JPS60102997A - Energy-conserving type controlling method for aerating air quantity - Google Patents

Energy-conserving type controlling method for aerating air quantity

Info

Publication number
JPS60102997A
JPS60102997A JP58210059A JP21005983A JPS60102997A JP S60102997 A JPS60102997 A JP S60102997A JP 58210059 A JP58210059 A JP 58210059A JP 21005983 A JP21005983 A JP 21005983A JP S60102997 A JPS60102997 A JP S60102997A
Authority
JP
Japan
Prior art keywords
blower
air
aeration tank
air volume
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58210059A
Other languages
Japanese (ja)
Inventor
Shigeo Yamada
重夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58210059A priority Critical patent/JPS60102997A/en
Publication of JPS60102997A publication Critical patent/JPS60102997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To prevent power consumption of a blower from being increased, by a method wherein air is fed into a plurality of aerating tanks from a single blower, and an air quantity regulating valve for passing air in a target air quantity required for each of the aerating tanks is provided in each air passage leading to each of the tanks. CONSTITUTION:A PID calculator 7 calculates the pressure required for feeding a maximum target quantity of air to the aerating tank 4 when the air quantity regulating valve 44 is fully opened, and the calculated pressure is used as a pressure set point for the blower. Meanwhile, a PID calculator 6 on the aerating tank side is supplied with information that the aerating tank having the maximum target air quantity is the aerating tank 4 from a maximum value detector 11, and fully opens the air quantity regulating valve 4 form the aerating tank 4. When the valve 44 is fully opened, the PID calculator 7 on the blower side performs PID calculation by using the difference between the pressure set point and an actual air pressure detected by a pressure gauge, thereby calculating a target blowing quantity for the blower 5. By this, a suction valve 10 of the blower 5 is controlled.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、下水処理上等において汚水を曝気槽に流入し
送風機から送風される空気によって曝気し、曝気槽内に
存在するバクテリアの働きによって汚水を浄化するシス
テムに関し、特にその送風機の制御方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is a method for treating sewage, etc. by flowing wastewater into an aeration tank and aerating it with air blown from a blower, and by the action of bacteria present in the aeration tank. The present invention relates to a system for purifying air, and in particular to a method for controlling its blower.

〔発明の背景〕[Background of the invention]

第1図において従来の曝気槽風量制御方法を説明する。 A conventional aeration tank air volume control method will be explained with reference to FIG.

汚水は各曝気4¥’71,2,3.4に流入され、一台
の送風機5から各曝気槽に送られてきた空気により曝気
されバクテリアの働きによって浄化される。
Sewage flows into each aeration tank 4, 2, and 3.4, is aerated with air sent from one blower 5 to each aeration tank, and is purified by the action of bacteria.

曝気槽内でのバクテリアの働きをもっとも盛んにするだ
めには、各曝気ぜ1における酸素溶存■l(以下Doと
いう)が一定の値に保たれなければならない。この値は
1.1)Oが曝気槽内各部分においてバラツキがあるこ
とも考〃μされて、はぼ4〜5解に設定される。このD
O段設定i6と、各Do計21.22,23.24によ
って測定された実際の各曝気槽1,2,3.4における
Doの値との偏差を用いて、PID演算が行なわれ各曝
気槽毎の目標風量が演算される。尚、各曝気槽における
実際のDo値はその時々における条件、例えば新たに流
入した汚水量等によって刻々と変化するものであり、ま
だPID演算はPID演算器6によって行なわれる。
In order to maximize the activity of bacteria in the aeration tank, the amount of oxygen dissolved in each aeration tank (hereinafter referred to as Do) must be maintained at a constant value. This value is set to approximately 4 to 5, taking into consideration the fact that 1.1) O varies in each part of the aeration tank. This D
PID calculation is performed using the deviation between the O stage setting i6 and the actual value of Do in each aeration tank 1, 2, 3.4 measured by each Do meter 21.22, 23.24. The target air volume for each tank is calculated. Note that the actual Do value in each aeration tank changes moment by moment depending on the conditions at the time, for example, the amount of newly inflowing wastewater, etc., and the PID calculation is still performed by the PID calculation unit 6.

