JPS61192392A - Calculation of aeration air amount - Google Patents

Calculation of aeration air amount

Info

Publication number
JPS61192392A
JPS61192392A JP60033797A JP3379785A JPS61192392A JP S61192392 A JPS61192392 A JP S61192392A JP 60033797 A JP60033797 A JP 60033797A JP 3379785 A JP3379785 A JP 3379785A JP S61192392 A JPS61192392 A JP S61192392A
Authority
JP
Japan
Prior art keywords
series
air
air volume
air amount
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60033797A
Other languages
Japanese (ja)
Other versions
JPS6317515B2 (en
Inventor
Takami Egawa
江川 隆己
Shinichiro Endo
遠藤 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP60033797A priority Critical patent/JPS61192392A/en
Publication of JPS61192392A publication Critical patent/JPS61192392A/en
Publication of JPS6317515B2 publication Critical patent/JPS6317515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To perform proper air amount distribution, by resetting an integration term when the sum total of demand air amounts of systems exceeded the max. supply air amount of an air feed source. CONSTITUTION:An integration term setting device 25 performs the resetting of an integration term represented by formula when the sum of the demand air amount Qr1 of a system 1 and the demand air amount Qr2 of a system 2 exceeded the max. supply air amount QM of an air feed source 15 to output the previous integration term QI10ld (QI20ld). Previous integration terms RI10ld, RI20ld are supplied to the demand air amount calculator 21 of the system 1 and the demand air amount calculator 22 of the system 2 to calculate demand air amounts Qr1, Qr2. The demand air amounts Qr1, Qr2 are supplied to a feed air amount distribution control apparatus 40 to calculate the air amount order value QS1 of the system 1 and the air amount order value QS2 of the system 2 and the supply of air to tanks 1, 2 is performed on the basis of these order values.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、活性汚泥法による下水処理システムに使用
して好適な曝気風量算出方法に係り、特に送風源からの
供給風量全複数系列のエアレーシヨンタンクf以下、エ
アタンと略称する)へ分配して供給する場合に、各系列
の要求風量の総和が送風源からの供給風量を超えたとき
にも適切な風量配分ケ行えるようにした曝気風量算出方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for calculating the amount of aeration air suitable for use in a sewage treatment system using the activated sludge method, and particularly relates to a method for calculating the amount of air supplied from an air source in all multiple series of air. This aeration system allows for appropriate air volume distribution even when the sum of the required air volume of each series exceeds the air volume supplied from the air source when the air is distributed and supplied to the ration tank (hereinafter referred to as air tank). Regarding the air volume calculation method.

〔従来の技術〕[Conventional technology]

本出願人は先に、単一送風源からの供給風量?複数系列
のエアタンへ分配して供給する際に起きる種々の問題点
を解決した溶存酸素濃度制御装置を提案した(特願昭5
9−276583号)。
The applicant first asked about the amount of air supplied from a single source of air? We proposed a dissolved oxygen concentration control device that solved the various problems that occur when distributing and supplying air to multiple lines (patent application filed in 1973).
No. 9-276583).

第2図は、先に提案し九装置の構成を示すブロック図で
ある。この図において、4台のブロワ15−1〜】5−
4からなる単一の送風源15から吐出されたエアは、管
路18を通って、系列1のエアタン1と系列ぞのエアタ
ン2へ分配さnる。
FIG. 2 is a block diagram showing the configuration of the nine devices proposed earlier. In this figure, four blowers 15-1 to ]5-
Air discharged from a single air source 15 consisting of four air blowers passes through a conduit 18 and is distributed to the air tongues 1 of the series 1 and the air tongues 2 of each series.

この分配は、送風源15とエアタン2との間に介挿さn
た調節弁30の開度と、送風源15の吐出風量とをコン
トロールすることによって行われる。
This distribution is performed by interposing between the air source 15 and the air tank 2.
This is done by controlling the opening degree of the regulating valve 30 and the amount of air discharged from the air source 15.

まず、送風源15の吐出風量は、ブロワ15−1〜】5
−4の運転台数と吸込弁17−1〜17−4の開度とを
制御して増減されるM 、こnらの制御は、送風量配分
制御装置40からの出力により、台数制御装置24と吸
込弁制御装置38が実行する。
First, the discharge air volume of the air source 15 is as follows:
-4 operating units and the opening degrees of the suction valves 17-1 to 17-4. is executed by the suction valve control device 38.

