JPH02194897A - Do control apparatus - Google Patents

Do control apparatus

Info

Publication number
JPH02194897A
JPH02194897A JP1015868A JP1586889A JPH02194897A JP H02194897 A JPH02194897 A JP H02194897A JP 1015868 A JP1015868 A JP 1015868A JP 1586889 A JP1586889 A JP 1586889A JP H02194897 A JPH02194897 A JP H02194897A
Authority
JP
Japan
Prior art keywords
aeration
air volume
amt
sewage
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1015868A
Other languages
Japanese (ja)
Other versions
JP2841409B2 (en
Inventor
Toshinori Kanetani
利憲 金谷
Itsuro Fujita
藤田 逸朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP1015868A priority Critical patent/JP2841409B2/en
Publication of JPH02194897A publication Critical patent/JPH02194897A/en
Application granted granted Critical
Publication of JP2841409B2 publication Critical patent/JP2841409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To control DO variations even for an abrupt change in inflow sewage amt. by estimating the aeration amt. required at a point the sewage reaches the outlet of an aeration tank when variations in the inflow amt. of sewage in the aeration tank are detected and controlling the schedule of changes in air amt. predictively. CONSTITUTION:An aeration tank 1 is provided with PI control device having a DO meter 2 as detecting means at its beginning and an aeration amt. adjusting meter 4 as operating means at its end and with an inflow amt. variation detector 13 for sensing variations in the inflow amt. of sewage in the aeration tank. There are also provided an arrival time computing arithmetic unit 14 for computing the time required until variations in the inflow sewage amt. reach the mounting point of the DO meter 2, an air amt. multiplying memory device 11 for stable DO value and a required aeration amt. estimating device 15. In addition, there are provided an aeration amt. setting device 17 for determining a change in the air amt. so as to attain an estimated required air amt. computed by the air amt. multiplication after the arrival time computed by the aforesaid arithmetic unit 14 and an integral element arithmetic unit 12 for computing the correction amt. of the air flow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水処理において最も広範に利用されている
活性汚泥法における曝気槽内のDo一定制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for controlling Do constant in an aeration tank in the activated sludge method, which is most widely used in sewage treatment.

〔従来の技術〕[Conventional technology]

活性汚泥法は、活性汚泥(好気性微生物群)の作用によ
って、流入下水中の汚濁物質を戦前、分解し、下水の浄
化を図るものである。この方法においては、作用の主体
となる活性汚泥を良好な環境下に維持しなければならな
い。
The activated sludge method uses the action of activated sludge (aerobic microorganisms) to decompose pollutants in inflowing sewage and purify the sewage. In this method, activated sludge, which is the main active ingredient, must be maintained in a good environment.

環境条件の第一要因に挙げられるのが、水中の溶存Ms
a度(DO)であり、これを確保するために、曝気槽に
空気が吹き込まれる。
The first factor in environmental conditions is dissolved Ms in water.
degree (DO), and to ensure this, air is blown into the aeration tank.

しかし、曝気風量が過剰になると、活性汚泥が微細化し
、浄化能力の低下、最終沈澱池での沈降性悪化を招くと
ともに、エネルギー的にも大きな損失となる。
However, if the aeration air volume becomes excessive, the activated sludge becomes finer, resulting in a decrease in purification ability and worsening of sedimentation in the final sedimentation tank, as well as a large energy loss.

以上の点を考慮し、曝気槽出口部のDOを一定に維持す
るDo一定制御が実施されている。
In consideration of the above points, Do constant control is implemented to maintain the DO at the aeration tank outlet constant.

第3図に、従来実施されているPI(比例積分)制御系
によるDO一定制御のブロック図を示す。
FIG. 3 shows a block diagram of constant DO control using a conventional PI (proportional integral) control system.

