the controller 34. Here, the DO control device 20 and the conventional PID control type DO control device 40 are incorporated in the controller 34, and the DO control device 20 or the PID control type DO control device 40 can be switched by the changeover switch 36. Yes.

この本実施形態においては、切替スイッチ36によりDO制御装置20に切替え、DO制御装置20により排水処理槽におけるDO値を制御することで、上記第2実施形態と同様の効果を得ることができる。   In this embodiment, the same effect as the second embodiment can be obtained by switching to the DO control device 20 by the changeover switch 36 and controlling the DO value in the waste water treatment tank by the DO control device 20.

ここで、この説明した排水処理プラント30において、DO制御装置20とPID制御型DO制御装置40とのそれぞれを用い、排水処理槽におけるDO値が所望のDO値になるように制御した。具体的には、スイッチ36により前半はPID制御型DO制御装置40に接続し、後半はDO制御装置20に接続した。その結果、図8に示すように、従来のPID制御型DO制御装置40による制御(T1の範囲)では、DO値及び風量が大きくハンチングして発散傾向にあり、さらにDO値と風量との間には時間遅れが生じている。これに対し、本実施形態のDO制御装置20による制御(T2の範囲)では、DO値が安定し且つDO値と風量との時間遅れも低減されている。従って、遅れ時間を考慮した精度良いDO値の制御を可能とし、排水処理槽におけるDO値を安定化させることができるという上記効果を確認することができた。   Here, in the wastewater treatment plant 30 described above, each of the DO control device 20 and the PID control type DO control device 40 was used to control the DO value in the wastewater treatment tank to a desired DO value. Specifically, the first half was connected to the PID control type DO control device 40 by the switch 36, and the second half was connected to the DO control device 20. As a result, as shown in FIG. 8, in the control by the conventional PID control type DO control device 40 (the range of T1), the DO value and the air volume are greatly hunted and tend to diverge, and between the DO value and the air volume. There is a time delay. On the other hand, in the control (range T2) by the DO control device 20 of the present embodiment, the DO value is stable and the time delay between the DO value and the air volume is also reduced. Therefore, it was possible to control the DO value with high accuracy in consideration of the delay time, and to confirm the above effect that the DO value in the waste water treatment tank can be stabilized.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、酸素供給手段を送風機としてその風量調節弁の開度を制御し風量を制御しているが、例えば攪拌装置を用いて攪拌装置の回転数を制御してもよく、また、攪拌装置の攪拌羽根の浸漬深さを制御してもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the oxygen supply means is used as a blower to control the air volume by controlling the opening of the air volume control valve, but the rotation speed of the agitator may be controlled using, for example, a stirrer, The immersion depth of the stirring blade of the stirring device may be controlled.

また、排水処理槽としては、プラグフロー型や多段型の他に、例えば完全混合型等の排水処理槽であってもよい。   In addition to the plug flow type and the multi-stage type, the waste water treatment tank may be a waste water treatment tank such as a complete mixing type.

本発明の第1実施形態に係るDO制御装置を示す概略回路図である。It is a schematic circuit diagram which shows the DO control apparatus which concerns on 1st Embodiment of this invention. 図1のDO制御装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of DO control apparatus of FIG. 図1に示すDO制御装置の作用を説明するための線図である。It is a diagram for demonstrating an effect | action of the DO control apparatus shown in FIG. 本発明の第2実施形態に係るDO制御装置を示す概略回路図である。It is a schematic circuit diagram which shows the DO control apparatus which concerns on 2nd Embodiment of this invention. 図4のDO制御装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of DO control apparatus of FIG. 図4に示すDO制御装置の作用を説明するための線図である。It is a diagram for demonstrating an effect | action of the DO control apparatus shown in FIG. 本発明の第2実施形態に係るDO制御装置を含む排水処理プラントを示す概略構成図である。It is a schematic block diagram which shows the waste water treatment plant containing the DO control apparatus which concerns on 2nd Embodiment of this invention. 図7の排水処理プラントの排水処理槽におけるDO値の制御結果を示す図である。It is a figure which shows the control result of DO value in the waste water treatment tank of the waste water treatment plant of FIG.