また、調節弁30の開度は、上記送風量配分制御装置4
0の出力により、調節弁制御装置39が調節するように
なっている。
Further, the opening degree of the control valve 30 is determined by the air flow distribution control device 4.
An output of 0 causes the regulating valve control device 39 to adjust.

上記送風量配分制御装置40は、系列lの要求風量算出
装置21お工び系列2の要求風量算出装置22から出力
さnる系列1の要求風−1?tQr]  および系列2
の要求風fQ r 2  に幕づいて、送風源15の吐
出風量と吐出圧力とを演算し、これ?実現するためのブ
ロワ運転台数と吸込弁開度を決定して上記制御2行うと
ともに、各系列の要求風量Qrl  、  Qr2 ’
1−満足するための調節弁30の開度を決定して、こn
ftコントロールする。
The above-mentioned air flow distribution control device 40 outputs the required air volume -1 of series 1 which is output from the required air volume calculation device 21 of series l and the required air volume calculation device 22 of series 2? tQr] and series 2
Based on the required air fQ r 2 , the discharge air volume and discharge pressure of the blower source 15 are calculated, and this? In order to achieve this, the number of blowers in operation and the suction valve opening are determined and the above control 2 is performed, and the required air volume Qrl, Qr2' of each series is determined.
1-Determine the opening degree of the control valve 30 to satisfy the
ft control.

上記要求風量算出装置21.22はエアタン1゜2のD
O〔溶存酸素)値DOI  、  DO2ケ目標値DO
8I  、  DO82に維持するのに必要な風量?、
比例−積分動作に1つて算定するものである。
The above-mentioned required air volume calculation device 21.22 is a D of air tongue 1°2.
O [dissolved oxygen] value DOI, DO2ke target value DO
8I, air volume required to maintain DO82? ,
One calculation is made for each proportional-integral operation.

まず、要求風量算出装置21は、制御周期ΔT毎にDO
目標値DO8I  からエアタン]のDO値DOI  
?減算してDO偏差値ΔDOIを求め、DO偏差値ΔD
OIが不感帯の外にあるときには、 PI演算装置23
によって以下の演算を行って系列1の要求風量Qrl 
 ?算定する。
First, the required air volume calculation device 21 calculates the DO for each control period ΔT.
DO value DOI from target value DO8I to air tongue]
? Subtract to find DO deviation value ΔDOI, and DO deviation value ΔD
When the OI is outside the dead zone, the PI calculation unit 23
Perform the following calculation to obtain the required air volume Qrl of series 1.
? Calculate.

(1)比例項の計算 予め設定さnている比例ゲインに1  とDO偏差値Δ
DOIと〃)ら系列1の比例項Qp+  を計算する。
(1) Calculation of the proportional term The preset proportional gain is 1 and the DO deviation value Δ
Calculate the proportional term Qp+ of series 1 from DOI and ).

Qpl=に1・ΔDOI   ・・・・・・・・・・、
・・・・・ (1)(2)、積分項の計算 予め設定されている制御周期ΔT、積分時間TIならび
にメモリに記憶されている前回制御周期における積分項
C前回積分項IQ11o1aρλら、今回の制御周期に
おける積分項QII  ?計算する。
Qpl=1・ΔDOI・・・・・・・・・・・・
...(1)(2), Calculation of integral term Preset control period ΔT, integral time TI, integral term C in the previous control period stored in memory, previous integral term IQ11o1aρλ, etc. Integral term QII in the control period? calculate.

・・−・・・・・・・−・・・・・・・・+21(3)
要求風量の計算 比例項Qpj  と積分項Q、TI  とを加えて系列
1の要求風flQr!  f求める、 Qr 1 =Qp 1 +QI 1    ・・−・−
・・・で・・・・−・−・・ (3)(4)積分項のセ
ット 今回の積分項Q11 ?、次の制御周期における前回積
分項QI 1 old としてメモリへ記憶する。
・・−・・・・・・・・・・・・・+21(3)
Calculating the required air volume Add the proportional term Qpj and the integral terms Q and TI to obtain the required air volume flQr of series 1! Find f, Qr 1 =Qp 1 +QI 1 ・・・−・−
...and...----... (3) (4) Set of integral terms This time's integral term Q11? , is stored in the memory as the previous integral term QI 1 old in the next control cycle.