この制御系によれば、曝気摺出口部に設置されたDo計
2によって検出されたDo計測値と、予め設定されてい
る設定DO値9を用い、DO調節計3によって、所要の
曝気風量が計算される。この計算は、設定DO値9とD
O計測値の偏差及びDO計測値の変化速度を用いたPI
計算による方法が一般的である。
According to this control system, the required aeration air volume is determined by the DO controller 3 using the Do measurement value detected by the Do meter 2 installed at the aeration slide outlet and the preset DO value 9. Calculated. This calculation is based on the set DO value 9 and D
PI using the deviation of the O measurement value and the rate of change of the DO measurement value
Calculation methods are common.

次に、計算によって得られた所要曝気風量は、設定■)
気風量lOとして、風量調節計4に人力される。風量調
節計4では、風量計5による計測風量と設定曝気風量1
0から、風量調節用の電磁弁6の操作量を計算し、電磁
弁6に開閉11作指令を出力する。
Next, set the required aeration air volume obtained by calculation.
The air flow rate is manually input to the air flow controller 4 as the air flow rate lO. The air volume controller 4 compares the air volume measured by the air volume meter 5 and the set aeration air volume 1.
From 0, the operating amount of the solenoid valve 6 for adjusting the air volume is calculated, and an opening/closing 11 operation command is output to the solenoid valve 6.

従来は、以上の工程により、曝気槽出口部のDO値を一
定に維持するよう制御していた。
Conventionally, the above-described steps have been used to control the DO value at the outlet of the aeration tank to be kept constant.

ところで、曝気槽内のDOの変動は、流入汚濁負荷すな
わち曝気槽流入下水↑と曝気槽流入下水中汚濁物Tt濃
度の積の変動や、活性汚泥の呼吸速度の変化によって生
じる。
By the way, changes in DO in the aeration tank are caused by changes in the inflow pollution load, that is, the product of the sewage flowing into the aeration tank ↑ and the concentration of pollutants Tt in the sewage flowing into the aeration tank, and changes in the respiration rate of activated sludge.

これらの要因のうち、曝気槽流入下水量以外の要因につ
いては、変化速度が比較的小さく、従来の制御系におい
ても対応が可能であった。しかし、曝気槽流入下水量は
、最初沈澱池へ下水を送水する汚水ポンプの運転状況に
よって決定され、汚水ポンプの運転は台数制御によるこ
とが多い。
Among these factors, factors other than the amount of sewage flowing into the aeration tank had a relatively small rate of change and could be handled by conventional control systems. However, the amount of sewage flowing into the aeration tank is determined by the operating status of the sewage pump that initially sends sewage to the settling tank, and the operation of the sewage pumps is often controlled by the number of sewage pumps.

したがって、汚水ポンプの台数変更によって生じる曝気
槽流入下水量の変動は、急峻で、変化量も大きいものと
なる。このような変動に対して、従来の制御系では、対
応が困難であった。
Therefore, changes in the amount of sewage flowing into the aeration tank caused by changing the number of sewage pumps are steep and the amount of change is large. Conventional control systems have difficulty coping with such fluctuations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、従来のDo一定制御系では、汚水ポンプ
の台数変更によって発生する曝気槽流入下水■の変動に
対処し、DOを一定値に維持することが困難であった。
As mentioned above, in the conventional Do constant control system, it is difficult to cope with the fluctuations in the sewage flowing into the aeration tank caused by changing the number of sewage pumps and to maintain the DO at a constant value.

すなわち、汚水ポンプの台数増設時には、曝気槽流入下
水量が急激に増大し、曝気槽内DOの低下が起きる。ま
た、汚水ポンプの台数減少時には、Doの上昇が発生す
るという問題が、従来のり。
That is, when increasing the number of sewage pumps, the amount of sewage flowing into the aeration tank increases rapidly, causing a decrease in DO in the aeration tank. In addition, when the number of sewage pumps decreases, the problem with conventional glue is that Do increases.

一定制御系には存在した。Existed in constant control systems.