この演算された各目標風量と、各風量計31゜32.3
3.34によって測定された実際の各曝気槽への風量と
の偏差を用いて、Pより演算が行なわれ、各曝気槽への
空気流路に設けられた風量調節弁41,42,43,4
4へ弁開度の指示指令が与えられる。このPID演算及
び指令は、PIDi’J算器7によって行なわれる。以
上のようにして各曝気槽への風量は制御される。
This calculated target air volume and each air volume meter 31°32.3
Calculation is performed from P using the deviation from the actual air volume to each aeration tank measured in 3.34, and the air volume control valves 41, 42, 43, 4
4 is given an instruction command for the valve opening degree. This PID calculation and command are performed by the PIDi'J calculator 7. The air volume to each aeration tank is controlled in the above manner.

次に各曝気槽に空気を送る送風機5の制御について説明
する。この送風機5は各曝気槽1.2゜3.4に共有さ
れておシ、送風機5と曝気槽をつなぐ空気流路、この空
気流路の途中に設けられる前記風Ak fiQ節弁及び
曝気槽内での空気流れのエネルギ損失は、各曝気槽につ
いてほぼ同一条件である。そして送風機5には、いずれ
かの曝気槽で必要となる目標風量に十分対応できるため
の圧力が設定される。この圧力設定値と空気圧力計8に
よって検出される実際の空気圧力との偏差を用いて、送
風機5の目標総風量を計算する。この目標総風量と、風
量計9によって検出した送風機5の吸込送量(実際の送
風上に該当する)との偏差を用いてPID演算を行ない
、送風機5の吸込弁10への開度指令を出す。このPI
f)演算及び開度指令はPID演算器7によって行なわ
れる。
Next, control of the blower 5 that sends air to each aeration tank will be explained. This blower 5 is shared by each of the aeration tanks 1.2 and 3.4, and includes an air flow path connecting the blower 5 and the aeration tank, and the air flow control valve and the aeration tank provided in the middle of this air flow path. The energy loss of the air flow within the aeration tank is approximately the same for each aeration tank. The blower 5 is set at a pressure sufficient to meet the target air volume required in any of the aeration tanks. Using the deviation between this pressure setting value and the actual air pressure detected by the air pressure gauge 8, the target total air volume of the blower 5 is calculated. A PID calculation is performed using the deviation between this target total air volume and the suction flow rate of the blower 5 (corresponding to the actual air flow) detected by the air flow meter 9, and an opening command to the suction valve 10 of the blower 5 is issued. put out. This PI
f) Calculations and opening commands are performed by the PID calculator 7.

本従来例のように複数の曝気槽が一台の送風機5を共有
する理由は、各曝気槽毎に小型の送風機を設けると設備
費用及び保守の面で不利なためである。
The reason why a plurality of aeration tanks share one blower 5 as in this conventional example is that providing a small blower for each aeration tank is disadvantageous in terms of equipment costs and maintenance.

〔背景技術の問題点〕[Problems with background technology]

以上の従来例において、送風機5の圧力設定値は過去の
送風機の運転テーク等を考1qシて、操作員がその都度
、設定するものであった。しかしこの圧力設定値が必要
以上に高い場合、各曝気槽に送られてくる風量をその時
々において適切な風量に制限するため、風量調節弁41
.42.43゜44を絞る必要が生じる。ところが、こ
の風量調節弁を絞れば絞る程空気流れのエネルギ損失は
大きくなり送風機の消費電力の経済性が悪くなるもので
あった。
In the conventional example described above, the pressure setting value of the blower 5 is set by the operator each time, taking into consideration past blower operation and the like. However, if this pressure setting value is higher than necessary, the air volume control valve 41 is used to limit the air volume sent to each aeration tank to an appropriate air volume at each time.
.. It becomes necessary to narrow down the angle to 42.43°44. However, the more the air volume control valve is throttled down, the greater the energy loss of the airflow becomes, and the economical efficiency of the power consumption of the blower deteriorates.