Qi1o’ld  4− QII  =・・・−−−−
”−−−−(4)一方、要求風量算出装置22も全く同
様にして系列2の比例項Qp2 % 積分項QI2、要
求風量Qr2  f算出し、積分項QI2 f次回制御
周期における前回積分項Qi2o1d  として記憶す
る。
Qi1o'ld 4- QII =...----
(4) On the other hand, the required air volume calculation device 22 calculates the proportional term Qp2 % integral term QI2 and the required air volume Qr2 f of series 2 in exactly the same manner, and calculates the integral term QI2 f the previous integral term Qi2o1d in the next control cycle. be memorized as .

こうして、積分項QIt  、Ql2は、DO偏差値Δ
I”)01  、  ΔDO2が不感帯より正側にある
ときには、各制御周期におけるDO偏差値ΔDOt  
#  ΔDO2が積算されて増え続け、負側にあるとき
には減り続ける。また、DO偏差値Δ、T)Ql  、
  ΔDO2が不感帯内にあるときには、一定の値?維
持するC式(2)参照)。
In this way, the integral terms QIt and Ql2 are determined by the DO deviation value Δ
I")01, when ΔDO2 is on the positive side of the dead zone, the DO deviation value ΔDOt in each control period
#ΔDO2 is integrated and continues to increase, and when it is on the negative side, it continues to decrease. Also, DO deviation value Δ, T)Ql,
When ΔDO2 is within the dead zone, is it a constant value? (see C formula (2)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した装置において、系列1.2の要求風
量Qr1 、Qr2の総和 Q r=Q r 1 +Q r 2  ・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・(5
)が、送風源15の最大供給風量QMを超えた場合には
、エアタン1.2への供給風量が要求風量Qrl  @
  Qr2 より小さくなるため、エアタン1.2のD
O値DOI  とDO2#十分に上昇しなくなる。
By the way, in the above-mentioned apparatus, the sum of the required air volumes Qr1 and Qr2 of series 1.2 is Qr=Qr1+Qr2...
・・・・・・・・・・・・・・・・・・・・・・・・(5
) exceeds the maximum supply air volume QM of the air source 15, the air supply volume to the air tongue 1.2 becomes the required air volume Qrl @
Since it is smaller than Qr2, D of air tongue 1.2
O value DOI and DO2# will not rise sufficiently.

すなわち、第3図に示すように、要求風11Qr+。That is, as shown in FIG. 3, the required wind is 11Qr+.

Qr2  の和Qr7’li送風源15の最大供給風量
QM?超えたときには、要求風量Qrl  とQr2 
 の分配比を保ちながら、供給可能な最大風量Qiml
  。
Sum of Qr2 Qr7'li Maximum supply air volume QM of air blowing source 15? When it exceeds, the required air volume Qrl and Qr2
The maximum air volume that can be supplied while maintaining the distribution ratio of Qiml
.

Ql2 を風量指令値としてエアタン1.2へのエアの
配分を行うようにするにの詳細・は特願昭59−276
583号参照)。しかしながら、第3図から明らかなよ
うに、 0泊1  〈Qrl  ・・・・・−・−・・・・・・
・・・・・・・・・・・・・・・・・(e)Qs2  
〈Qr2  ・・・・・−・・・・・・・−・・・・−
・・・・・・・・・・・(7)であるから、エアタン1
.2への供給風量は要求風量Qrl  、Qr2より低
(、DO値D01 。
Details of how to distribute air to air tongue 1.2 using Ql2 as the air volume command value are given in Japanese Patent Application No. 59-276.
(See No. 583). However, as is clear from Figure 3, 0 nights 1〈Qrl ・・・・・・−・−・・・・・・
・・・・・・・・・・・・・・・・・・(e) Qs2
〈Qr2・・・・・・−・・・・・・・−・・・・−
・・・・・・・・・・・・(7) Therefore, air tongue 1
.. The air volume supplied to No. 2 is lower than the required air volume Qrl, Qr2 (DO value D01).