符号の説明Explanation of symbols

1,20…DO制御装置、2…乗算器(基準設定値取得手段)、3…減算器(偏差取得手段)、4…積分器(制御手段)、5…乗算器(補正手段)、6…絶対値変換器(積分絶対値取得手段)、7a,7b…スイッチ(補正手段)、8…積分器(補正手段)、9…積分器(積分絶対値取得手段)、10…比較器(補正手段)、11…リセット器(補正手段)、12…リレー(補正手段)、13…減算器(制御手段)、21…絶対値変換器(予測制御手段)、22…積分器(積分値取得手段)、23…比較器(予測制御手段)、24…リレー(予測制御手段)、25a,25b…スイッチ(予測制御手段)、26…反転器(予測制御手段)、27…リセット器(予測制御手段)、28…乗算器(予測制御手段)、29…加算器(予測制御手段)。   DESCRIPTION OF SYMBOLS 1,20 ... DO control device, 2 ... Multiplier (reference set value acquisition means), 3 ... Subtractor (deviation acquisition means), 4 ... Integrator (control means), 5 ... Multiplier (correction means), 6 ... Absolute value converter (integral absolute value acquisition means), 7a, 7b ... switch (correction means), 8 ... integrator (correction means), 9 ... integrator (integral absolute value acquisition means), 10 ... comparator (correction means) , 11... Reset device (correction means), 12... Relay (correction means), 13... Subtractor (control means), 21... Absolute value converter (prediction control means), 22. , 23: Comparator (predictive control means), 24: Relay (predictive control means), 25a, 25b ... Switch (predictive control means), 26: Inverter (predictive control means), 27: Reset device (predictive control means) 28 ... multiplier (prediction control means), 29 ... adder (prediction control means)

Claims (2)

排水処理槽に酸素を供給する酸素供給手段を制御して、前記排水処理槽における溶存酸素量を目標値に制御するための溶存酸素量制御装置であって、
設定された溶存酸素量設定値に基づいて、前記酸素供給手段を制御するための基準設定値を求める基準設定値取得手段と、
前記溶存酸素量設定値と検出された溶存酸素量検出値との偏差を求める偏差取得手段と、
前記偏差の絶対値を積分した積分絶対値を求める積分絶対値取得手段と、
前記偏差及び前記積分絶対値に基づいて、前記基準設定値を補正する補正値を求める補正手段と、
前記基準設定値及び前記補正値に基づいて、前記酸素供給手段を制御する制御手段と、を備え、
前記補正手段は、前記積分絶対値が所定値のときに、前記偏差を用いて前記補正値を変更することを特徴とする溶存酸素量制御装置。
A dissolved oxygen amount control device for controlling an oxygen supply means for supplying oxygen to a wastewater treatment tank and controlling a dissolved oxygen amount in the wastewater treatment tank to a target value,
Based on a set dissolved oxygen amount set value, a reference set value acquisition means for obtaining a reference set value for controlling the oxygen supply means;
Deviation obtaining means for obtaining a deviation between the dissolved oxygen amount set value and the detected dissolved oxygen amount detected value;
An integral absolute value obtaining means for obtaining an integral absolute value obtained by integrating the absolute value of the deviation;
Correction means for obtaining a correction value for correcting the reference set value based on the deviation and the integral absolute value;
Control means for controlling the oxygen supply means based on the reference set value and the correction value,
The said correction | amendment means changes the said correction value using the said deviation, when the said integral absolute value is a predetermined value, The dissolved oxygen amount control apparatus characterized by the above-mentioned.
前記偏差を積分した積分値を求める積分値取得手段と、
前記溶存酸素量検出値が前記目標値に達する前の所定値のときに、前記積分値に基づいて、前記補正値の補正度合いを小さくするように前記補正値を変更する予測制御手段と、を更に備えることを特徴とする請求項1記載の溶存酸素量制御装置。
An integral value obtaining means for obtaining an integral value obtained by integrating the deviation;
Predictive control means for changing the correction value so as to reduce the correction degree of the correction value based on the integral value when the dissolved oxygen amount detection value is a predetermined value before reaching the target value; The dissolved oxygen amount control device according to claim 1, further comprising:
JP2007000192A 2007-01-04 2007-01-04 Dissolved oxygen control device Active JP5001659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000192A JP5001659B2 (en) 2007-01-04 2007-01-04 Dissolved oxygen control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000192A JP5001659B2 (en) 2007-01-04 2007-01-04 Dissolved oxygen control device

Publications (2)

Publication Number Publication Date
JP2008161850A true JP2008161850A (en) 2008-07-17
JP5001659B2 JP5001659B2 (en) 2012-08-15

Family

ID=39692021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000192A Active JP5001659B2 (en) 2007-01-04 2007-01-04 Dissolved oxygen control device

Country Status (1)