一方、圧力設定値を必要以上に低くすると各曝気槽にお
いて必要とする風量が確保できないものであった。この
ため操作員が適切な圧力設定値を下さねばならず、この
ため多くの時間が必要であった。
On the other hand, if the pressure setting value is lower than necessary, the required air volume cannot be secured in each aeration tank. Therefore, the operator had to set an appropriate pressure setting, which required a lot of time.

〔発明の目的〕[Purpose of the invention]

本発明は、送風機に必要以上の空気圧力を発生させて送
風機の消費電力が大きくなってしまうことを防止し、ま
た必要以上の低い空気圧力を発生させて各曝気槽の目標
風量が確保できないことを防止し、加えて操作員の労力
を軽減することのできる省エネ型曝気槽送量制御方法を
提供する。ことを目的とする。
The present invention prevents the blower from generating more air pressure than necessary, which increases the power consumption of the blower, and also prevents the generation of an unnecessarily low air pressure, which makes it impossible to secure the target air volume of each aeration tank. To provide an energy-saving aeration tank feed rate control method that can prevent this and reduce the labor of an operator. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明の省エネ型曝気槽風量制御方法は最も大きな目標
風量を有する曝気槽に対応して送風様の圧力を制御する
ものでおる。
The energy-saving aeration tank air volume control method of the present invention controls the air blowing pressure corresponding to the aeration tank having the largest target air volume.

即ち、所定時における各曝気槽が必要とする各目標風量
中からその所定時における最大目標風量値を選出し、こ
の最大目標風景値を有する曝気槽の風量調節弁を全開し
、全開とした曝気槽にこの最大目標風量を送るために必
要な圧力をその所定時において送風(しに発生するもの
である。所定時とは、制御形式によって異なり、一定時
間毎のこともあり、又、ある任意の時のこともある。
That is, the maximum target air volume value at a predetermined time is selected from among the target air volume required by each aeration tank at a predetermined time, and the air volume control valve of the aeration tank having this maximum target scenery value is fully opened, and the aeration is performed with the air volume fully open. The pressure required to send this maximum target air volume to the tank is generated when the air is blown at a predetermined time.The predetermined time differs depending on the control type, and may be at regular intervals, or at a certain arbitrary time. Sometimes it happened at the time.

これによシ送風機の発生させる空気圧力が必要以上に高
くなることはない。また他の各曝気槽は最大目標風量よ
りも小さな目標風量を有するものであるから、送風機の
発生させる前記空気圧力によって十分に目標風量を確保
できるものである。
This prevents the air pressure generated by the blower from becoming higher than necessary. Moreover, since each of the other aeration tanks has a target air volume smaller than the maximum target air volume, the target air volume can be sufficiently secured by the air pressure generated by the blower.

なお、以上のことは空気流路、風量調節弁及び曝気槽内
での空気流れのエネルギ損失が各曝気槽についてほぼ同
一であることが条件となるが、空気流れのエネルギ損失
はその大部分が曝気槽内でのものであシ曝気槽の形式が
各曝気槽において同型であれば、この条件は満される。
The above is based on the condition that the energy loss of the air flow in the air flow path, air volume control valve, and aeration tank is almost the same for each aeration tank, but most of the energy loss in the air flow is This condition is satisfied if the type of aeration tank is the same in each aeration tank.

〔発明の実施例〕[Embodiments of the invention]

第2図において本発明の一実施例を説明する。 An embodiment of the present invention will be explained with reference to FIG.

なお第1図と同一の要素については同一の番号を付して
説明を省略する。所定時、即ち、本実施例においてはサ
ンプリング制御を行うため、一定時間毎にDO値が測定
され各目標風量が演算される。
Note that the same elements as in FIG. 1 are given the same numbers and their explanations are omitted. Since sampling control is performed at a predetermined time, that is, in the present embodiment, the DO value is measured at predetermined time intervals and each target air volume is calculated.