DO2とDO目標値DO8I  、DO82との差すな
わちDO偏差値ΔDO1(=DO81−DOI  )s
ΔDO2(= DO82−r102 )  が次第に増
加する。
Difference between DO2 and DO target values DO8I and DO82, that is, DO deviation value ΔDO1 (=DO81-DOI)s
ΔDO2 (=DO82-r102) gradually increases.

このため、式(2)に示す積分項QIt  (OI2 
 )は単調増加し、要求風量Qrl  、  Qr2 
と各系列の風量指令値QIBI  、  Q82との差
も次第に増加することとなる。
Therefore, the integral term QIt (OI2
) increases monotonically, and the required air volume Qrl, Qr2
The difference between the air volume command values QIBI and Q82 of each series will also gradually increase.

このような状態が継続した場合、次のような2つの不都
合が生じる。
If such a state continues, the following two problems will occur.

fil  DO値D01  、DO2が回復しても積分
項QI>  、Ql2Viすぐには回復しないため、過
曝気になってしまう。
Even if the fil DO values D01 and DO2 recover, the integral terms QI> and Ql2Vi do not recover immediately, resulting in overaeration.

活性汚泥プロセスの場合、供給風量が不足してDO値が
低い状Hが続いても、流入水の水質変化や微生物の生態
特性の変化等によって、DO値が上昇することがある、
DO値が目標値を超えて、今度は供給風量?減らしたい
場合、積分項QIt  、OI2が過大になっていると
、要求風1tQr1 、Qr2がな力為なか減少せず過
曝気になってしまう。
In the case of an activated sludge process, even if the DO value continues to be low due to insufficient supply air volume, the DO value may rise due to changes in the water quality of the inflow water, changes in the ecological characteristics of microorganisms, etc.
DO value exceeds target value, now supply air volume? If the integral terms QIt and OI2 are too large, the required airflow 1tQr1 and Qr2 will not be reduced due to force, resulting in overaeration.

(21適正な風量配分ができな(なってしまう。(21) Appropriate air volume distribution cannot be achieved.

上述したように、系列1.2への風量配分は、要求風量
Qrl  、  Qr2の比に応じてなされる。
As described above, the air volume distribution to series 1.2 is made according to the ratio of the required air volumes Qrl and Qr2.

すなわち、系列1.2への風量指令値Qθ1 。That is, the air volume command value Qθ1 for series 1.2.

Qs2  は、 Q82=3許針、・QM・・・・・・・・・・・・・・
・(9)9日1 +Q s 2 =QM   ・・・・
・・・・−・・・・−・−・・・・・・・・OIただし
;QMは送風源15の最大供給風量となる。
Qs2 is, Q82=3 permissible needles, ・QM・・・・・・・・・・・・・
・(9) 9th day 1 + Q s 2 = QM ・・・・
・・−・・・−・−・・・・・・・・OI However; QM is the maximum supply air volume of the air source 15.

この場合、例えば、系列1のDO@DOL が低く、系
列2のDO値DO2が不、感帯1て入っているとすると
、系列1の要求風量Qrl  が単調に増加し、系列2
の要求風量Qr2  は一定となる。従って、系列1へ
の風量指令値Qsl  は次第に増大する一方C式(8
11%系列2への風量指令値Qs2  は次第に減少し
C式(91) 、不感帯に入っている系列2のDO値D
O2が系列1の事情によって乱されてしまうといった不
部会が生じてしまう。
In this case, for example, if DO@DOL of series 1 is low and the DO value DO2 of series 2 is in the sensitive zone 1, the required air volume Qrl of series 1 increases monotonically, and
The required air volume Qr2 is constant. Therefore, the air volume command value Qsl to series 1 gradually increases while
The air volume command value Qs2 to 11% series 2 gradually decreases as shown in equation C (91), and the DO value D of series 2 enters the dead zone.
A failure occurs where O2 is disturbed by the circumstances of series 1.

この発明は、上記の事情に鑑みてなされたもので、上記
fi+ 、 (21の問題点を解決し、要求風量の総和
が送風源の最大供給風if超えたときにも、適正な風量
配分を行うことのできる曝気風音算出方法を提供するこ
とケ目的とする。
This invention was made in view of the above-mentioned circumstances, and solves the problem of fi+ (21) described above, and enables appropriate air volume distribution even when the total required air volume exceeds the maximum supply air if of the air blowing source. The purpose of this paper is to provide a method for calculating aeration wind noise that can be carried out.