Country Link
JP (1) JP5001659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253365A (en) * 2009-04-23 2010-11-11 Sumitomo Heavy Industries Environment Co Ltd Controller
WO2023021571A1 (en) 2021-08-17 2023-02-23 日揮株式会社 Calculation apparatus, control apparatus, culture system, and method for designing culture system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541831A (en) * 1978-09-20 1980-03-24 Nobutsugu Kato Controlling dissolved oxygen in sewage treatment process
JPS60179196A (en) * 1984-02-27 1985-09-13 Toyota Motor Corp Device for controlling aeration blower in waste water treating equipment
JPS60232291A (en) * 1984-05-02 1985-11-18 Toshiba Corp Apparatus for controlling concentration of dissolved oxygen
JPS61192392A (en) * 1985-02-22 1986-08-26 Shinko Electric Co Ltd Calculation of aeration air amount
JPH02194897A (en) * 1989-01-24 1990-08-01 Yaskawa Electric Mfg Co Ltd Do control apparatus
JPH04326992A (en) * 1991-04-26 1992-11-16 Toshiba Corp Control apparatus of water treatment plant
JPH10286585A (en) * 1997-04-15 1998-10-27 Toshiba Corp Aeration air volume controlling apparatus
JP2001252691A (en) * 2000-03-10 2001-09-18 Toshiba Corp Water quality controlling device for sewage treatment plant
JP2002219480A (en) * 1996-07-19 2002-08-06 Mitsubishi Chemicals Corp Equipment for controlling concentration of dissolved oxygen in aerating tank

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541831A (en) * 1978-09-20 1980-03-24 Nobutsugu Kato Controlling dissolved oxygen in sewage treatment process
JPS60179196A (en) * 1984-02-27 1985-09-13 Toyota Motor Corp Device for controlling aeration blower in waste water treating equipment
JPS60232291A (en) * 1984-05-02 1985-11-18 Toshiba Corp Apparatus for controlling concentration of dissolved oxygen
JPS61192392A (en) * 1985-02-22 1986-08-26 Shinko Electric Co Ltd Calculation of aeration air amount
JPH02194897A (en) * 1989-01-24 1990-08-01 Yaskawa Electric Mfg Co Ltd Do control apparatus
JPH04326992A (en) * 1991-04-26 1992-11-16 Toshiba Corp Control apparatus of water treatment plant
JP2002219480A (en) * 1996-07-19 2002-08-06 Mitsubishi Chemicals Corp Equipment for controlling concentration of dissolved oxygen in aerating tank
JPH10286585A (en) * 1997-04-15 1998-10-27 Toshiba Corp Aeration air volume controlling apparatus
JP2001252691A (en) * 2000-03-10 2001-09-18 Toshiba Corp Water quality controlling device for sewage treatment plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253365A (en) * 2009-04-23 2010-11-11 Sumitomo Heavy Industries Environment Co Ltd Controller
WO2023021571A1 (en) 2021-08-17 2023-02-23 日揮株式会社 Calculation apparatus, control apparatus, culture system, and method for designing culture system
US11859166B2 (en) 2021-08-17 2024-01-02 Jgc Japan Corporation Calculation device, control device, culture system, and method for designing culture system

Also Published As

Publication number Publication date
JP5001659B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US7413654B2 (en) Wastewater treatment control
JP5608027B2 (en) Water treatment system and aeration air volume control method thereof
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
CN102621883B (en) PID (proportion integration differentiation) parameter turning method and PID parameter turning system
WO2013021591A1 (en) Water treatment system and method for controlling amount of aeration
JP7247283B2 (en) Water treatment system, control device and control method
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
JP5001659B2 (en) Dissolved oxygen control device
JP3525006B2 (en) Sewage treatment plant water quality control equipment
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP2017109170A (en) Aeration control apparatus, and aeration control method
US20160115058A1 (en) Control apparatus and method for a sewage plant
JP2006192382A (en) Water treatment system
Baeza Principles of bioprocess control
Kandare et al. Adaptive control of the oxidation ditch reactors in a wastewater treatment plant
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JP6893546B2 (en) Sewage treatment system and sewage treatment method
Georgieva et al. Modelling and adaptive control of aerobic continuous stirred tank reactors
JPH10286585A (en) Aeration air volume controlling apparatus
JP7406445B2 (en) Air volume control device and air volume control method
JP7407634B2 (en) Water treatment equipment and water treatment method
JPS58124596A (en) Apparatus for controlling active sludge process
WO2017110394A1 (en) Wastewater treating system, supplied-air-amount control device, and supplied-air-amount control method
JPH10235387A (en) Uniform flow liquid level control device for raw water tank
JP2016203090A (en) Method for treating wastewater and equipment for treating wastewater

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5001659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350