PID演算器において演算された各曝気槽1,2゜3.
4の各目標風量は、最大値検出装置11へ送られ、最大
目標風量値が選出される。また、同時に最大目標風量値
を有する曝気槽も特定される。
Each aeration tank 1, 2°3. calculated by the PID calculator.
Each of the four target air volume values is sent to the maximum value detection device 11, and the maximum target air volume value is selected. At the same time, an aeration tank having the maximum target air volume value is also identified.

今、仮に最大目標風量値を有する曝気槽が曝気槽4であ
ったとすると、最大値検出装置11から、最大目標風量
及び最大目標風量値を有する曝気槽が曝気槽4であると
いう情報が送風機側のPID演算装置7に送られる。以
上の情報に従って、このPID演算器7は、風量調節弁
44を全開とした場合の曝気槽4へ最大目標風量を送る
のに必要な圧力を計算して送風機の圧力設定値とする。
Now, if the aeration tank having the maximum target air volume value is the aeration tank 4, the information that the aeration tank having the maximum target air volume and the maximum target air volume value is the aeration tank 4 is transmitted from the maximum value detection device 11 to the blower side. It is sent to the PID calculation device 7 of. According to the above information, the PID calculator 7 calculates the pressure required to send the maximum target air volume to the aeration tank 4 when the air volume control valve 44 is fully opened, and uses this as the blower pressure setting value.

この間、曝気槽側のPID演算装置6は最大値検出装置
11から最大目標風量値を有する曝気槽が曝気祷4であ
るという情報を送られ、曝気m4の風量調節弁44を全
開とする。
During this time, the PID calculation device 6 on the aeration tank side receives information from the maximum value detection device 11 that the aeration tank having the maximum target air volume value is the aeration tank 4, and fully opens the air volume control valve 44 of the aeration m4.

風量調節弁44が全開になった時点で、送風機側のPI
D演算装置7は前記圧力設定値と圧力計8の検出した実
際の空気圧力との偏差を用いてPID演鉢し、送風機5
の目標送風音を算出する。
When the air volume control valve 44 is fully open, the PI on the blower side
The D arithmetic device 7 uses the deviation between the pressure setting value and the actual air pressure detected by the pressure gauge 8 to perform PID calculation, and operates the blower 5.
Calculate the target air blowing sound.

これによって送風機5の吸込弁10が制御され、実際の
風量が制御される。
As a result, the suction valve 10 of the blower 5 is controlled, and the actual air volume is controlled.

他の風量調節弁41,42.43の開度は従来と同様に
PID演算によって行われる。送風機5の前記圧力設定
値は従来よシ低めKなるので、これらの弁の開度は各々
大きくなる。
The opening degrees of the other air volume control valves 41, 42, and 43 are determined by PID calculation as in the conventional case. Since the pressure setting value of the blower 5 is lower than before, the opening degree of each of these valves becomes larger.

本実施例によれば、送風(表5の発生する空気圧力は必
要最小限のものとなる。これによって従来のように必要
以上に高い空気圧力を発生させ送風機5の消費電力を大
きくし経済性を悪化することを防止できる。本実施例の
如き汚水浄化システムにおいては消費電力の半分以上を
送風機5の消費電力がしめるものであり、送風板の運転
を以上のように効率よくすることはシステム全体の経済
性にとって有利なものである。
According to this embodiment, the air pressure generated by the air blower (Table 5) is the minimum necessary.This makes it possible to generate a higher air pressure than necessary and increase the power consumption of the blower 5, which is more economical than in the conventional case. In the sewage purification system like this embodiment, the power consumption of the blower 5 accounts for more than half of the power consumption, and making the operation of the blower plate more efficient as described above is a system improvement. This is advantageous for overall economics.