〔問題点?解決するための手段〕〔problem? Means to solve]

上記問題点を解決するためにこの発明は、各系列の要求
風量の総和が送風源の最大供給風量を超えたときには、
各系列毎に、該系列に割当てられた風量指令値から該系
列の比例項ケ減じた値を次の制御周期における該系列の
積分項とすること全特徴とする。
In order to solve the above problems, this invention provides that when the sum of the required air volumes of each series exceeds the maximum supply air volume of the air source,
For each series, a value obtained by subtracting the proportional term of the series from the air volume command value assigned to the series is used as the integral term of the series in the next control cycle.

〔作用〕[Effect]

上記の手段によnは、要求風′IA′が単調に増加する
のを防止することができ、適正な風量配分を行うことが
可能となる。
By the above means, n can prevent the required airflow 'IA' from increasing monotonically, and it becomes possible to perform appropriate air volume distribution.

この■由を系列1f例にとって説明する。This reason will be explained using an example of series 1f.

今、制御周期1.2.3・・・n−1、n・・・におけ
る系列lの積分項QII fil 、  QII f2
1・・・QI+rn−1)、Qllrnl  ・・・を
考える。各系列の要求風量の総和が、第(n−1)番目
の制御周期に送風源15の最大供給風量ケ超えたとする
と、第n番目の制御周期における系列1の前回積分項Q
iiold  lnl  は、第(n−11番目におけ
る系列1の風量指令値Qsl(n−11から比例項Qp
>  (n −1)を引いたものだから、−Ql 1 
old 1nl=Qs 3 (n−11−Qpl(n−
13=Qsj (n−11−K・Δ1)Qlln−1)
 ・・・(lυとなる。すなわち、系列1の前回積分項
QJxoldrnlは、従来のようにDO偏差値ΔDO
が積算さnた形とならず、系列lに割当てられた風量指
令値Qatrn’−1)より小さな値にリセットされる
Now, the integral terms QII fil , QII f2 of the sequence l in the control period 1.2.3...n-1, n...
1...QI+rn-1), Qllrnl... are considered. If the sum of the required air volumes of each series exceeds the maximum supplied air volume of the air source 15 in the (n-1)th control cycle, then the previous integral term Q of series 1 in the n-th control cycle
iiold lnl is the air volume command value Qsl of series 1 at the (n-11th) (from n-11 to the proportional term Qp
> (n −1), so −Ql 1
old 1nl=Qs 3 (n-11-Qpl(n-
13=Qsj (n-11-K・Δ1)Qlln-1)
...(lυ. In other words, the previous integral term QJxoldrnl of series 1 is the DO deviation value ΔDO
is not integrated, and is reset to a value smaller than the air volume command value Qatrn'-1) assigned to series l.

このとき、系列1の要求風量Qrl(n)  は、+Q
811n−11−K・ΔDOI (n−11−・−J1
2iとなり、ΔDOI(n−11、ΔDO1rn)が不
感帯に入っているときには、 Qrl(n)=Qsl(n−1)  ・・・・・−・=
−””(J31となる。また、Δp01(n−1) #
ΔDQ1(nl  が正のときでも、式(Illによっ
て積分項のリセットが行わnるので、要求風量Qr](
n)  が単調に増加するということはない。
At this time, the required air volume Qrl(n) of series 1 is +Q
811n-11-K・ΔDOI (n-11-・-J1
2i, and when ΔDOI(n-11, ΔDO1rn) is in the dead zone, Qrl(n)=Qsl(n-1) ・・・・・・・・・=
−””(J31. Also, Δp01(n-1) #
Even when ΔDQ1(nl is positive, the integral term is reset by the formula (Ill, so the required air volume Qr](
n) does not increase monotonically.

従って、DO値が回復したときの追従が速やかになさn
るとともに、他の系列への悪影響を解消することができ
る。
Therefore, it is difficult to quickly follow up when the DO value recovers.
At the same time, it is possible to eliminate the negative influence on other series.