本発明の目的は、上述の問題点に鑑みて、曝気槽流入下
水量の急激な変動にも対処し得るDO−定制御装置を提
供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a DO-constant control device that can cope with rapid fluctuations in the amount of sewage flowing into an aeration tank.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明のDO制御装置は、曝
気槽内に設置されたDO計を検出端とし、曝気風量調節
計を操作端とするPll制御装色、曝気槽流入下水量計
と、曝気(作流入下水量の変化を検出する流入量変動検
出装置と、流入量の変動が前記DO計の設置点へ到達す
る時間を算定する到達時間演算装置と、DO値が安定な
状態での風量倍率を記憶する風量倍率記憶装置と、該風
量倍率記憶装置に記憶されている風量倍率及び曝気槽流
入下水量から所要曝気風量を推定する所要曝気風量推定
装置と、前記到達時間演算装置によって算定される到達
時間後に風量倍率から算定される推定所要風量になるよ
うに曝気風情の変更予定を決定する曝気風量設定装置と
、DOの計測値と設定目標値の偏1から曝気風mの補正
↑を算定する積分成分演算装置とを備えたことを特徴と
する。
In order to achieve this objective, the DO control device of the present invention uses a PLL control coloring system with a DO meter installed in the aeration tank as the detection end and an aeration air flow rate controller as the operation end, and an aeration tank inflow sewage flow meter. , aeration (inflow rate fluctuation detection device that detects changes in the amount of inflow sewage; arrival time calculation device that calculates the time for fluctuations in inflow amount to reach the installation point of the DO meter; and an air volume magnification storage device that stores an air volume magnification of , a required aeration air volume estimation device that estimates the required aeration air volume from the air volume magnification stored in the air volume magnification storage device and the amount of sewage flowing into the aeration tank, and the arrival time calculation device. An aeration air volume setting device that determines the schedule for changing the aeration atmosphere so that the estimated required air volume is calculated from the air volume multiplier after the calculated arrival time, and an aeration air flow m correction based on the deviation 1 between the measured value of DO and the set target value. The present invention is characterized by comprising an integral component calculation device for calculating ↑.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて具体的に説
明する。
Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings.

第1図は本発明の実施例を示すブロック図である。曝気
j’J lには、その出口部のDO値を計測するDo計
2が設けられており、その計測値と設定DO値9から、
DO調節計3ではPI演算により、設定曝気風ff1l
oが出力される。風量調節計4では、設定曝気風量lO
を目標値、風量計5からの出力を計測値として、PI演
算により、設定曝気風量10を維持するように、電動弁
6への開閉操作指令を出力する。これにより、ブロワ7
からの曝気風量が制御される。
FIG. 1 is a block diagram showing an embodiment of the present invention. The aeration j'J l is equipped with a Do meter 2 that measures the DO value at its outlet, and from the measured value and the set DO value 9,
DO controller 3 uses PI calculation to set aeration air ff1l.
o is output. With the air volume controller 4, the set aeration air volume lO
By using PI calculation as the target value and the output from the airflow meter 5 as the measured value, an opening/closing operation command is output to the electric valve 6 so as to maintain the set aeration airflow rate of 10. As a result, blower 7
The amount of aeration air is controlled.

風量倍率記憶装置11においては、曝気槽流入下水流量
計8の計測値とDo計測値とが安定しているときの曝気
槽流入下水量と曝気風量の比、すなわち風量倍率を演算
し、記憶する。積分成分演算装置12では、D○計測値
と設定DO値の偏kから、曝気風量tの補正量を演算す
る。流入単変動検出装置13においては、流入下水流量
の計測値から、流入下水流量の変動を検出し、到達時間
演算装置14及び所要曝気風量推定装置15に変動が発
生したことを出力するとともに、設定曝気風量切替指令
18を出力し、設定曝気風量10の出力源を、平常時の
Do調節計3から曝気風量設定装置17系統に切り替え
る。
The air volume magnification storage device 11 calculates and stores the ratio of the amount of sewage flowing into the aeration tank to the aeration air volume when the measured value of the aeration tank inflow sewage flow meter 8 and the Do measurement value are stable, that is, the air volume magnification. . The integral component calculation device 12 calculates a correction amount for the aeration air volume t from the deviation k of the D○ measurement value and the set DO value. The inflow single fluctuation detection device 13 detects fluctuations in the flow rate of inflow sewage from the measured value of the flow rate of inflow sewage, outputs the occurrence of a fluctuation to the arrival time calculation device 14 and the required aeration air volume estimation device 15, and also outputs the occurrence of the fluctuation to the arrival time calculation device 14 and the required aeration air volume estimation device 15. The aeration air volume switching command 18 is output, and the output source of the set aeration air volume 10 is switched from the normal Do controller 3 to the aeration air volume setting device 17 system.