そして他の曝気槽1,2.3は送風機5の発生させる最
小の圧力でそれぞれの目標風量を十分に確保することが
できる。即ち、これらの曝気槽1゜2.3は前記曝気槽
4より小さい目標風量を有するのみであり、さらに空気
流路、風量調節弁及び曝気槽内での空気流れのエネルギ
抽出は、曝気槽4とほぼ同一条件だからである。
In the other aeration tanks 1, 2.3, the respective target air volumes can be sufficiently secured with the minimum pressure generated by the blower 5. That is, these aeration tanks 1.2.3 only have a smaller target air volume than the aeration tank 4, and furthermore, the air flow path, the air volume control valve, and the energy extraction of the air flow in the aeration tank are different from the aeration tank 4. This is because the conditions are almost the same.

本実施例の効果を第3図及び第4図においてさらに詳し
く説明する。第3図は空気流路、風量調節弁及び曝気槽
内での空気流れのエネルギ損失曲線を各曝気槽について
表わしたものである。この空気流れのエネルギ損失は各
曝気槽についてほぼ同一条件であるため、各エネルギ損
失曲線の相異は各風情調節弁41.42,43.44の
開度の際によって生じたものである。各曝気槽1t2゜
3、、、4の目標風量値を順にA、B、C,Dで表わす
。従来は各目標風量を獲得するため送風機50発生する
空気圧力は高めの位置Jに設定されていた。一方、本実
施例においては曝気槽4の風量調節弁を全開としたため
送風機5の圧力設定値は従来の圧力設定値Jよシも低い
几とすることができ、最大目標風量りを確保できる。他
の曝気槽1.2゜3についてもそれぞれ風量調節弁41
,42゜43の開度な大きくする仁とにより目標風量値
ABCを確保できるものである。なお、各曝気槽の各エ
ネルギ損失曲線11’ 、 L2’ + Ag’ + 
14’が従来のエネルギ損失曲線41 + t2 + 
t3 + t4に対して緩かになっているのはそれぞれ
風量調節弁の開度が大きくなったためである。
The effects of this embodiment will be explained in more detail with reference to FIGS. 3 and 4. FIG. 3 shows the energy loss curve of the air flow path, the air volume control valve, and the air flow within the aeration tank for each aeration tank. Since the energy loss of this air flow is under substantially the same conditions for each aeration tank, the difference in each energy loss curve is caused by the opening degree of each air conditioning valve 41, 42, 43, 44. The target air volume values of each aeration tank 1t2°3, . . . 4 are represented by A, B, C, and D in order. Conventionally, the air pressure generated by the blower 50 was set at a higher position J in order to obtain each target air volume. On the other hand, in this embodiment, since the air volume control valve of the aeration tank 4 is fully opened, the pressure setting value of the blower 5 can be set lower than the conventional pressure setting value J, and the maximum target air volume can be ensured. Air volume control valve 41 is also installed for each of the other aeration tanks 1.2゜3.
By increasing the opening angle of , 42°, 43°, the target air volume value ABC can be secured. In addition, each energy loss curve 11' of each aeration tank, L2' + Ag' +
14' is the conventional energy loss curve 41 + t2 +
The reason why it is slower than t3 + t4 is because the opening degree of each air volume control valve has become larger.

さて、送風機5の消費電力は、送風機50発生する空気
圧力と風鼠の積によって決まる。第3図は縦軸を圧力P
1横軸を風情Qとしているので従来における消費出力は
四角形0AIJ、0BIIJ。
Now, the power consumption of the blower 5 is determined by the product of the air pressure generated by the blower 50 and the air pressure. In Figure 3, the vertical axis is pressure P.
1 Since the horizontal axis is the taste Q, the conventional consumption output is square 0AIJ, 0BIIJ.

0CGJ、OD[’Jの面積の合計となる。本実施例の
消費電力は四角形0ANR,OBMB。
This is the total area of 0CGJ, OD['J. The power consumption in this example is 0ANR, OBMB.

OCL几、01)KRの面積の合計となる。これにより
、本実施例によれば送風機5の消費出力は少なくなり省
エネ型になったといえるものである。
OCL 几, 01) This is the total area of KR. As a result, according to this embodiment, the power consumption of the blower 5 is reduced, making it an energy-saving type.