なお、上記の演算は、系列1r例にとって説明したが他
系列においても同様の演算が各々独立に行われる、 〔実施例〕 以下、図面を参照してこの発明の一実施例ケ説明する。
Although the above calculation has been explained for the example of series 1r, similar calculations are performed independently for other series as well. [Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、この発明の一実施例の要部の構成を示すブロ
ック図であり、他の構成は第2図と同様である。
FIG. 1 is a block diagram showing the configuration of essential parts of an embodiment of the present invention, and the other configurations are the same as in FIG. 2.

この図において、25は積分項設定器である。In this figure, 25 is an integral term setter.

積分項設定器25は、系列1の要求風量Qrl  と系
列2の要求風量Qr2  との和が送風源151第2図
)の最大供給風量QM?超えたときに、式(11)のよ
うにして積分項のりセラ)f行い、前回積分項Q工to
16.(Q工2o1dlft出力する。この前回積分項
QI J oldおよびQJ20ICI は各々系列l
の要求風量算出装置21および系列2の要求量算出装置
22へ供給さn1式azによって各系列の要求風量Qr
l  、  Qr2が計算される、以下、上記要求風量
Q”  *  Qr2が送風量配分制御装置40へ供給
さnて、系列lの風量指令値Qsl  と系列2の風量
指令値Qθ2 とが算出され、これに基づいてエアタン
1.2へのエアの供給が行わnる。なお、この風量配分
方法については、特願昭59−276583号に詳述し
たので説明?省略する。
The integral term setter 25 determines whether the sum of the required air volume Qrl of series 1 and the required air volume Qr2 of series 2 is the maximum supplied air volume QM? When the value is exceeded, the integral term is calculated as shown in equation (11), and the previous integral term
16. (Q 2 o 1 dlft is output. This previous integral term QI J old and QJ20ICI are each series l
The required air volume Qr of each series is supplied to the required air volume calculation device 21 and the required air volume calculation device 22 of series 2.
l, Qr2 are calculated. Hereinafter, the above-mentioned required air volume Q" * Qr2 is supplied to the air volume distribution control device 40, and the air volume command value Qsl of series l and the air volume command value Qθ2 of series 2 are calculated, Based on this, air is supplied to the air tongue 1.2.This method of distributing air volume is detailed in Japanese Patent Application No. 59-276583, so the explanation thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、各系列の要求風量の
総和が送風源の最大供給風量を超えたときには、積分項
をリセットするようにしたので、要求風量が単調に増加
するの?防ぐことができる。
As explained above, in this invention, when the sum of the required air volumes of each series exceeds the maximum supply air volume of the air blowing source, the integral term is reset, so does the required air volume increase monotonically? It can be prevented.

これによって、次の効果を奏することができる。As a result, the following effects can be achieved.

+11  DO値が回復したときには要求風量分速やか
に適正な値に下げることができる。
+11 When the DO value recovers, it can be quickly lowered to an appropriate value by the required air volume.

(2)うる系列の要求風量が単調増加して他の系列への
供給風量が不足してしまうといった不都合?解消するこ
とができる。
(2) Is it an inconvenience that the required air volume of the Uru series increases monotonically, resulting in a shortage of air volume supplied to other series? It can be resolved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例の要部の構成を示すブロ
ック図、第2図は本出願が特願昭59−276583号
で提案した溶存酸素濃度制御装置の構成を示すブロック
図、第3図は各系列の要求風量の総和が送風源の最大供
給風量を超えたときの状態を説明するためのグラフであ
る。 1.2・・・・・・エアタン(エアレーシヨンタンク)
、15・・・・・・送風源、25・・・・・・積分項設
定器、40・・・・・・送風量配分制御装置。
FIG. 1 is a block diagram showing the configuration of essential parts of an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a dissolved oxygen concentration control device proposed in Japanese Patent Application No. 59-276583. FIG. 3 is a graph for explaining the state when the sum of the required air volumes of each series exceeds the maximum supply air volume of the air blowing source. 1.2...Air tongue (aeration tank)
, 15...Blow source, 25...Integral term setter, 40...Blow volume distribution control device.