到達時間演算装置14は、流入下水流量の変動が検出さ
れると、流量及び曝気槽1の容積から、現在流入してい
る下水が、曝気槽1の出口部に到達するに必要な時間を
求める。所要曝気風景推定装置15は、流入下水流量の
変動が検出されると、流量及び記憶されている風量倍率
から、現在流入している下水が曝気槽出口部に到達した
時点で、必要な曝気風位を次式に基づいて推定する。
When a change in the flow rate of inflowing sewage is detected, the arrival time calculating device 14 calculates the time required for the currently flowing sewage to reach the outlet of the aeration tank 1 from the flow rate and the volume of the aeration tank 1. . When a change in the flow rate of inflowing sewage is detected, the required aeration landscape estimating device 15 calculates the required aeration airflow when the currently inflowing sewage reaches the aeration tank outlet, based on the flow rate and the stored air volume magnification. The position is estimated based on the following formula.

必要曝気風量=流入下水流量X風情倍率曝気風量スケジ
ュール装置16は、流入下水流量の変動が検出されると
、到達時間波1i装置f14で得られる到達時間後に、
現在の曝気風量から、所要曝気風量推定装置15で推定
される曝気風量へ移行するよう、設定曝気風量の変更ス
ケジュールを作成する。曝気風情設定装置17では、曝
気風量変更スケジュールに従って、定期的に設定風量値
を出力する。
Required aeration air volume = inflow sewage flow rate
A schedule for changing the set aeration air volume is created so as to shift from the current aeration air volume to the aeration air volume estimated by the required aeration air volume estimation device 15. The aeration style setting device 17 periodically outputs the set air volume value according to the aeration air volume change schedule.

以上の装置を備えた本発明の制御装置の動作について、
曝気槽流入下水流mが安定している平常時と、下水流量
の変動が検出された変動時に分けて説明する。
Regarding the operation of the control device of the present invention equipped with the above device,
The explanation will be divided into a normal time when the sewage flow m flowing into the aeration tank is stable, and a fluctuation time when a fluctuation in the sewage flow rate is detected.

(1)平常時のDo一定制御 曝気槽流入下水流量が安定している平常時については、
従来と同様の方法によってDo一定制御が実施される。
(1) Do constant control during normal times During normal times when the flow rate of sewage flowing into the aeration tank is stable,
Do constant control is performed using a method similar to the conventional method.

すなわち、曝気槽1出口部のDo値が、Do計2によっ
て計測され、この計測値と設定Do値9を用い、Do調
節計3におけるP!演算によって、所要曝気風量が計算
される。次に、所要曝気風量は、設定曝気風(4)IO
として、風量調節計4へ入力される。設定曝気風110
として、DOJ!節計3からの出力を使用するか、ある
いは曝気風量設定装置17及び積分成分演算装置12か
らの出力を使用するかは、流入下水流りの変動の1i無
によって出力される設定曝気風量切替指令18によって
決定される。平常時の場合、Do調節計3からの出力が
選択される。
That is, the Do value at the outlet of the aeration tank 1 is measured by the Do meter 2, and using this measured value and the set Do value 9, P! in the Do controller 3 is calculated. The required aeration air volume is calculated by the calculation. Next, the required aeration air volume is the set aeration air volume (4) IO
is input to the air volume controller 4 as follows. Setting aeration wind 110
As DOJ! Whether to use the output from the meter 3 or the output from the aeration air volume setting device 17 and the integral component calculation device 12 is determined by the set aeration air volume switching command that is output depending on the fluctuation of the inflow sewage flow. 18. In normal times, the output from the Do controller 3 is selected.