以上のことを送風機5の特性曲線を用いて説明すると第
4図の如くになる。縦軸は送風機50発生する空気圧力
Pであシ、横軸は送風機5の吐出する送風ff1Qであ
る。従来例及び本実施例において送風量はA+B十〇+
D−する。そして空気圧力Pは従来はJであり本実施例
はこれ・よりも低いR′″Cある。送風機5の各消費電
力値における特性曲線mは破線の如くになるので、本実
施例においては消費電力が小さくてすむことが理解され
る。
The above will be explained using the characteristic curve of the blower 5 as shown in FIG. The vertical axis is the air pressure P generated by the blower 50, and the horizontal axis is the air ff1Q discharged by the blower 5. In the conventional example and this example, the air flow rate is A+B10+
D- Do. The air pressure P is conventionally J, but in this embodiment, R'''C is lower than this.The characteristic curve m at each power consumption value of the blower 5 is as shown by the broken line, so in this embodiment, the It is understood that less power is required.

〔他の実施例〕[Other Examples]

以上の実施例においては送風機の風量制御手段は吸込弁
であったが本発明は他の風量制御手段を有する送風機を
用いる場合にも実施できるものである。
In the above embodiments, the air volume control means of the blower was a suction valve, but the present invention can also be implemented when using a blower having other air volume control means.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、各曝気槽の中から最大目
標風量を有するものに対応して送風機の圧力設定値を決
定するため、送風機の消費電力に無駄がなく、各曝気槽
の目標風量も確保できる。
As described above, according to the present invention, the pressure setting value of the blower is determined according to the one having the maximum target air volume from among each aeration tank, so there is no waste in the power consumption of the blower, and the target air volume of each aeration tank is Air volume can also be ensured.

これにより送風機の消費電力さらにはシステム全体の消
費電力を節約することができ、従来のように圧力設定値
をその都度設定していた操作員の労力も軽減できるもの
である。
As a result, the power consumption of the blower and the power consumption of the entire system can be saved, and the labor of the operator who has to set the pressure setting value each time as in the past can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の曝気槽風量制御方法の説明図、第2図は
本発明の一実施例に係る省エネ型曝気槽風量制御方法を
示す説明図、第3図は第2図における各曝気槽に流れる
空気のエネルギ損失曲線を表わすグラフ、第4図は送風
機の特性曲線により本実施例の効果を表わしたグラフで
ある。 1.2.3.4・・・曝気槽、21.22,23゜24
・・・Do計、31,32.33.34・・・風量計、
41.42,43.44・・・風量調節弁、5・・・送
風機、6.7・・・PID演算器、8・・・空気圧力計
、9・・・風量計、10・・・吸込弁、11・・・最大
値検出装置。 代理人 弁理士 鵜沼辰之
Figure 1 is an explanatory diagram of a conventional aeration tank air volume control method, Figure 2 is an explanatory diagram of an energy-saving aeration tank air volume control method according to an embodiment of the present invention, and Figure 3 is an explanatory diagram of each aeration tank in Figure 2. FIG. 4 is a graph showing the energy loss curve of the air flowing through the air, and FIG. 4 is a graph showing the effect of this embodiment using the characteristic curve of the blower. 1.2.3.4...Aeration tank, 21.22, 23°24
...Do meter, 31,32.33.34...Air flow meter,
41.42, 43.44...Air volume control valve, 5...Blower, 6.7...PID calculator, 8...Air pressure gauge, 9...Air flow meter, 10...Suction Valve, 11... Maximum value detection device. Agent Patent Attorney Tatsuyuki Unuma

Claims (1)

【特許請求の範囲】 1、汚水を流入した曝気槽に空気を送シ、曝気槽内のバ
クテリアの働きによって汚水を浄化するシステムであっ
て、一台の送風機から複数の曝気槽に空気が送られ、各
曝気槽への空気流路には夫々、各曝気槽が必要とする各
目標風量を流すだめの風量調節弁が設けられ、空気流路
、風量調節弁及び曝気槽内での空気流れのエネルギ損失
は各曝気槽についてほぼ同一条件である汚水浄化システ
ムにおいて、 所定時における各目標風量中からその所定時における最
大目標風量を選出し、この最大目標風量値を有する曝気
槽の風量調節弁を全開とし、全開とした曝気槽にこの最
大目標風量を送るために必要な圧力をその所定時におい
て送風機に発生させることを特徴とする省エネ型曝気槽
風量制御方法。
[Claims] 1. A system in which air is sent to an aeration tank into which sewage has flowed, and the sewage is purified by the action of bacteria in the aeration tank, in which air is sent from one blower to a plurality of aeration tanks. The air flow path to each aeration tank is provided with an air volume control valve to flow each target air volume required by each aeration tank. In a sewage purification system where the energy loss is almost the same for each aeration tank, the maximum target air volume at a given time is selected from among the target air volumes at a given time, and the air volume control valve of the aeration tank with this maximum target air volume value is selected. An energy-saving aeration tank air volume control method characterized by fully opening the air tank and causing the blower to generate the pressure necessary to send the maximum target air volume to the fully opened aeration tank at a predetermined time.
JP58210059A 1983-11-09 1983-11-09 Energy-conserving type controlling method for aerating air quantity Pending JPS60102997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58210059A JPS60102997A (en) 1983-11-09 1983-11-09 Energy-conserving type controlling method for aerating air quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210059A JPS60102997A (en) 1983-11-09 1983-11-09 Energy-conserving type controlling method for aerating air quantity

Publications (1)

Publication Number Publication Date
JPS60102997A true JPS60102997A (en) 1985-06-07

Family

ID=16583131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210059A Pending JPS60102997A (en) 1983-11-09 1983-11-09 Energy-conserving type controlling method for aerating air quantity

Country Status (1)

Country Link
JP (1) JPS60102997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143697U (en) * 1985-02-28 1986-09-04
WO2017056696A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
JP2020151627A (en) * 2019-03-18 2020-09-24 住友重機械エンバイロメント株式会社 Aeration system, method of operating aeration system, and method of replacing blower

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143697U (en) * 1985-02-28 1986-09-04
JPH04958Y2 (en) * 1985-02-28 1992-01-13
WO2017056696A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
JP2017064568A (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
JP2020151627A (en) * 2019-03-18 2020-09-24 住友重機械エンバイロメント株式会社 Aeration system, method of operating aeration system, and method of replacing blower

Similar Documents

Publication Publication Date Title
CN111905536B (en) Automatic control system for pH value of slurry passing through desulfurization absorption tower
JPS60102997A (en) Energy-conserving type controlling method for aerating air quantity
JPS56129088A (en) Control of air blow in sewage disposal
JPH0230076Y2 (en)
CA1103147A (en) Gas washer and method of operation
JP2003236353A (en) Apparatus for producing ozonized water
JPH08159690A (en) Automatic blow chemical feeder for cooling water system
CN113354069A (en) MBR process accurate aeration control system and method
JP3540627B2 (en) Distributing valve control device
JPS5827692A (en) Airflow controller for aeration vessel
JPS5712890A (en) Controller of aeration amount in aeration vessel
JPS5811098A (en) Controller for flow rate of aeration air in sewage treating plant
JPS56111088A (en) Method for controlling dissolved oxygen of sewage treatment process
JPH10286585A (en) Aeration air volume controlling apparatus
JP3628884B2 (en) Steam header pressure controller
JPS5968581A (en) Operation control device of compressor
JPS59142325A (en) Feed air control device in flue gas control facility
JPH04958Y2 (en)
CN216987065U (en) Novel desulfurizer slurry supply system
JPS58199097A (en) Method for controlling feed rate of gas for aeration
JPS6316998B2 (en)
JPH0438474B2 (en)
US11111167B2 (en) Control of a centralized air production system for a wastewater treatment plant
JPS58183991A (en) Controller for aeration tank
CN115253652A (en) Desulfurization single-tower double-circulation automatic slurry supply control method and device