Claims (1)

【特許請求の範囲】 送風源からの供給風量を複数系列のエアレーシヨンタン
クに分配する場合に、 (a)各系列毎に、エアレーシヨンタンクのDO値とD
O目標値との差であるDO偏差を所定の制御周期で求め
、 (b)該DO偏差に予め定められた演算を施して各系列
毎の比例項と積分項とを算出し、 (c)前記比例項と積分項との和によつて各系列毎の要
求風量を決定し、 (d)各系列の要求風量に応じて前記送風源からの供給
風量を配分して各系列のエアレーシヨンタンクへ供給す
る ようにした曝気風量制御方法において、 前記各系列の要求風量の総和が前記送風源の最大供給風
量を超えたときには、前記各系列毎に下記(e)の演算
を行つて各系列毎に積分項のリセットをすることを特徴
とする曝気風量算出方法。 (e)上記(d)項の風量配分によつて定まつた該系列
の風量指令値から該系列の比例項を減じた値を次の制御
周期における該系列の前回積分項とする。
[Scope of Claims] When distributing the amount of air supplied from an air source to a plurality of series of aeration tanks, (a) for each series, the DO value and D of the aeration tank;
Obtain the DO deviation, which is the difference from the O target value, in a predetermined control cycle, (b) perform a predetermined calculation on the DO deviation to calculate a proportional term and an integral term for each series, (c) Determine the required air volume for each series by the sum of the proportional term and the integral term, and (d) distribute the air volume supplied from the air source according to the required air volume for each series to achieve aeration for each series. In the aeration air volume control method for supplying air to a tank, when the sum of the required air volumes of each series exceeds the maximum supply air volume of the air source, the following calculation (e) is performed for each series to An aeration air volume calculation method characterized by resetting the integral term each time. (e) The value obtained by subtracting the proportional term of the series from the air volume command value of the series determined by the air volume distribution in item (d) above is set as the previous integral term of the series in the next control cycle.
JP60033797A 1985-02-22 1985-02-22 Calculation of aeration air amount Granted JPS61192392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033797A JPS61192392A (en) 1985-02-22 1985-02-22 Calculation of aeration air amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033797A JPS61192392A (en) 1985-02-22 1985-02-22 Calculation of aeration air amount

Publications (2)

Publication Number Publication Date
JPS61192392A true JPS61192392A (en) 1986-08-26
JPS6317515B2 JPS6317515B2 (en) 1988-04-14

Family

ID=12396458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033797A Granted JPS61192392A (en) 1985-02-22 1985-02-22 Calculation of aeration air amount

Country Status (1)

Country Link
JP (1) JPS61192392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161850A (en) * 2007-01-04 2008-07-17 Sumiju Kansai Shisetsu Kanri Kk Dissolved oxygen controller
WO2017056696A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161850A (en) * 2007-01-04 2008-07-17 Sumiju Kansai Shisetsu Kanri Kk Dissolved oxygen controller
WO2017056696A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
JP2017064568A (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system

Also Published As

Publication number Publication date
JPS6317515B2 (en) 1988-04-14

Similar Documents

Publication Publication Date Title
CN105928123A (en) Room pressure control system and room pressure control method
CN107655245A (en) A kind of magnetic suspension centrifugal air conditioner group load balance control method and system
DE112005002023T5 (en) Fuel cell system and liquid discharge method for the same
JPS61192392A (en) Calculation of aeration air amount
CN106679121A (en) Stable humidification control method based on PID control
JP2947272B1 (en) Clean room pressure adjustment method and apparatus
JP2006283093A (en) Oxygen-enriching facility for blasting into blast furnace
JP2001027104A (en) Condensate flow control method for condensate steam turbine
CN113354069A (en) MBR process accurate aeration control system and method
JP2000274603A (en) Water supply controller
JPH0230076Y2 (en)
JPH0579400B2 (en)
JPS607989A (en) Production apparatus for extremely pure water
JP2000265968A (en) Fluid feed pump recirculating control device
JPH04958Y2 (en)
JP2002005075A (en) System for controlling pump
JPS60102997A (en) Energy-conserving type controlling method for aerating air quantity
CN109814374A (en) A kind of automatic joint debugging system and its control method of more air blower units
CN116146516B (en) Intelligent grid-connected control method and system for multiple compressors
CN221144748U (en) Crystallizer circulating water pump system
DE10044598A1 (en) Vacuum refining unit for a glass melt
JP4429840B2 (en) Inter-room airflow control system
JP2501582Y2 (en) Water level controller for parallel cooling tower
JPS59119089A (en) Capacity controlling apparatus for nitrogen compressor
JPS5835011A (en) Cooling device