次に風量調節計4では、風量計5による計測風量と、設
定曝気風量10から、風量調節用の電動弁6の操作■を
計算し、電動弁6に開閉操作指令を出力する。また、こ
の動作期間中は、風量計5で計測された曝気風量と曝気
槽流入下水流量計8で計測された流入量の比、すなわち
風量倍率が風量倍率記憶装置11に記憶される。
Next, the air volume controller 4 calculates the operation of the electric valve 6 for air volume adjustment based on the air volume measured by the air volume meter 5 and the set aeration air volume 10, and outputs an opening/closing operation command to the electric valve 6. Further, during this operation period, the ratio of the aeration air volume measured by the air flow meter 5 to the inflow volume measured by the aeration tank inflow sewage flow meter 8, that is, the air volume magnification is stored in the air volume magnification storage device 11.

このように、曝気槽流入下水流量が安定している平常時
については、従来と同様のDo一定制御が実施される。
In this way, during normal times when the flow rate of sewage flowing into the aeration tank is stable, the same Do constant control as in the past is implemented.

(2)  曝気槽流入下水流口変動時のDo一定制御一
般に下水処理場に流入する下水量は、深夜時間帯では少
なく、昼間の時間帯では多い。したがって、汚水ポンプ
の運転台数も、これに対応した形で増減され、曝気槽流
入下水流量の変動が発生する。
(2) Constant Do control when aeration tank inflow sewage outlet fluctuates Generally speaking, the amount of sewage flowing into a sewage treatment plant is small during late night hours and large during daytime hours. Therefore, the number of operating sewage pumps is also increased or decreased accordingly, causing fluctuations in the flow rate of sewage flowing into the aeration tank.

曝気槽流入下水流量の変動の検出は、曝気槽流入下水流
量計8の計測値に基づいて行われる。すなわち、第2図
に示すように、流入下水流量を毎分計測し、(n−a)
  時刻より現時刻nまでの平均流入下水流量Q2 と
、(n−c) 時刻より(n−b) 時刻までの平均流
入下水流IQ、を求める。そして、QlとQ2 の差Δ
Qの絶対値が、設定値以上であれば、流入下水流量の変
動が発生したとして検出する。
Detection of fluctuations in the flow rate of sewage flowing into the aeration tank is performed based on the measured value of the flow rate meter 8 of sewage flowing into the aeration tank. That is, as shown in Figure 2, the flow rate of inflowing sewage is measured every minute, and (na)
The average inflow sewage flow rate Q2 from time to current time n and the average inflow sewage flow IQ from time (n-c) to time (n-b) are determined. And the difference Δ between Ql and Q2
If the absolute value of Q is equal to or greater than the set value, it is detected that a fluctuation in the flow rate of inflowing sewage has occurred.

ここで設定値は、平常時のDo一定制御系で対応可能な
流量変動の最大値を基準に決定される。
Here, the set value is determined based on the maximum value of flow rate fluctuation that can be handled by the constant Do control system during normal operation.

なお、(n−b) 時刻より(n−a) 時刻までの流
入下水流mを除外したのは、台数変更による流量変化の
過渡的な部分を除くためである。
Note that the inflow sewage flow m from time (n-b) to time (na) was excluded in order to eliminate the transient part of the flow rate change due to the change in the number of units.

曝気槽流入下水流量の変動が検出されると、到達時間演
算装置14では、(1)式に基づいて、その変動が曝気
槽1出口部へ到達する時間Hを演算する。
When a fluctuation in the flow rate of sewage flowing into the aeration tank is detected, the arrival time calculation device 14 calculates the time H for the fluctuation to reach the outlet of the aeration tank 1 based on equation (1).

H工V−t/Q        ・・・・・・・・・・
・・(1)ただしV。は曝気槽1の容積、Qは変化後の
曝気槽流入下水流量である。
H-work V-t/Q ・・・・・・・・・・・・
...(1) However, V. is the volume of the aeration tank 1, and Q is the flow rate of sewage flowing into the aeration tank after the change.

また、所要曝気風量推定装置15では、風量倍率記憶装
置11に記taされている風1倍率を用いて、(2)式
により所要風ff1AQを求める。
In addition, the required aeration air volume estimating device 15 calculates the required air flow ff1AQ using equation (2) using the air 1 magnification recorded in the air volume magnification storage device 11.

AQ=Kl/Q       ・・・・・・・・・・・
・(2)ただしに、はfflffl倍率、Qは変化後の
曝気槽流入下水流量である。
AQ=Kl/Q・・・・・・・・・・・・
-(2) However, is the fffffl magnification, and Q is the flow rate of sewage flowing into the aeration tank after the change.

次に、曝気風量スケジュール装置16では、現在の曝気
風IAQ、から、H時間後に曝気風量AQになるように
、風量変更のスケジュールが作成される。スケジュール
作成の一例として、下記のような方法が挙げられる。
Next, the aeration air volume schedule device 16 creates a schedule for changing the air volume so that the current aeration air volume IAQ becomes the aeration air volume AQ after H hours. An example of schedule creation is the following method.

n=H/TC・・・・・・・・・・・・(3)ΔAQ−
(ΔQ−ΔQa) / n・・・・・・・・・・・・(
4)A Q+  = A Qg + i・ΔΔQ・・・
・・・・・・・・・(5)ここでTc は、曝気風量設
定装置17より出力される設定風量の更新周期、iは更
新回数である。
n=H/TC・・・・・・・・・・・・(3)ΔAQ−
(ΔQ−ΔQa) / n・・・・・・・・・・・・(
4) A Q+ = A Qg + i・ΔΔQ...
(5) Here, Tc is the update cycle of the set air volume output from the aeration air volume setting device 17, and i is the number of updates.

この方法によれば、設定曝気風儀が等差数側的に変化す
るスケジュールが作成される。
According to this method, a schedule in which the set aeration style changes in an arithmetic manner is created.

曝気風量設定袋@17では、曝気風量変更スケジュール
に基づき、一定時間毎にその出力値を更新する。
The aeration air volume setting bag @17 updates its output value at regular intervals based on the aeration air volume change schedule.

一方、積分成分演算装置12では、Do値が設定値に維
持されるよう、設定風量の補正量が(6)式によって算
出される。
On the other hand, the integral component calculation device 12 calculates the correction amount of the set air volume using equation (6) so that the Do value is maintained at the set value.

AQc=に+(DOsp−Do、)   ・・・・・・
・・(6)ここで、AQc は補正風量、Do8.は設
定Do値、DOlは計測Do値、KIは比例係数である
AQc=ni+(DOsp-Do,) ・・・・・・
...(6) Here, AQc is the corrected air volume, Do8. is a set Do value, DOl is a measured Do value, and KI is a proportional coefficient.

そして、曝気風量設定装置1f17からの出力AQムと
、積分成分演算装置12からの出力AQcを加算し、設
定曝気風量10として、風量調節計4に人力する。
Then, the output AQm from the aeration air volume setting device 1f17 and the output AQc from the integral component calculation device 12 are added, and the result is manually input to the air volume controller 4 as the set aeration air volume 10.

設定曝気風m10の出力源として、曝気風量設定装置1
7及び積分成分演算装置12を選択する動作は、流入下
水量の変動検出時に出力される設定曝気風量切替指令1
8によって実行される。
As an output source of the set aeration airflow m10, an aeration airflow setting device 1
7 and the integral component calculation device 12 are selected by the set aeration air volume switching command 1 that is output when a change in the amount of inflowing sewage is detected.
8.

風量調節計4において、計測値と設定値から、電動弁6
を操作する動作は、平常時と同様に行われる。
In the air volume controller 4, from the measured value and set value, the electric valve 6
The operation is performed in the same way as in normal times.

そして、流量変動の検出後、推定到達時間Hを経過する
と、平常時のPI演算によるDo一定制御へと戻される
Then, after the estimated arrival time H has elapsed after the detection of the flow rate fluctuation, the control is returned to the Do constant control based on the PI calculation during normal operation.

〔発明の効果〕〔Effect of the invention〕

以」二に述べたように、本発明においては、曝気槽流入
下水mの変動を検出し、予見的に、曝気風量を変更する
制御を行う。これにより、曝気槽流入下水〕の変動によ
って発生する曝気槽出口部DOの変動を抑制することが
できる。この予見的な曝気風量の設定に際しては、設定
Do値と、計測値から、風沿補正を行うので、計測値が
設定値から逸脱するおそれがない。また、風量倍率は常
に更新されているので、流入下水の水質の変化が生じて
も、所要風量の推定精度を高精度に保つことができる。
As described in section 2 below, in the present invention, fluctuations in the sewage m flowing into the aeration tank are detected and control is performed to change the aeration air volume in advance. This makes it possible to suppress fluctuations in the aeration tank outlet DO caused by fluctuations in the sewage flowing into the aeration tank. When setting the aeration air volume in advance, windward correction is performed based on the set Do value and the measured value, so there is no risk that the measured value will deviate from the set value. Furthermore, since the air volume magnification is constantly updated, even if the quality of the inflowing sewage changes, the accuracy of estimating the required air volume can be maintained at a high level of accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示すブロック図、第2
図は汚水ポンプの運転と曝気槽流入下水流量との関係を
示すグラフ、第3図は従来の制御装置の構成を示すブロ
ック図である。 1:曝気槽    2:Do計 3:DO調節計  4:風量調節計 5:風量計    6:電動弁 7 : 9 ; ll : 12 : 13 : 14 : 15 : 16 ; 17 : 18 ニ ブロワ    8:li気禮流人下水流潰計設定DO値
  lO:設定曝気風印 風量倍率記憶装貯 積分成分演算装置 流入量変動検出装置 到達時間演算装置 所要曝気風量推定装置 曝気風h1スケジュール装五 曝気風量設定装置 設定曝気風量切替指令
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG.
The figure is a graph showing the relationship between the operation of the sewage pump and the flow rate of sewage flowing into the aeration tank, and FIG. 3 is a block diagram showing the configuration of a conventional control device. 1: Aeration tank 2: Do meter 3: DO controller 4: Air volume controller 5: Air volume meter 6: Electric valve 7: 9; ll: 12: 13: 14: 15: 16; 17: 18 Niblower 8: Li air Flower sewage flow meter setting DO value lO: setting aeration wind seal air flow rate magnification storage storage integral component calculation device inflow flow fluctuation detection device arrival time calculation device required aeration air flow estimation device aeration air h1 schedule device five aeration air flow setting device settings Aeration air volume switching command

Claims (1)

【特許請求の範囲】[Claims] 1、曝気槽内に設置されたDO計を検出端とし、曝気風
量調節計を操作端とするPI制御装置と、曝気槽流入下
水量計と、曝気槽流入下水量の変化を検出する流入量変
動検出装置と、流入量の変動が前記DO計の設置点へ到
達する時間を算定する到達時間演算装置と、DO値が安
定な状態での風量倍率を記憶する風量倍率記憶装置と、
該風量倍率記憶装置に記憶されている風量倍率及び曝気
槽流入下水量から所要曝気風量を推定する所要曝気風量
推定装置と、前記到達時間演算装置によって算定される
到達時間後に風量倍率から算定される推定所要風量にな
るように曝気風量の変更予定を決定する曝気風量設定装
置と、DOの計測値と設定目標値の偏差から曝気風量の
補正量を算定する積分成分演算装置とを備えたことを特
徴とするDO制御装置。
1. A PI control device with a DO meter installed in the aeration tank as the detection end and an aeration air flow rate controller as the operation end, an aeration tank inflow sewage flow meter, and an inflow volume that detects changes in the aeration tank inflow sewage volume. a fluctuation detection device, an arrival time calculation device that calculates the time it takes for the fluctuation in inflow amount to reach the installation point of the DO meter, and an air volume magnification storage device that stores the air volume magnification when the DO value is stable;
a required aeration air volume estimating device that estimates the required aeration air volume from the air volume magnification stored in the air volume magnification storage device and the amount of sewage flowing into the aeration tank, and a required aeration air volume estimating device that estimates the required aeration air volume from the air volume magnification stored in the air volume magnification storage device; The present invention is equipped with an aeration air volume setting device that determines the schedule for changing the aeration air volume so as to achieve the estimated required air volume, and an integral component calculation device that calculates the correction amount of the aeration air volume from the deviation between the measured value of DO and the set target value. Characteristic DO control device.
JP1015868A 1989-01-24 1989-01-24 DO control device Expired - Fee Related JP2841409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015868A JP2841409B2 (en) 1989-01-24 1989-01-24 DO control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015868A JP2841409B2 (en) 1989-01-24 1989-01-24 DO control device

Publications (2)

Publication Number Publication Date
JPH02194897A true JPH02194897A (en) 1990-08-01
JP2841409B2 JP2841409B2 (en) 1998-12-24

Family

ID=11900781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015868A Expired - Fee Related JP2841409B2 (en) 1989-01-24 1989-01-24 DO control device

Country Status (1)

Country Link
JP (1) JP2841409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245146A (en) * 2007-03-12 2007-09-27 Toshiba Corp Sewage treatment system and measurement system
JP2008161850A (en) * 2007-01-04 2008-07-17 Sumiju Kansai Shisetsu Kanri Kk Dissolved oxygen controller
WO2009003800A1 (en) * 2007-07-02 2009-01-08 Reinhard Boller Method for determining the amount of oxygen introduced into a process tank of a biological treatment works during a ventilation process
JP2012170883A (en) * 2011-02-21 2012-09-10 Sanki Eng Co Ltd Activated sludge treating apparatus and treating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161850A (en) * 2007-01-04 2008-07-17 Sumiju Kansai Shisetsu Kanri Kk Dissolved oxygen controller
JP2007245146A (en) * 2007-03-12 2007-09-27 Toshiba Corp Sewage treatment system and measurement system
WO2009003800A1 (en) * 2007-07-02 2009-01-08 Reinhard Boller Method for determining the amount of oxygen introduced into a process tank of a biological treatment works during a ventilation process
JP2012170883A (en) * 2011-02-21 2012-09-10 Sanki Eng Co Ltd Activated sludge treating apparatus and treating method

Also Published As

Publication number Publication date
JP2841409B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
CN102863074A (en) Intelligent control method of blast aeration system of municipal sewage plant
CA2811775A1 (en) Device and method for controlling opening of a valve in an hvac system
CN107728685B (en) Intelligent constant-temperature water control method
CN109708267B (en) Control method and system for electronic expansion valve of fresh air handling unit
CN110482687A (en) A kind of accurate aeration method based on automatic control
CN101563568B (en) Method of controlling a speed-regulatable heating circulation pump
JP2018132236A (en) Room Pressure Control System and Method
JPH02194897A (en) Do control apparatus
JP2007147094A (en) Method of operating air conditioning equipment
CN114920358B (en) RBS intelligent control method for sewage plant
JP2017054272A (en) Blower control device
AU2001294045A1 (en) Method of and system for controlling the ratio of a variable lead parameter and an adjustable lag parameter for lag-lead process
WO2002033499A1 (en) Method of and system for controlling the ratio of a variable lead parameter and an adjustable lag parameter for a lag-lead process
JP6621866B2 (en) Operation support device and operation support method for sewage treatment plant using activated sludge method
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPH025157B2 (en)
JPH03115786A (en) Pump control device for sanitary sewage pump equipment
JPS6028560B2 (en) Control method for activated sludge water treatment equipment
JP2004046631A (en) Water valve controller
JPH084063A (en) Building feed water device control method
JPS5898191A (en) Controller for purification of water in activated sludge process
JPH07234001A (en) Method and apparatus for controlling air conditioner
JP3488886B2 (en) Load adjustment control method for dam type power plant
JPS6317515B2 (en)
JPH03204701A (en) Pump controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees