WO2017056696A1 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
WO2017056696A1
WO2017056696A1 PCT/JP2016/072712 JP2016072712W WO2017056696A1 WO 2017056696 A1 WO2017056696 A1 WO 2017056696A1 JP 2016072712 W JP2016072712 W JP 2016072712W WO 2017056696 A1 WO2017056696 A1 WO 2017056696A1
Authority
WO
WIPO (PCT)
Prior art keywords
series
air volume
target
target air
dissolved oxygen
Prior art date
Application number
PCT/JP2016/072712
Other languages
French (fr)
Japanese (ja)
Inventor
佳記 西田
一郎 山野井
剛 武本
信幸 中村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58423144&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017056696(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680053125.8A priority Critical patent/CN108025935B/en
Publication of WO2017056696A1 publication Critical patent/WO2017056696A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment system that includes a water treatment device using activated sludge and controls the water treatment device.
  • ammonia control using an ammonia meter that has improved accuracy and controlling based on the measured ammoniacal nitrogen concentration. Since ammonia nitrogen, which is a processing target, is measured, followability to the processing target value is improved as compared with conventional DO control and the like, and a more appropriate control of the aeration air volume becomes possible.
  • Patent Document 1 an ammonia meter is installed, and the air volume is controlled so that the DO concentration of the series in which the air volume is controlled based on the measurement value of the ammonia gauge and the other series are equal.
  • the amount of treatment by microorganisms varies depending on the treatment time (residence time: also referred to as HRT). For this reason, even if the series has the same DO concentration, if the processing time (residence time) differs depending on conditions such as the inflow flow rate to each series, the processing amount varies depending on the series. There is a possibility that the effect of control by the measuring instrument (ammonia meter) installed in the plant cannot be obtained sufficiently.
  • the present invention corrects the setting of the aeration air volume in the other multiple series based on the DO concentration in the representative series where the water quality meter is installed, based on the inflow flow rate of the treated water to each series, so
  • An object of the present invention is to provide a water treatment system that can optimally control the amount of treated water or the amount of aeration air.
  • the water treatment system of the present invention includes a reaction tank including at least an aerobic tank and a plurality of systems having a diffuser provided in the aerobic tank, and is installed in all the plurality of systems.
  • a dissolved oxygen concentration meter that measures the dissolved oxygen concentration in the aerobic tank, a flow meter that measures the flow rate of the water to be treated flowing into the reaction tank of each series, or a flow rate estimation unit that estimates the flow rate of the treated water
  • a water treatment device having a water quality meter installed in the aerobic tank of one series, and a blower for supplying air to the aeration section of each series, and from the blower to the aeration section of each series
  • An air volume control unit for controlling the air volume of the supplied air, and the air volume control unit controls the air volume to one series in which the water quality meter is installed based on the measurement value of the water quality meter, and At least one of one sequence and the other sequence Based on the measured value of the existing oxygen concentration, the inflow flow rate of the treated water of one series
  • the setting of the aeration air volume in the other multiple series is corrected based on the inflow rate of the water to be treated into each series.
  • FIG. 1 the schematic whole block diagram of the water treatment system of Example 1 which concerns on one Example of this invention is shown.
  • the solid line indicates piping, and the dotted line indicates a signal line.
  • the water treatment system 1 which concerns on a present Example is the water treatment apparatus 2 which removes organic substance and ammonia nitrogen using sewage (treated water), such as domestic waste water or industrial wastewater, in a standard activated sludge method.
  • the air volume control part 3 is provided.
  • the water treatment apparatus 2 includes a series 1 composed of an aerobic tank (reaction tank) 4-1 and a final sedimentation tank 5-1 in order from the inflow side of sewage to be treated.
  • a series 2 comprising an aerobic tank (reaction tank) 4-2 and a final sedimentation tank 5-2 is provided, and series 1 and series 2 are activated sludge.
  • the same treatment method using, that is, a standard activated sludge method is used.
  • the aerobic tank (reaction tank) 4-1 in the series 1 is provided with a plurality of air diffusers 6-1 and the aerobic tank (reaction tank) 4-2 in the series 2 is provided with a plurality of air diffusers 6-1. -2 is provided.
  • the sewage which is the treated water flows into the aerobic tank (reaction tank) 4-1 of the series 1 through the inflow pipe 14 and the series 1 inflow pipe 14-1 branched from the inflow pipe 14, and the return pump 9 -1 is installed, the return sludge flows from the final sedimentation basin 5-1 through the series 1 return sludge pipe 17-1, and ammonia nitrogen (NH 4 -N) is nitrated by the nitrifying bacteria in the activated sludge. Nitrification is performed to oxidize to nitrogen (NO 3 —N). In addition, organic matter oxidation by aerobic heterotrophic bacteria is performed.
  • the sewage water to be treated flows into the aerobic tank (reaction tank) 4-2 of the series 2 through the inflow pipe 14 and the series 2 inflow pipe 14-2 branched from the inflow pipe 14.
  • Return sludge flows from the final sedimentation basin 5-2 through the series 2 return sludge pipe 17-2 where the return pump 9-2 is installed, and ammonia nitrogen (NH 4 -N) is produced by nitrifying bacteria in the activated sludge. Nitrification is performed to oxidize nitrile to nitrate nitrogen (NO 3 —N). In addition, organic matter oxidation by aerobic heterotrophic bacteria is performed.
  • the final sedimentation basin 5-1 of series 1 and the final sedimentation basin 5-2 of series 2 are facilities for settling and separating the supernatant liquid and the activated sludges 16-1 and 16-2 by gravity sedimentation.
  • the supernatant liquid after settling and separation is discharged out of the system as treated water through the series 1 outflow pipe 15-1 and the series 2 outflow pipe 15-2, respectively.
  • the final sedimentation tank 5-1 and the final sedimentation tank 5-2 are provided with sludge scrapers (not shown) that scrape the activated sludges 16-1 and 16-2 that settle on the bottom surface.
  • the sludge scraper has a plurality of flights attached to the chain at predetermined intervals, at both ends of the drive shaft to which the rotational force is transmitted by the drive device installed on the water surface of the final sedimentation tanks 5-1 and 5-2.
  • Driven sprocket wheels provided at both ends of the tail shaft and near the bottom surfaces of the final sedimentation tanks 5-1 and 5-2 and provided at both ends of the tail shaft
  • a driven sprocket wheel is provided at both ends of the head shaft disposed on the upstream side of the driven sprocket wheel.
  • a chain to which a plurality of flights are attached at predetermined intervals is stretched in parallel with these drive sprocket wheel and driven sprocket wheel, and is circulated by a drive device.
  • the flight has a flat plate shape that is attached at predetermined intervals so as to cross the chain stretched in parallel with the two strips.
  • the activated sludges 16-1 and 16-2 raked into the sludge pits are returned by the return pumps 9-1 and 9-2 through the series 1 return sludge pipe 17-1 and the series 2 return sludge pipe 17-2, respectively. Then, it is returned to the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 and again subjected to a series of biological treatments.
  • the plurality of air diffusers 6-1 provided in the aerobic tank (reaction tank) 4-1 in the series 1 are connected via the series 1 aeration pipe 18-1 and the air volume valve 8-1. Air is supplied to the aerobic tank (reaction tank) 4-1, connected to the blower 7.
  • the plurality of aeration units 6-2 provided in the aerobic tank (reaction tank) 4-2 in the series 2 are connected to the blower 7 via the series 2 aeration pipe 18-2 and the air volume valve 8-2.
  • the air is supplied to the aerobic tank (reaction tank) 4-2.
  • a series 1 air distribution pipe 18-1 connecting the air diffuser 6-1 and the air flow valve 8-1, and an air flow meter 13-1 is installed on the air flow valve 8-1 side.
  • the air volume measurement value of the air flowing through the series 1 aeration pipe 18-1 measured by the above is output to the air volume control unit 3 through a signal line.
  • a flow meter 11-1 is installed in the series 1 inflow pipe 14-1 which branches from the inflow pipe 14 and is connected to the series 1 aerobic tank (reaction tank) 4-1, and is measured by the flow meter 11-1.
  • the measured value of the inflow flow rate of the sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1 is output to the air volume control unit 3 through the signal line.
  • a flow meter 11-2 is installed in the series 2 inflow pipe 14-2 that branches from the inflow pipe 14 and is connected to the series 2 aerobic tank (reaction tank) 4-2.
  • the measured value of the inflow flow rate of sewage that is treated water flowing into the measured aerobic tank (reaction tank) 4-2 is output to the air volume control unit 3 through a signal line.
  • the flow meter 11-1 and the flow meter 11-2 also function as a flow rate estimation unit.
  • the aerobic tank (reaction tank) 4-1 in series 1 is provided with an ammonia meter 10 and a dissolved oxygen concentration meter (DO meter) 12-1 as water quality meters, and the ammonia nitrogen concentration measured by the ammonia meter 10
  • the measured value of the dissolved oxygen concentration (DO concentration) measured by the dissolved oxygen concentration meter (DO meter) 12-1 is output to the air volume control unit 3 through a signal line.
  • FIG. 2 is a functional block diagram of the air volume control unit 3 shown in FIG. As shown in FIG. 2, the air volume control unit 3 stores a target air volume calculating unit 31, a DO concentration target value calculating unit 32, an air volume valve opening calculating unit 33, a measured value acquiring unit 34, and at least various calculation formulas described in detail later.
  • a target air volume calculation unit 31 for calculating a target air volume of air that flows through the series 1 air distribution pipe 18-1 and is supplied from the air diffuser 6-1 to the aerobic tank (reaction tank) 4-1 of the series 1;
  • the DO concentration target value calculation unit 32 for calculating the target value of the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2, and the blower 7 and the series 1 aeration unit 6-1
  • the opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1 and the series 2 air diffusion pipe 18-2 connecting the blower 7 and the series 2 air diffusion section 6-2.
  • the air flow valve opening calculation unit 33 for calculating the opening command value for the air flow valve 8-2 installed in the PC is, for example, a processor such as a CPU (not shown), a ROM storing various programs, and data of calculation processes temporarily. Is realized by a storage device such as a RAM and an external storage device, and a processor such as a CPU By reading and executing the various programs stored in the OM, it stores the result of calculation execution result RAM or the external storage device. Note that the calculation result or calculation process data may be stored in the storage unit 35 instead of the RAM.
  • the input I / F 36 includes a measured value of ammonia nitrogen concentration measured by an ammonia meter 10 installed in a series 1 aerobic tank (reaction tank) 4-1, a flow meter (series 1). ) Measured value of the inflow flow rate of sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1 measured by 11-1, an aerobic tank measured by the flow meter (series 2) 11-2 (Reaction tank) Measured value of the inflow flow rate of sewage to be treated into 4-2, dissolved oxygen concentration meter (DO meter) 12- installed in the aerobic tank (reaction tank) 4-1 of series 1 Measured value of dissolved oxygen concentration (DO concentration) measured by 1 and dissolved oxygen concentration meter (DO meter) 12-2 installed in aerobic tank (reaction tank) 4-2 of series 2 Measured value of dissolved oxygen concentration (DO concentration) measured by concentration (DO meter), and series 1 aeration pipe The air volume meter 13-1 installed at 8-1 to enter the air volume measurement value measured.
  • the measurement values from the respective measuring instruments are shown as signal wirings superimposed on one signal line, but this is shown in this way for the convenience of description of the drawings.
  • the output I / F 37 outputs the opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1, and the air flow valve 8 installed in the system 2 air distribution pipe 18-2. Output the opening command value to -2.
  • the details of the target air volume calculation unit 31, the DO concentration target value calculation unit 32, the air volume valve opening calculation unit 33, and the measurement value acquisition unit 34 will be described later.
  • the flow meter 11-1 that also functions as a flow rate estimation unit has an inflow of sewage that is treated water flowing into the aerobic tank (reaction tank) 4-1 of the series 1 through the series 1 inflow pipe 14-1.
  • the flow meter 11-2 that measures the flow rate and also functions as a flow rate estimation unit similarly flows into the aerobic tank (reaction tank) 4-2 of the series 2 via the series 2 inflow piping 14-2. Measure the inflow of sewage, which is water.
  • the dissolved oxygen concentration meter (DO meter) 12-1 installed in the series 1 aerobic tank (reaction tank) 4-1 is used to calculate the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-1.
  • the air volume control unit 3 is configured so that the ammonia nitrogen concentration in the aerobic tank (reaction tank) 4-1 measured by the ammonia meter 10 as a water quality meter installed in the series 1 aerobic tank (reaction tank) 4-1. Based on the measured value, the target air volume for series 1 is obtained and set.
  • the air volume control unit 3 performs sewage treatment water flowing into the series 1 aerobic tank (reaction tank) 4-1 measured by the flow meter 11-1 and the flow meter 11-2, respectively.
  • Inflow rate inflow rate of sewage that is treated water flowing into a series 2 aerobic tank (reaction tank) 4-2, and a series 1 aerobic measured by a dissolved oxygen concentration meter (DO meter) 12-1.
  • DO concentration dissolved oxygen concentration
  • the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 is obtained and set.
  • the air volume control unit 3 selects the series air flow according to the difference between the air volume measurement value measured by the air volume meter 13-1 installed in the series 1 air diffusion pipe 18-1 and the target air volume to the set series 1 described above.
  • the opening degree of the air volume valve 8-1 installed in the one air diffusion pipe 18-1 is controlled.
  • the air volume control unit 3 performs the aerobic tank (reaction) measured by the dissolved oxygen concentration meter (DO meter) 12-2 installed in the aerobic tank (reaction tank) 4-2 of the series 2.
  • a method for setting the target air volume for the series 1 in the air volume controller 3 will be described below.
  • the air volume control unit 3 performs feedback control so that the ammonia nitrogen concentration in the series 1 aerobic tank (reaction tank) 4-1 measured by the ammonia meter 10 approaches a desired ammonia nitrogen concentration target value.
  • the setting of the target air volume for the series 1 follows the following formulas (1) and (2).
  • QB 1 set (t) [m 3 / min]: target air volume setting value for series 1 at time t
  • NH 4 (t) [mg ⁇ N / L] aerobic tank of series 1 at time t
  • NH 4tgt [mg-N / L] ammonia nitrogen concentration target value
  • ⁇ t [min] data collection interval (sampling interval)
  • T i [min] integration time.
  • the method for setting the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 by the air flow control unit 3 will be described below.
  • the amount of decrease in ammonia nitrogen concentration due to nitrification is the product of nitrification rate and treatment time (residence time: HRT).
  • the nitrification rate is a function of the dissolved oxygen concentration (DO concentration) as shown in the following formula (3). When the dissolved oxygen concentration (DO concentration) is high, the nitrification rate increases.
  • the aerobic tank (reaction tank) 4-1 measured by the dissolved oxygen concentration meter (DO meter) 12-1 installed in the series 1 aerobic tank (reaction tank) 4-1.
  • the dissolved oxygen concentration (DO concentration) was measured by the flow meter 11-1 installed in the series 1 inflow piping 14-1 and the flow meter 11-2 installed in the series 2 inflow piping 14-2, respectively.
  • DO 2_set (t) [mg / L] aerobic tank in sequence 2 at time t the concentration of dissolved oxygen (reaction tank) in 4-2 (DO concentration) the target value
  • DO 1 (t) [mg / L] dissolved oxygen concentration (DO concentration) in series 1 aerobic tank (reaction tank) 4-1 at time t
  • Q in — i (t) [m 3 / min] series i aerobic tank at time t
  • the inflow flow rate (i 1 or 2) of sewage to be treated water into the (reaction tank)
  • ⁇ , m [ ⁇ ] coefficient.
  • the air volume control unit 3 sets the opening degree of the air volume valve 8-1 installed in the series 1 air diffuser 18-1 and the air volume valve 8-2 installed in the series 2 air diffuser 18-2 as follows. Control is performed based on the equations (4) to (6).
  • the opening degree of the air volume valve 8-1 is controlled so that the air volume to the series 1 approaches the set value of the target air volume to the series 1 set by the air volume control unit 3.
  • the opening degree of the air volume valve 8-2 is that the dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 is set in the series 2 aerobic tank (reaction tank). ) Control so that the dissolved oxygen concentration (DO concentration) in 4-2 approaches the target value.
  • QB 1 (t) [m 3 / min] To series 1 at time t Airflow measurement value
  • QB 1 — set (t) [m 3 / min] target airflow setting value for series 1 at time t
  • DO 2 (t) [mg / L] series 2 aerobic tank (reaction at time t) measured value of the dissolved oxygen concentration in the bath) in 4-2 (DO concentration)
  • DO 2_set (t) [ mg / L] aerobic tank in sequence 2 at time t (dissolved oxygen concentration in the reaction vessel) in 4-2 (DO concentration) the target value
  • ⁇ t [min] data collection interval (sampling interval)
  • K P_1 [min / m 3] proportional gain on the sequence 1
  • K P_2 [L / mg ] proportional gain in sequence 2
  • the dissolved oxygen in the aerobic tank (reaction tank) of the above other series based on the difference in the flow rate of sewage that is the treated water to the series where the water quality meter is installed and the other series where the water quality meter is not installed Set the density (DO density) target value.
  • FIG. 3 is a process flow diagram of the target air volume calculation unit 31 constituting the air volume control unit 3.
  • the measured value of the ammoniacal nitrogen concentration NH 4 (t) at time t, measured by the ammonia meter 10 installed in the aerobic tank (reaction tank) 4-1 of the series 1, is The data is taken into the measurement value acquisition unit 34 (FIG. 2) via the input I / F 36 and the internal bus 38.
  • the measurement value acquisition unit 34 transfers the measured value of the ammonia nitrogen concentration NH 4 (t) at the time t taken to the target air volume calculation unit 31 via the internal bus 38.
  • the target air volume calculation unit 31 acquires the measured value of the ammonia nitrogen concentration NH 4 (t) at the time t in the series 1 aerobic tank (reaction tank) 4-1 (step S11).
  • the target air volume calculation unit 31 accesses the storage unit 35 via the internal bus 38, and reads the ammonia nitrogen concentration target value NH 4tgt (series 1) stored in advance in the storage unit 35. .
  • the target air volume calculating unit 31 calculates the difference between the measured value of the ammonia nitrogen concentration NH 4 (t) at time t acquired in step S11 and the ammonia nitrogen concentration target value NH 4tgt read from the storage unit 35 in step S12. e (t) is calculated (step S13).
  • the difference e (t) can be obtained by executing the arithmetic expression (2) described above.
  • the expression (2) is stored in the storage unit 35 in advance, and the target air volume calculation unit 31 reads and executes the expression (2) that is the calculation expression.
  • equation (2) may be incorporated in advance as a program and stored in a ROM (not shown).
  • step S14 the target air volume calculating unit 31 calculates the target air volume to the series 1 aerobic tank (reaction tank) 4-1 based on the difference e (t) calculated in step S13, that is, the series 1 aeration pipe. 18-1 is calculated by calculating the above-mentioned equation (1).
  • Expression (1) may be stored in the storage unit 35 in advance, or Expression (1) may be incorporated as a program and stored in a ROM (not shown).
  • step S 15 the target air volume calculation unit 31 stores the calculated target air volume to the series 1 aerobic tank (reaction tank) 4-1 in a predetermined storage area of the storage unit 35 via the internal bus 38.
  • FIG. 4 is a process flow diagram of the DO concentration target value calculation unit 32 constituting the air volume control unit 3.
  • the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the (reaction tank) 4-1 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the series 1 aerobic tank (reaction tank) 4-1 at the time t taken via the internal bus 38. Transfer to the DO concentration target value calculator 32. Thereby, the DO concentration target value calculation unit 32 acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) at the time t in the series 1 aerobic tank (reaction tank) 4-1 (Step S1). S21).
  • step S22 the water to be treated that flows into the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the flow meter 11-1 installed in the series 1 inflow piping 14-1.
  • the measured value of the inflow flow rate Q in — 1 (t) of the sewage is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 1 (t) of sewage that is the treated water flowing into the series 1 aerobic tank (reaction tank) 4-1 at the time t taken in, to the internal bus 38. And transferred to the DO concentration target value calculation unit 32.
  • the DO concentration target value calculation unit 32 acquires a measured value of the inflow flow rate Q in — 1 (t) of sewage (treated water) to the series 1 at time t.
  • step S23 sewage that is treated water flowing into the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the flow meter 11-2 installed in the series 2 inflow piping 14-2.
  • the measured value of the inflow flow rate Q in — 2 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 2 (t) of the sewage that is the treated water flowing into the series 2 aerobic tank (reaction tank) 4-2 at the time t taken in the internal bus 38. And transferred to the DO concentration target value calculation unit 32. Thereby, the DO concentration target value calculation unit 32 acquires a measured value of the inflow flow rate Q in — 2 (t) of sewage (treated water) to the series 2 at time t. Note that steps S21 to S23 may be executed in parallel.
  • the DO concentration target value calculator 32 calculates the dissolved oxygen concentration (DO concentration) DO 1 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1 acquired in step S21. Measured value, measured value of inflow flow rate Q in — 1 (t) of sewage (treated water) to series 1 at time t acquired in step S22, and sewage to series 2 at time t acquired in step S23 ( Based on the measured value of the inflow flow rate Q in — 2 (t) of the water to be treated, a target value of dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2 of the series 2 is calculated.
  • the DO concentration target value calculation unit 32 calculates the dissolved oxygen concentration (DO concentration) target value in the series 2 aerobic tank (reaction tank) 4-2 by calculating the above equation (3).
  • Equation (3) may be stored in advance in the storage unit 35, or equation (3) may be incorporated as a program and stored in a ROM (not shown).
  • the DO concentration target value calculation unit 32 stores the calculated dissolved oxygen concentration (DO concentration) target value in the series 2 aerobic tank (reaction tank) 4-2 via the internal bus 38. Stored in a predetermined storage area.
  • the calculated dissolved oxygen concentration (DO concentration) target value in the aerobic tank (reaction tank) 4-2 of the series 2 is supplied to an air flow valve opening degree calculation unit described later via the internal bus 38.
  • FIG. 5 is a process flow diagram of the air volume valve opening calculation unit 33 constituting the air volume control unit 3.
  • the airflow valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38 and is stored in the storage unit 35 in the series 1 aerobic tank (reaction tank) 4-1.
  • the target air volume QB 1 — set (t) is read (step S31).
  • the target air volume QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 stored in the storage unit 35 is the target air volume calculated by the target air volume calculating unit 31 (see FIG. 3).
  • step S32 the air volume measurement value QB 1 (QB 1 ) to the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the air volume meter 13-1 installed in the series 1 air diffusion pipe 18-1. t), that is, the air volume measurement value at the time t flowing through the series 1 aeration pipe 18-1 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 sends the air volume measurement value QB 1 (t) to the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken into the air volume opening degree calculation unit 33 via the internal bus 38. Forward.
  • the air volume opening calculation unit 33 acquires the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t.
  • step S33 the air volume valve opening calculator 33 calculates the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t obtained in step S32, and step S31.
  • the difference e 1 (t) from the target air volume QB 1 — set (t) to the aerobic tank (reaction tank) 4-1 of the series 1 obtained in step ( 1 ) is calculated.
  • the difference e 1 (t) is calculated by the above-described equation (5) being executed by the air flow valve opening degree calculation unit 33.
  • step S34 the series 2 aerobic tank (reaction tank) at time t, measured by a dissolved oxygen concentration meter (DO meter) 12-2 installed in the series 2 aerobic tank (reaction tank) 4-2.
  • the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in 4-2 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank (reaction tank) 4-2 at the time t taken through the internal bus 38. Transfer to the air flow valve opening calculator 33. Thereby, the air quantity valve opening calculating unit 33 acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank at time t.
  • step S35 the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and stores in the series 2 aerobic tank (reaction tank) 4-2 at time t stored in the storage unit 35.
  • the dissolved oxygen concentration (DO concentration) target value DO 2 — set (t) is read out.
  • the dissolved oxygen concentration (DO concentration) target value DO 2_set (t) in the series 2 aerobic tank (reaction tank) 4-2 at time t, which is stored in the storage unit 35 is the DO concentration target described above. It is a dissolved oxygen concentration (DO concentration) target value (FIG. 4) calculated by the value calculation unit 32.
  • step S36 the air volume valve opening calculator 33 calculates the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank at time t acquired in step S34, and step S35.
  • the difference e 2 (t) from the dissolved oxygen concentration (DO concentration) target value DO 2 — set (t) in the series 2 aerobic tank (reaction tank) 4-2 at time t obtained in step (b) is calculated.
  • the difference e 2 (t) is calculated by the above-described equation (6) being executed by the air flow valve opening degree calculation unit 33.
  • step 37 the air volume valve opening calculator 33 calculates the opening degree measured value VO 1 (t) at the time t of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1, and the series 2 aeration pipe.
  • the opening measurement value VO 2 (t) at the time t of the air flow valve 8-2 installed in 18-2 is taken in via the input I / F 36, the measurement value acquisition unit 34, and the internal bus 38.
  • step S38 the opening degree measurement value VO 1 of Kazeryouben 8-1 series 1 taken at step S37 (t), opening the measurement value VO 2 of Kazeryouben 8-2 series 2 (t), step Based on the difference e 1 (t) obtained in S33 and the difference e 2 (t) obtained in step S36, the air flow valve opening calculator 33 opens the opening of the series 1 air flow valve 8-1. And the opening degree of the air volume valve 8-2 of the series 2 is calculated.
  • the opening degree of the series 1 air volume valve 8-1 and the opening degree of the series 2 air volume valve 8-2 are calculated by the above-described equation (4) being executed by the air volume valve opening degree calculation unit 33. .
  • step S39 the air volume valve opening calculator 33 uses the opening of the series 1 air volume valve 8-1 and the opening of the series 2 air volume valve 8-2 calculated in step S38 as command values, respectively. It outputs to the air volume valve 8-1 of the series 1 and the air volume valve 8-2 of the series 2 via the bus 38 and the output I / F 37.
  • a water quality meter for example, an ammonia meter
  • sewage that is treated water to series 1 where the water quality meter is installed and other series 2 where the water quality meter is not installed
  • the dissolved oxygen concentration (DO concentration) target value of the other series 2 is set.
  • An air volume valve 8-1 that adjusts the aeration air volume to the series 1 based on at least the difference between the set target value of the dissolved oxygen concentration (DO density) of the series 2 and the dissolved oxygen concentration (DO density) of the series 2;
  • DO density dissolved oxygen concentration
  • the water treatment apparatus 2 using the standard activated sludge method has been described as an example.
  • the present invention is not limited to this, and an aerobic tank such as an anaerobic aerobic activated sludge method or a circulating nitrification denitrification method is used. Any other processing method can be applied in the same manner.
  • an ammonia meter as a water quality meter and a dissolved oxygen concentration meter (DO meter) are installed in an aerobic tank (reaction tank), and a dissolved oxygen concentration meter ( (DO meter) only in the aerobic tank (reaction tank) and the two lines with the line 2 are targeted, but even in the water treatment apparatus having three lines or more, if the treatment method in each line is the same Can be applied as well.
  • the flow meter 11-1 is installed in the series 1 inflow piping 14-1 and the flow meter 11-2 is installed in the series 2 inflow piping 14-2. It is not necessary to install a flow meter for each series. For example, one flow meter is installed upstream from a branch point for each series (a branch point branching from the inflow pipe 14 to each series), and an inflow flow rate of sewage that is treated water flowing into the inflow pipe 14 is measured. The flow rate of each series may be calculated based on a preset distribution ratio.
  • the component that estimates the flow rate of each series is referred to as a flow rate control unit.
  • the flow meter can be replaced with a flow rate estimation unit.
  • the air flow to the series 1 and the series 2 is controlled by the air volume valve 8-1 and the air volume valve 8-2, respectively.
  • the blower 7 capable of air volume control such as inlet vane control
  • the blower is also combined. 7 may be controlled, and when the blower 7 is installed for each series, the air quantity to the series 1 and the series 2 may be controlled only by the blower 7.
  • the case where the ammonia meter 10 is used as the water quality meter is assumed assuming application to nitrification control.
  • the present invention is also applicable to a system that performs control related to organic matter removal, nitrogen removal, or phosphorus removal. Is possible.
  • nitrate nitrogen concentration, total nitrogen concentration, phosphoric acid phosphorus concentration, total phosphorus concentration, BOD (Biochemical Oxygen Demand), COD Mn (oxygen demand by potassium permanganate), COD Cr (nichrome) A measuring instrument that measures the organic substance concentration such as oxygen demand by potassium acid) or TOC (Total Organic Carbon) may be used.
  • the ammonia meter 10 is installed in the series 1 aerobic tank (reaction tank) 4-1, and the target air volume for the series 1 is set in a feedback manner.
  • an ammonia meter 10 is installed upstream of a series 1 aerobic tank (reaction tank) 4-1, and the ammonia nitrogen concentration of the sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1. It is good also as a structure which measures and sets the target air volume to the series 1 in feedforward based on the measured ammoniacal nitrogen concentration.
  • the ammonia meter 10 may be installed downstream of the aerobic tank (reaction tank) 4-1.
  • the target air volume for the series 1 is set based on the measured value of the ammonia nitrogen concentration measured by the ammonia meter 10, but the present invention is not limited to this.
  • the target value of dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 is set, and the dissolved The air volume is controlled based on the difference between the target value of oxygen concentration (DO concentration) and the measured value of the dissolved oxygen concentration meter (DO meter) 12-1 installed in the aerobic tank (reaction tank) 4-1. good.
  • the dissolved oxygen concentration (DO concentration) target value in the series 2 aerobic tank (reaction tank) 4-2 and the series 2 aerobic tank (reaction tank) 4-2 are installed.
  • the present invention is not limited to this.
  • an anemometer is installed in the series 2 aeration pipe 18-2, and a series 2 aerobic tank (reaction tank) 4- 2 based on the difference between the target air volume set so as to satisfy the target value of dissolved oxygen concentration (DO concentration) in 2 and the air volume measured by the anemometer installed in the series 2 aeration pipe 18-2.
  • You may comprise so that the opening degree of may be controlled.
  • the DO concentration target calculation unit 32 performs the dissolved oxygen concentration (DO concentration) DO 1 in the series 1 aerobic tank (reaction tank) 4-1 at time t. With respect to the measured value of (t), the measured value of the sewage (treated water) inflow rate Q in — 1 (t) to series 1 at time t and the inflow rate Q of sewage (treated water) to series 2 at time t. Target of dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2 of series 2 by multiplying the function related to the inflow rate ratio by the measured value of in_2 (t) (the above-mentioned formula (3)) Although the configuration is such that the value is calculated and set, the present invention is not limited to this.
  • Other functions relating to the value may be used, for example, the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) to the series 1 at the time t and the sewage (treated) to the series 2 at the time t.
  • the sewage (treated water) to the series 1 at the time t with respect to the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the series 1 aerobic tank (reaction tank) 4-1 at the time t.
  • the target value of dissolved oxygen concentration (DO concentration) in the tank (reaction tank) 4-2 may be calculated and set.
  • the dissolved oxygen concentration in the series 2 aerobic tank (reaction tank) 4-2 is calculated by the arithmetic expression shown in the following formula (8).
  • DO concentration A target value may be calculated and set.
  • ⁇ [mg ⁇ N / L / h] nitrification rate
  • DO [mg / L] DO concentration
  • ⁇ , K [ ⁇ ] coefficient.
  • DO 2_set (t) [mg / L] aerobic tank in sequence 2 at time t the concentration of dissolved oxygen (reaction tank) in 4-2 (DO concentration) the target value
  • DO 1 (t) [mg / L] DO concentration in series 1 aerobic tank (reaction tank) 4-1 at time t
  • the measured value of the inflow flow rate Q in — 2 (t) of water) is used to calculate and set the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2.
  • a flow meter is installed in the series 1 return sludge pipe 17-1 and the series 2 return sludge pipe 17-2, and the sewage to the series 1 at the time t as shown in the following equation (9)
  • the sum of the measured value of the inflow flow rate Q in — 1 (t) of the water) and the flow rate of the return sludge flowing through the series 1 return sludge pipe 17-1, and the sewage (treated water) to the series 2 at time t flows through the measured value and sequence 2 return sludge pipe 17-2 inlet flow Q in_2 (t)
  • the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 may be calculated and set.
  • the activated sludge mixed liquid such as a circulation nitrification denitrification method
  • the circulation flow rate may be added to the flow rate term.
  • the measured value of the inflow flow rate Q in — 2 (t) of the treated water that is, the instantaneous value of the inflow rate of the sewage (treated water) flowing into the series 1 and the series 2, and the aerobic tank of the series 2 (reaction tank)
  • the 4-2 dissolved oxygen concentration (DO concentration) target value is calculated and set, the average value of the inflow flow rate of sewage (treated water) for an arbitrary period may be used instead. .
  • the measured value of the inflow flow rate of sewage (treated water) flowing into each series the flow rate of return sludge flowing through the return sludge piping of each series
  • an average value of an arbitrary period may be used for the measured value of MLSS and the measured value of the MLSS concentration in the aerobic tank (reaction tank) of each series.
  • the setting of the aeration air volume in the other multiple series is corrected based on the inflow rate of the treated water to each series based on the DO concentration in the representative series where the water quality meter is installed.
  • the water quality meter and the series in which the water quality meter is installed By setting the target value of dissolved oxygen concentration (DO concentration) for the other series based on the difference in the inflow flow rate of sewage, which is the treated water to other series where no meter is installed, the treatment amount and aeration are set according to the series. It is possible to suppress the air volume from becoming insufficient or excessive, and to secure a desired treated water quality stably.
  • DO concentration dissolved oxygen concentration
  • FIG. 6 shows a schematic overall configuration diagram of a water treatment system of Example 2 according to another embodiment of the present invention
  • FIG. 7 shows a functional block diagram of the air volume control unit shown in FIG.
  • the air flow control unit 3a are the target in the first embodiment.
  • the first embodiment differs from the first embodiment in that it includes a first target air volume calculation unit 31a and a second target calculation unit 31b.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description overlapping with that in the first embodiment is omitted below.
  • the water treatment apparatus 2 of the present embodiment is a series 2 sprayer that connects a diffuser 6-2 and a blower 7 provided in an aerobic tank (reaction tank) 4-2 in the series 2, respectively.
  • An air flow meter 13-2 installed in the air pipe 18-2 is provided.
  • an air volume valve 8-2 is installed in the series 2 air diffusion pipe 18-2, and the air flow meter 13-2 is installed on the air volume valve 8-2 side of the series 2 air diffusion pipe 18-2.
  • the flow rate of the air flowing from the blower 7 through the air flow valve 8-2 through the system 2 aeration pipe 18-2 measured by the air flow meter 13-2, that is, the air flow measurement value to the system 2 is a signal. It is output to the air volume control unit 3a via the line. About others, it is the same as that of the water treatment apparatus 2 of Example 1.
  • the air volume control unit 3a of the present embodiment includes a first target air volume calculating unit 31a, a second target air volume calculating unit 31b, an air volume valve opening calculating unit 33, a measurement value acquiring unit 34, and at least details later.
  • a storage unit 35 for storing various arithmetic expressions, an input I / F 36 and an output I / F 37 are connected to each other via an internal bus 38.
  • a first target air volume calculator 31a that calculates the target air volume of air that flows through the series 1 air diffuser 18-1 and is supplied from the air diffuser 6-1 to the aerobic tank (reaction tank) 4-1 of the system 1;
  • a second target air volume calculation unit 31b that calculates a target air volume of air that flows through the series 2 air distribution pipe 18-2 and is supplied from the air diffusion unit 6-2 to the aerobic tank (reaction tank) 4-2 of the system 2;
  • An air flow valve opening calculation unit 33 for calculating an opening command value for the air flow valve 8-2 installed in the series 2 aeration pipe 18-2 connected to the unit 6-2 is, for example, a CPU or the like (not shown).
  • a storage device such as a processor, a ROM for storing various programs, a RAM for temporarily storing calculation process data, and an external storage device Together they are realized by reading and executing the various programs by the processor such as a CPU is stored in the ROM, and stores the calculation result as an execution result RAM or the external storage device. Note that the calculation result or calculation process data may be stored in the storage unit 35 instead of the RAM.
  • the input I / F 36 includes a measured value of ammonia nitrogen concentration measured by an ammonia meter 10 installed in a series 1 aerobic tank (reaction tank) 4-1, a flow meter (series 1). ) Measured value of the inflow flow rate of sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1 measured by 11-1, an aerobic tank measured by the flow meter (series 2) 11-2 (Reaction tank) Measured value of the inflow flow rate of sewage to be treated into 4-2, dissolved oxygen concentration meter (DO meter) 12- installed in the aerobic tank (reaction tank) 4-1 of series 1 Measured value of dissolved oxygen concentration (DO concentration) measured by 1 and dissolved oxygen concentration meter (DO meter) 12-2 installed in aerobic tank (reaction tank) 4-2 of series 2 Measured value of dissolved oxygen concentration (DO concentration) measured by concentration (DO meter) and series 1 aeration The air volume meter 13-1 installed at 18-1 entering the air volume measurement value measured.
  • the output I / F 37 outputs the opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1, and the air flow valve 8 installed in the system 2 air distribution pipe 18-2. Output the opening command value to -2.
  • the details of the first target air volume calculator 31a, the second target air volume calculator 31b, the air volume valve opening calculator 33, and the measured value acquisition unit 34 will be described later.
  • the air volume control unit 3a obtains the target air volume to the series 1 based on the measured value of the ammonia nitrogen concentration in the series 1 aerobic tank (reaction tank) 4-1 measured by the ammonia meter 10 as a water quality meter. Set.
  • the setting method follows the above formulas (1) and (2).
  • the air volume control unit 3a first determines the dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 according to the following formulas (11) and (12).
  • the target air volume for series 2 is calculated so as to be the same as that of one aerobic tank (reaction tank) 4-1.
  • the target air volume after correction to the series 2 is obtained and set by multiplying the coefficient for correcting the difference from the inflow rate of sewage (treated water).
  • the target air volume setting formula after correction to series 2 is shown in formula (13).
  • QB 2 — DO (t) [m 3 / min]: dissolved oxygen in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 at time t Target air volume to series 2 with similar concentrations (DO concentrations), QB 2 — set (t) [m 3 / min]: Target air volume set value to series 2 at time t, DOi (t) [mg / L ]: Measurement value (i 1 or 2) of dissolved oxygen concentration (DO concentration) in aerobic tank (reaction tank) 4-i of series i at time t, ⁇ t [min]: data collection interval, K P [ m 3 (gas) ⁇ m 3 (water) / (g ⁇ min)]: proportional gain, T i [min]: integration time.
  • the air volume control unit 3a determines the opening degree of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1 and the air volume valve 8-2 installed in the series 2 aeration pipe 18-2. It controls based on Formula (4) and Formula (5).
  • the opening degree of the air volume valve 8-1 is controlled so that the air volume to the series 1 approaches the set value of the target air volume to the series 1 set by the air volume control unit 3a.
  • the opening degree of the air volume valve 8-2 is controlled so that the air volume to the series 2 approaches the set value of the target air volume to the series 2 set by the air volume control unit 3a.
  • the air volume control based on the measured value of the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) of the series executing the air volume control using the water quality meter (for example, the ammonia meter).
  • the water quality meter for example, the ammonia meter. Compensate for the flow rate to the other series where the calculated water quality meter is not installed based on the difference in the inflow rate of the sewage that is the treated water to the series where the water quality meter is installed and the other series where the water quality meter is not installed Therefore, it is possible to realize appropriate air volume control to other systems where no water quality meter is installed.
  • FIG. 8 is a process flow diagram of the first target air volume calculation unit 31a constituting the air volume control unit 3a.
  • the processing flow of the first target air volume calculating unit 31a is the same as the processing flow of the target air volume calculating unit 31 in the first embodiment.
  • step S11 the ammoniacal nitrogen concentration NH 4 (t) at time t, measured by the ammonia meter 10 installed in the series 1 aerobic tank (reaction tank) 4-1, was measured.
  • the measurement value is taken into the measurement value acquisition unit 34 (FIG. 7) via the input I / F 36 and the internal bus 38.
  • the measurement value acquisition unit 34 transfers the measured value of the ammonia nitrogen concentration NH 4 (t) at the time t taken to the target air volume calculation unit 31 via the internal bus 38.
  • the first target air volume calculating unit 31a acquires the measured value of the ammonia nitrogen concentration NH 4 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1.
  • the first target air volume calculation unit 31a accesses the storage unit 35 via the internal bus 38, and is stored in advance in the storage unit 35 as an ammoniacal nitrogen concentration target value NH 4tgt (series 1). Is read.
  • the first target air volume calculating unit 31a obtains the measured value of the ammonia nitrogen concentration NH 4 (t) at time t acquired in step S11 and the ammonia nitrogen concentration target value NH 4tgt read from the storage unit 35 in step S12.
  • Difference e (t) is calculated (step S13).
  • the difference e (t) can be obtained by executing the arithmetic expression (2) described above.
  • the expression (2) is stored in the storage unit 35 in advance, and the target air volume calculation unit 31 reads and executes the expression (2) that is the calculation expression.
  • equation (2) may be incorporated in advance as a program and stored in a ROM (not shown).
  • the first target air volume calculation unit 31a based on the difference e (t) calculated in step S13, sets the target air volume to the series 1 aerobic tank (reaction tank) 4-1, that is, the series 1 dispersion.
  • the target value of the air volume to be passed through the air pipe 18-1 is calculated by calculating the above equation (1).
  • Expression (1) may be stored in the storage unit 35 in advance, or Expression (1) may be incorporated as a program and stored in a ROM (not shown).
  • the first target air volume calculation unit 31a stores the calculated target air volume to the series 1 aerobic tank (reaction tank) 4-1 in a predetermined storage area of the storage unit 35 via the internal bus 38. To do.
  • the calculated target air volume to the aerobic tank (reaction tank) 4-1 of the series 1 may be transferred to the air volume valve opening calculation unit 33 described later via the internal bus 38. good.
  • FIG. 9 is a process flow diagram of the second target air volume calculation unit 31b constituting the air volume control unit 3a. As shown in FIG.
  • the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the (reaction tank) 4-1 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the series 1 aerobic tank (reaction tank) 4-1 at the time t taken via the internal bus 38. It transfers to the 2nd target air volume calculating part 31b.
  • the second target air volume calculation unit 31b acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1 (step S1). S41).
  • step S42 a series 2 aerobic tank at time t measured by a dissolved oxygen concentration meter (DO meter) 12-2 installed in the series 2 aerobic tank (reaction tank) 4-2.
  • the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the (reaction tank) 4-2 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank (reaction tank) 4-2 at the time t taken through the internal bus 38. It transfers to the 2nd target air volume calculating part 31b.
  • the second target air volume calculating unit 31b acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) at time t in the series 2 aerobic tank (reaction tank) 4-2.
  • the second target air volume calculation unit 31b obtains the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank (reaction tank) 4-2 at time t acquired in step 42.
  • the difference e () between the measured value of dissolved oxygen concentration (DO concentration) DO 1 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1 acquired in step S41. t) is calculated.
  • the difference e (t) is calculated by the second target air volume calculation unit 31b executing the above-described equation (12).
  • the second target air volume calculation unit 31b accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35 in advance, the series 2 aerobic tank (reaction tank) 4-2 at time t.
  • the target air volume setting value QB 2 — set (t) is read (step S44).
  • the second target air volume calculation unit 31b calculates the difference e (t) calculated in step S43 and the series 2 aerobic tank (reaction tank) at time t read from the storage unit 35 in step S44.
  • a target air volume QB 2_DO (t) for series 2 is calculated so that the oxygen concentration (DO concentration) is the same.
  • the target air volume QB 2_DO (t) is calculated when the second target air volume calculating unit 31b executes the above-described equation (11).
  • the sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1 at time t measured by the flow meter 11-1 installed in the series 1 inflow pipe 14-1.
  • the measured value of the inflow flow rate Q in — 1 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken, Is transferred to the second target air volume calculation unit 31b.
  • the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_1 (t) of the sewage (treated water) to the series 1 in the time t (step S46).
  • step S47 sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the flow meter 11-2 installed in the series 2 inflow pipe 14-2.
  • the measured value of the inflow flow rate Q in — 2 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 2 (t) of the sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at the time t taken in the internal bus Is transferred to the second target air volume calculation unit 31b. Thereby, the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_2 (t) of the sewage (treated water) to the series 2 in the time t.
  • step S48 the second target air volume calculating unit 31b performs the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 at the time t calculated in step S45.
  • Target air volume QB 2_DO (t) to series 2 such that the dissolved oxygen concentration (DO concentration) in the inside becomes the same
  • the inflow flow rate of sewage (treated water) to series 1 at time t acquired in step S46 Based on the measured value of Q in — 1 (t) and the measured value of the inflow flow rate Q in — 2 (t) of sewage (treated water) to the series 2 at time t acquired in step S47, the aerobic tank of series 2 (Reaction tank) Calculate the target air volume (after correction) to 4-2.
  • the target air volume (after correction) to the series 2 aerobic tank (reaction tank) 4-2 is calculated by the second target air volume calculating unit 31b executing the above-described equation (13).
  • the target air volume for series 2 calculated in step S45 is corrected based on the difference in the inflow flow rate of sewage (treated water) flowing into series 1 and series 2, and the corrected value becomes series 2. Obtained as the target air volume (after correction).
  • the second target air volume calculation unit 31b stores the calculated target air volume to the aerobic tank (reaction tank) 4-2 in the series 2 in the storage unit 35 via the internal bus 38. Store in the area.
  • FIG. 10 is a process flow diagram of the air flow valve opening calculation unit 33 constituting the air flow control unit 3a. As shown in FIG. 10, the air flow valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, a series 1 aerobic tank (reaction tank) at time t. The target air volume QB 1_set (t) to 4-1 is read (step S51).
  • the target air volume QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t stored in the storage unit 35 is calculated by the first target air volume calculating unit 31a.
  • the target air volume (FIG. 8).
  • the air volume measurement value QB 1 (indicated in the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the air volume meter 13-1 installed in the series 1 aeration pipe 18-1. t) that is, the air volume measurement value at the time t flowing through the series 1 aeration pipe 18-1 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 sends the air volume measurement value QB 1 (t) to the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken into the air volume opening degree calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t.
  • step S53 the air volume valve opening calculator 33 calculates the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t obtained in step S52, and step S51.
  • the difference e 1 (t) from the target air volume QB 1 — set (t) to the aerobic tank (reaction tank) 4-1 of the series 1 obtained in step ( 1 ) is calculated.
  • the difference e 1 (t) is calculated by the above-described equation (5) being executed by the air flow valve opening degree calculation unit 33.
  • step S54 the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35.
  • the series 2 aerobic tank (reaction tank) 4-2 at time t is stored.
  • the target air volume QB 2 — set (t) is read out. Where it is stored in the storage unit 35, aerobic tank sequence 2 at time t target airflow QB 2_Set to (reaction tank) 4-2 (t) is calculated by the second target air amount calculation unit 31b of the above The corrected target air volume (FIG. 9).
  • step S55 the air flow measurement value QB 2 (measured by the air flow meter 13-2 installed in the system 2 aeration pipe 18-2 to the system 2 aerobic tank (reaction tank) 4-2 at time t ( t), that is, the air volume measurement value at the time t flowing through the series 2 aeration pipe 18-2 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measurement value acquisition unit 34 sends the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at the time t taken to the air volume opening calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t.
  • step S56 the air volume valve opening calculator 33 calculates the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t acquired in step S55, and step S54.
  • the difference e 1 ′ (t) from the target air volume QB 2 — set (t) to the aerobic tank (reaction tank) 4-2 in the series 2 at time t obtained in (5) is calculated.
  • the difference e 1 ′ (t) is obtained by replacing QB 1 (t) with QB 2 (t) and QB 1_set (t) with QB 2_set (t) in the above equation (5), and the air flow valve opening degree. It is calculated by the calculation unit 33 executing.
  • step S57 the air volume valve opening calculator 33 calculates the opening degree measured value VO 1 (t) at the time t of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1, and the series 2 aeration pipe.
  • the opening measurement value VO 2 (t) at the time t of the air flow valve 8-2 installed in 18-2 is taken in via the input I / F 36, the measurement value acquisition unit 34, and the internal bus 38.
  • step S58 the opening degree measurement value VO 1 of Kazeryouben 8-1 series 1 taken at step S57 (t), opening the measurement value VO 2 of Kazeryouben 8-2 series 2 (t), step Based on the difference e 1 (t) obtained in S53 and the difference e 1 ′ (t) obtained in step S56, the air volume valve opening calculator 33 opens the series 1 air volume valves 8-1. And the opening degree of the air volume valve 8-2 of the series 2 are calculated.
  • the opening degree of the series 1 air volume valve 8-1 and the opening degree of the series 2 air volume valve 8-2 are changed by replacing e 2 (t) with e 1 ′ (t) in the above equation (4). It is calculated by the air volume valve opening calculation unit 33 executing.
  • step S59 the air volume valve opening calculator 33 uses the opening of the series 1 air volume valve 8-1 and the opening of the series 2 air volume valve 8-2 calculated in step S58 as command values, respectively.
  • the air is output to the series 1 air volume valve 8-1 and the series 2 air volume valve 8-2 via the bus 38 and the output I / F 37.
  • a water quality meter (for example, an ammonia meter) is operated by operating the first target air volume calculating unit 31a, the second target air volume calculating unit 31b, and the air volume valve opening degree calculating unit 33 that constitute the air volume control unit 3a.
  • the target air volume to the other series 2 where no water quality meter is installed is calculated.
  • the target air volume for the corrected series 2 is obtained.
  • the opening degree of the air volume valve 8-1 for adjusting the aeration air volume for series 1 and the air volume valve 8-2 for adjusting the aeration air volume for series 2 is controlled.
  • the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 and in the series 2 aerobic tank (reaction tank) 4-2 is equal.
  • the target air volume to is calculated using Expression (11)
  • the present invention is not limited to this.
  • the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 is multiplied by or added with a correction coefficient, and the series 2 aerobic tank (reaction tank).
  • a configuration may be adopted in which the target air volume for series 2 is calculated so that the dissolved oxygen concentration (DO concentration) in 4-2 becomes equal.
  • the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 is equal.
  • the flow rate of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 and the aerobic tank (reaction tank) 4-2 of the series 2 with respect to the target air volume to The target air volume to the corrected series 2 is obtained and set by multiplying the function related to the flow rate ratio of the inflow flow rate of sewage (treated water), but is not limited thereto.
  • the flow rate of sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 and the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-2 of the series 2 Other functions related to the inflow rate may be used.
  • the inflow rate of sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1, and the series 2 aerobic tank (reaction tank) 4 -2 may be multiplied by a function related to the difference in the inflow rate of the sewage (treated water) flowing into -2.
  • the target air volume to the series 2 such that the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 becomes equal.
  • the flow rate of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 and the sewage (treated) that flows into the aerobic tank (reaction tank) 4-2 of the series 2 may be obtained and set by adding a function related to the inflow flow rate of water.
  • the target air volume to the corrected series 2 was obtained and set using the inflow flow rate of sewage (treated water) flowing into 4-2, but the return sludge flow rate and / or the circulating flow rate of the activated sludge mixed liquid was set.
  • the flow rate of sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1, respectively, and the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-2 of the series 2 May be added to the inflow flow rate.
  • each series is corrected by correcting the setting of the aeration air volume in other series based on the DO concentration in the representative series where the water quality meter is installed based on the inflow flow rate of the water to be treated to each series. Therefore, it is possible to realize a water treatment system that can optimally control the amount of a water to be treated or the amount of aeration air. Furthermore, specifically, based on the measured value of the dissolved oxygen concentration (DO concentration) of the series in which the air volume control using a water quality meter (for example, an ammonia meter) is executed, the flow to other series where the water quality meter is not installed. Calculate the target air volume.
  • DO concentration dissolved oxygen concentration
  • FIG. 11 shows a process flow diagram of the second target air volume calculation unit constituting the air volume control unit of the third embodiment according to another embodiment of the present invention
  • FIG. 12 shows the air volume control unit of the third embodiment.
  • the processing flow figure of an airflow valve opening calculating part is shown.
  • the structure of the water treatment apparatus which concerns on a present Example is the same as the structure of FIG. 6 shown in the above-mentioned Example 2.
  • FIG. Moreover, the structure of the air volume control part of a present Example is the same as the functional block diagram of FIG. 7 shown in the above-mentioned Example 2.
  • FIG. 11 shows a process flow diagram of the second target air volume calculation unit constituting the air volume control unit of the third embodiment according to another embodiment of the present invention
  • FIG. 12 shows the air volume control unit of the third embodiment.
  • the processing flow figure of an airflow valve opening calculating part is shown.
  • the structure of the water treatment apparatus which concerns on a present Example is the same as the structure of FIG. 6 shown in the above-ment
  • the target air volume to the series 2 is obtained based on the target air volume to the series 1 shown in the first embodiment or the second embodiment.
  • the embodiment is configured such that the target air volume for the series 2 thus obtained is compared with the corrected target air volume for the series 2, and any one of the target air volumes that are large is used as the target air volume for the series 2. 1 and different from Example 2.
  • the description which overlaps with Example 1 or Example 2 is abbreviate
  • the air volume control unit 3a (FIG. 7) performs the aerobic tank (reaction tank) 4 of the series 2 based on the target air volume to the aerobic tank (reaction tank) 4-1 of the series 1 shown in FIG.
  • the target air volume to -2 is also calculated.
  • the amount of air necessary for water treatment is affected by the inflow rate of sewage to be treated and the performance of the diffuser. Therefore, in order to make the processing performance similar to that of the system 1 in the system 2, it is desirable to correct the difference in the flow rate of the sewage (treated water) and the performance of the air diffuser and set the target air volume.
  • Formula (14) shows a target air volume setting formula for series 2 based on the target air volume for series 1. *
  • Q in — i (t ) [M 3 / min]: Inflow flow rate of sewage to the aerobic tank (reaction tank) of series i at time t (i 1 or 2)
  • ⁇ [ ⁇ ] related to air diffusion efficiency Coefficient
  • the air volume control unit 3a corrects the target air volume to the series 2 based on the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-1 of the series 1 in the above equation (13), That is, the target air volume (after correction) to the series 2 aerobic tank (reaction tank) 4-2 obtained in step 48 of FIG. 9 and the series 1 aerobic tank (reaction tank) in equation (14). Compare the target air volume (air volume calculation value) to the aerobic tank (reaction tank) 4-2 in the series 2 based on the target air volume to the 4-1 and select a larger target air volume as the target air volume to the series 2 Set.
  • DO concentration dissolved oxygen concentration
  • the air volume control unit 3a determines the opening degree of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1 and the air volume valve 8-2 installed in the series 2 aeration pipe 18-2. It controls based on Formula (4) and Formula (5).
  • the opening degree of the air volume valve 8-1 is controlled so that the air volume to the series 1 approaches the set value of the target air volume to the series 1 set by the air volume control unit 3a.
  • the opening degree of the air volume valve 8-2 is controlled so that the air volume to the series 2 approaches the set value of the target air volume to the series 2 set by the air volume control unit 3a.
  • the method based on the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) of the series that performs air volume control using a water quality meter (for example, an ammonia meter),
  • DO concentration dissolved oxygen concentration
  • the target air volume is calculated for the other series where the water quality meter is not installed by the two methods based on the target air volume for the aerobic tank (reaction tank) where the water quality meter is installed.
  • FIG. 11 is a process flow diagram of the second target air volume calculation unit 31b constituting the air volume control unit 3a. As shown in FIG.
  • the second target air volume calculation unit 31 b accesses the storage unit 35 via the internal bus 38 and is stored in the storage unit 35, the series 1 aerobic tank (reaction tank) at time t.
  • the target air volume setting value QB 1 — set (t) to 4-1 is read (step S61).
  • the sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1 at time t measured by the flow meter 11-1 installed in the series 1 inflow pipe 14-1.
  • the measured value of the inflow flow rate Q in — 1 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken, Is transferred to the second target air volume calculation unit 31b. Thereby, the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_1 (t) of the sewage (treated water) to the series 1 in the time t (step S62).
  • step S63 sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the flow meter 11-2 installed in the series 2 inflow pipe 14-2.
  • the measured value of the inflow flow rate Q in — 2 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 2 (t) of the sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at the time t taken in the internal bus Is transferred to the second target air volume calculation unit 31b.
  • the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_2 (t) of the sewage (treated water) to the series 2 in the time t.
  • step S64 the second target air volume calculation unit 31b sets the target air volume setting value QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t acquired in step S61, step S62.
  • the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) to the series 1 at time t acquired at time t and the sewage (treated) to the series 2 at time t obtained in step S63 Based on the measured value of the inflow flow rate Q in — 2 (t) of water, the target air volume QB 2 — air (t) to the series 2 aerobic tank (reaction tank) 4-2 is calculated.
  • the target air volume QB 2_air (t) to the series 2 aerobic tank (reaction tank) 4-2 is calculated by the second target air volume calculating unit 31b executing the above-described equation (14).
  • the second target air volume calculation unit 31b sends the calculated target air volume (air volume calculation value) QB 2_air (t) to the aerobic tank (reaction tank) 4-2 of the series 2 via the internal bus 38.
  • the data is stored in a predetermined storage area of the storage unit 35.
  • the calculated target air volume (air volume calculation value) QB 2 — air (t) to the aerobic tank (reaction tank) 4-2 of the series 2 is opened via the internal bus 38 to be described later. It is good also as a structure transferred to the degree calculating part 33.
  • FIG. 12 is a process flow diagram of the air flow valve opening calculation unit 33 constituting the air flow control unit 3a. As shown in FIG. 12, the air flow valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, the series 1 aerobic tank (reaction tank) at time t.
  • the target air volume QB 1_set (t) to 4-1 is read (step S71).
  • the target air volume QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t stored in the storage unit 35 is calculated by the first target air volume calculating unit 31a.
  • the target air volume (FIG. 8).
  • the measured value acquisition unit 34 sends the air volume measurement value QB 1 (t) to the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken into the air volume opening degree calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t.
  • step S73 the air volume valve opening calculator 33 calculates the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t obtained in step S72, and step S71.
  • the difference e 1 (t) from the target air volume QB 1 — set (t) to the aerobic tank (reaction tank) 4-1 of the series 1 obtained in step ( 1 ) is calculated.
  • the difference e 1 (t) is calculated by the above-described equation (5) being executed by the air flow valve opening degree calculation unit 33.
  • step S74 the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, the series 2 aerobic tank (reaction tank) 4-2 at time t.
  • the target air volume QB 2_set (t) after correction to is read.
  • the corrected target air volume QB 2_set (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t stored in the storage unit 35 is the above-described second target air volume calculating unit 31b. Is the corrected target air volume (FIG. 9).
  • the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, the series 2 aerobic tank (reaction tank) 4-2 at time t.
  • the target air volume (air volume calculation value) QB 2 — air (t) is read.
  • the target air volume (air volume calculation value) QB 2_air (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t stored in the storage unit 35 is the second target air volume calculation described above.
  • the part 31b is the calculated target air volume (air volume calculation value) (FIG. 11).
  • the air volume valve opening calculator 33 calculates the corrected target air volume QB 2_set (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t read in step S74.
  • the target air volume (air volume calculation value) QB 2 — air (t) to the aerobic tank (reaction tank) 4-2 in the series 2 at time t read in step S75 is compared. As a result of the comparison, one of the corrected target air volume QB 2 — set (t) and target air volume (air volume calculation value) QB 2 — air (t) that has a larger air volume is selected.
  • step S77 the air flow measurement value QB 2 (to the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the air flow meter 13-2 installed in the series 2 aeration pipe 18-2 ( t), that is, the air volume measurement value at the time t flowing through the series 2 aeration pipe 18-2 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38.
  • the measurement value acquisition unit 34 sends the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at the time t taken to the air volume opening calculation unit 33 via the internal bus 38. Forward.
  • the air volume opening calculation unit 33 acquires the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t.
  • step S78 the air volume valve opening calculator 33 calculates the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t acquired in step S77, and step S76.
  • the difference e 1 ′ (t) between the target air volume QB 2 — set (t) after correction to the series 2 selected in step 1 or the target air volume (air volume calculation value) QB 2 — air (t) to the series 2 is calculated.
  • the difference e 1 ′ (t) is equal to QB 1 (t) in QB 2 (t) and QB 1_set (t) in QB 2_set (t) or QB 2_air (t) in the above equation (5). It is calculated by the replacement and the air volume valve opening calculation unit 33 executing.
  • step S79 the air volume valve opening calculator 33 calculates the opening degree measured value VO 1 (t) at the time t of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1, and the series 2 aeration pipe.
  • the opening measurement value VO 2 (t) at the time t of the air flow valve 8-2 installed in 18-2 is taken in via the input I / F 36, the measurement value acquisition unit 34, and the internal bus 38.
  • step S80 the opening degree measurement value VO 1 of Kazeryouben 8-1 series 1 taken at step S79 (t), opening the measurement value VO 2 of Kazeryouben 8-2 series 2 (t), step Based on the difference e 1 (t) obtained in S73 and the difference e 1 ′ (t) obtained in step S78, the air flow valve opening calculation unit 33 opens the air flow valve 8-1 in the series 1. And the opening degree of the air volume valve 8-2 of the series 2 are calculated.
  • the opening degree of the series 1 air volume valve 8-1 and the opening degree of the series 2 air volume valve 8-2 are changed by replacing e 2 (t) with e 1 ′ (t) in the above equation (4). It is calculated by the air volume valve opening calculation unit 33 executing.
  • step S81 the air volume valve opening calculator 33 uses the opening of the series 1 air volume valve 8-1 and the opening of the series 2 air volume valve 8-2 calculated in step S80 as command values, respectively.
  • the air is output to the series 1 air volume valve 8-1 and the series 2 air volume valve 8-2 via the bus 38 and the output I / F 37.
  • a water quality meter (for example, an ammonia meter) is operated by operating the first target air volume calculating unit 31a, the second target air volume calculating unit 31b, and the air volume valve opening degree calculating unit 33 that constitute the air volume control unit 3a.
  • a method based on the measured value of the dissolved oxygen concentration (DO concentration) of the series 1 executing the air volume control used, and a method based on the target air volume to the aerobic tank (reaction tank) of the series 1 where the water quality meter is installed Using the two methods, the target air volume for the other series 2 where the water quality meter is not installed is obtained, and among the obtained target air volumes for the other series 2, the target air volume on the safer side is determined from the viewpoint of processing performance. By selecting, the quality of treated water can be kept good.
  • the target for the series 2 in consideration of the difference in the inflow flow rate and aeration efficiency into the sewage (treated water) aerobic tank (reaction tank) for each series, the target for the series 2
  • the air volume is set, it is not necessarily limited to this.
  • an aeration liquid suspension concentration meter (MLSS meter) as a microbial concentration meter is installed in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2.
  • the target air volume for series 2 may be set by a setting formula that takes into account the difference in MLSS concentration.
  • the coefficient related to the air diffusion efficiency is a fixed value, but a value calculated using the relationship between the air volume and the dissolved oxygen concentration (DO concentration) may be used.
  • each series is corrected by correcting the setting of the aeration air volume in other series based on the DO concentration in the representative series where the water quality meter is installed based on the inflow flow rate of the water to be treated to each series. Therefore, it is possible to realize a water treatment system that can optimally control the amount of a water to be treated or the amount of aeration air.
  • a method based on a measured value of dissolved oxygen concentration (DO concentration) in a series in which air volume control using a water quality meter (for example, an ammonia meter) is executed, and a series in which the water quality meter is installed Using the two methods based on the target airflow to the aerobic tank (reaction tank), obtain the target airflow to the other series where the water quality meter is not installed, and out of the calculated target airflow to the other series
  • DO concentration dissolved oxygen concentration

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

This water treatment system 1 is provided with: a water treatment apparatus 2 which is equipped with multiple trains comprising reaction tanks (4-1, 4-2), including an aerobic tank, and air diffusing parts (6-1, 6-2), and which has dissolved oxygen (DO) meters installed in all of the multiple trains, flow meters (11-1, 11-2) for measuring the flow rates of to-be-treated water flowing into the respective trains, a water quality meter 10 installed in the aerobic tank 4-1 disposed in one of the trains, and a blower 7; and an air volume control part 3 that controls the volume of air to be fed to the respective trains. The air volume control unit 3 controls the volume of air to be fed to the aforementioned one train on the basis of a measurement by the water quality meter 10, and, at the same time, controls the volume of air to be fed to the other train(s) on the basis of DO concentration measurements and the flow rate of the to-be-treated water flowing into at least one of the one train and the other train(s).

Description

水処理システムWater treatment system
 本発明は、活性汚泥(activated sludge)を用いた水処理装置を備え、当該水処理装置を制御する水処理システムに関する。 The present invention relates to a water treatment system that includes a water treatment device using activated sludge and controls the water treatment device.
 下水処理場をはじめとする水処理プラント(水処理装置)では、環境汚濁物質を除去するために様々な水処理プロセスが導入されている。一般的な処理方式である標準活性汚泥法では、主に有機物の除去を対象としている。近年では、更なる環境負荷低減のため、窒素(特にアンモニア性窒素)やリンの除去を目的とした高度処理の普及が進められている。
有機物やアンモニア性窒素(NH-N)、リンは、溶存酸素(Dissolved Oxygen:以下、DOと称する)が存在する好気状態において主に除去される。例えば、アンモニア性窒素では、好気状態において硝化細菌により硝酸性窒素(NO-N)へと酸化する反応(硝化)により除去される。そのため、下水処理では、適切な処理水質の実現には十分な酸素供給(曝気)が必要となるが、省エネの観点から過剰な曝気を抑制し、消費電力を低減することも求められている。 
 所望する処理水質の安定的な達成、並びに消費電力の削減を目的に、様々な曝気制御方式が提案されている。例えば、曝気風量を一定に制御する風量一定制御、流入下水の流量に対する曝気風量の比に基づき制御する空気倍率制御、好気槽のDO濃度(溶存酸素濃度)に基づき制御するDO制御等が実施されている。近年では、精度が向上してきたアンモニア計を用い、計測したアンモニア性窒素濃度に基づき制御するアンモニア制御を実施する動きが盛んとなってきている。処理対象であるアンモニア性窒素を計測するため、従来のDO制御などに比べ、処理目標値への追随性が向上し、より適正な曝気風量の制御が可能となる。
In water treatment plants (water treatment devices) including sewage treatment plants, various water treatment processes have been introduced to remove environmental pollutants. The standard activated sludge method, which is a general treatment method, mainly targets removal of organic substances. In recent years, advanced treatment aimed at removing nitrogen (particularly ammonia nitrogen) and phosphorus has been promoted in order to further reduce the environmental burden.
Organic substances, ammoniacal nitrogen (NH 4 -N), and phosphorus are mainly removed in an aerobic state in which dissolved oxygen (hereinafter referred to as DO) is present. For example, ammonia nitrogen is removed by a reaction (nitrification) that oxidizes to nitrate nitrogen (NO 3 -N) by nitrifying bacteria in an aerobic state. For this reason, in sewage treatment, sufficient oxygen supply (aeration) is required to realize an appropriate quality of treated water, but from the viewpoint of energy saving, it is also required to suppress excessive aeration and reduce power consumption.
Various aeration control methods have been proposed for the purpose of stably achieving a desired treated water quality and reducing power consumption. For example, constant air volume control that controls the aeration air volume constant, air magnification control that controls based on the ratio of the aeration air volume to the inflow sewage flow rate, DO control that controls based on the DO concentration (dissolved oxygen concentration) of the aerobic tank, etc. Has been. In recent years, there has been an increasing trend to implement ammonia control using an ammonia meter that has improved accuracy and controlling based on the measured ammoniacal nitrogen concentration. Since ammonia nitrogen, which is a processing target, is measured, followability to the processing target value is improved as compared with conventional DO control and the like, and a more appropriate control of the aeration air volume becomes possible.
 アンモニア計は、下水処理場での設置台数も少なく、新規に購入する必要がある場合が多く、校正などの維持管理業務や、消耗品費用が新たに発生する。そこで、計測器の設置台数を削減するため、計測器の設置を代表系列に限定し、代表系列での制御目標から、計測器を設置していない系列での制御目標を設定する方法が提案されている。例えば、特許文献1では、1つの系列のみにアンモニア計を設置すると共に全ての系列に溶存酸素濃度計(DO計)を設置し、アンモニア計を設置した系列では、アンモニア計の計測値に基づき風量を制御し、その他の系列では、アンモニア計を設置した系列と同等のDO濃度になるように風量を制御している。 The number of ammonia meters installed at the sewage treatment plant is small, and it is often necessary to purchase a new ammonia meter, resulting in maintenance work such as calibration and new consumables costs. Therefore, in order to reduce the number of instruments installed, a method has been proposed in which the installation of instruments is limited to the representative series, and the control target in the series where no instrument is installed is set based on the control objective in the representative series. ing. For example, in Patent Document 1, an ammonia meter is installed in only one system, and a dissolved oxygen concentration meter (DO meter) is installed in all systems, and in a system in which an ammonia meter is installed, the air volume is based on the measured value of the ammonia meter. In the other series, the air volume is controlled so that the DO concentration is equivalent to that in the series where the ammonia meter is installed.
特許第4131955号公報Japanese Patent No. 4131955
 特許文献1では、アンモニア計を設置し、アンモニア計の計測値に基づき風量を制御する系列と、その他の系列のDO濃度が同等になるように風量を制御している。しかし、微生物による処理量は、処理時間(滞留時間:HRTとも称される)によって異なってくる。そのため、同じDO濃度の系列であっても、それぞれの系列への流入流量等の条件により処理時間(滞留時間)が異なると、系列によって処理量にずれが発生し、全ての系列で1つの系列に設置される計測器(アンモニア計)による制御の効果を十分に得られない恐れがある。 
 そこで本発明は、水質計が設置される代表系列におけるDO濃度に基づき他の複数系列における曝気風量の設定を、各系列への被処理水の流入流量に基づき補正することで、各系列における被処理水に対する処理量又は曝気風量を最適に制御可能とし得る水処理システムを提供することにある。
In Patent Document 1, an ammonia meter is installed, and the air volume is controlled so that the DO concentration of the series in which the air volume is controlled based on the measurement value of the ammonia gauge and the other series are equal. However, the amount of treatment by microorganisms varies depending on the treatment time (residence time: also referred to as HRT). For this reason, even if the series has the same DO concentration, if the processing time (residence time) differs depending on conditions such as the inflow flow rate to each series, the processing amount varies depending on the series. There is a possibility that the effect of control by the measuring instrument (ammonia meter) installed in the plant cannot be obtained sufficiently.
Therefore, the present invention corrects the setting of the aeration air volume in the other multiple series based on the DO concentration in the representative series where the water quality meter is installed, based on the inflow flow rate of the treated water to each series, so An object of the present invention is to provide a water treatment system that can optimally control the amount of treated water or the amount of aeration air.
 上記課題を解決するため、本発明の水処理システムは、少なくとも好気槽を含む反応槽と前記好気槽に設けられた散気部を有する複数の系列を備え、前記複数の系列全てに設置され前記好気槽の溶存酸素濃度を計測する溶存酸素濃度計と、各系列の前記反応槽へ流入する被処理水の流量を計測する流量計又は前記被処理水の流量を推定する流量推定部と、一の系列の前記好気槽に設置される水質計と、各系列の前記散気部へ空気を供給するブロワと、を有する水処理装置と、前記ブロワより各系列の散気部へ供給される空気の風量を制御する風量制御部と、を備え、前記風量制御部は、前記水質計の計測値に基づき前記水質計が設置される一の系列への風量を制御すると共に、前記一の系列及び前記他の系列のうち少なくとも一つの系列の溶存酸素濃度計測値と、前記一の系列の水質計が設置される一の系列の被処理水の流入流量及び前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき、前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする。 In order to solve the above problems, the water treatment system of the present invention includes a reaction tank including at least an aerobic tank and a plurality of systems having a diffuser provided in the aerobic tank, and is installed in all the plurality of systems. A dissolved oxygen concentration meter that measures the dissolved oxygen concentration in the aerobic tank, a flow meter that measures the flow rate of the water to be treated flowing into the reaction tank of each series, or a flow rate estimation unit that estimates the flow rate of the treated water A water treatment device having a water quality meter installed in the aerobic tank of one series, and a blower for supplying air to the aeration section of each series, and from the blower to the aeration section of each series An air volume control unit for controlling the air volume of the supplied air, and the air volume control unit controls the air volume to one series in which the water quality meter is installed based on the measurement value of the water quality meter, and At least one of one sequence and the other sequence Based on the measured value of the existing oxygen concentration, the inflow flow rate of the treated water of one series where the water quality meter of the one series is installed, and the inflow flow rate of the treated water of at least one series of the other series, Controlling the air volume to at least one of the other sequences.
 本発明によれば、水質計が設置される代表系列における溶存酸素濃度(DO濃度)に基づき他の複数系列における曝気風量の設定を、各系列への被処理水の流入流量に基づき補正することで、各系列における被処理水に対する処理量又は曝気風量を最適に制御可能とし得る水処理システムを提供することが可能となる。 According to the present invention, based on the dissolved oxygen concentration (DO concentration) in the representative series where the water quality meter is installed, the setting of the aeration air volume in the other multiple series is corrected based on the inflow rate of the water to be treated into each series. Thus, it is possible to provide a water treatment system that can optimally control the treatment amount or aeration air amount for the water to be treated in each series.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の一実施例に係る実施例1の水処理システムの概略全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic whole block diagram of the water treatment system of Example 1 which concerns on one Example of this invention. 図1に示す風量制御部の機能ブロック図である。It is a functional block diagram of the air volume control part shown in FIG. 図2に示す風量制御部を構成する目標風量演算部の処理フロー図である。It is a processing flow figure of the target air volume calculating part which comprises the air volume control part shown in FIG. 図2に示す風量制御部を構成する溶存酸素濃度(DO濃度)目標値演算部の処理フロー図である。It is a processing flow figure of the dissolved oxygen concentration (DO density | concentration) target value calculating part which comprises the air volume control part shown in FIG. 図2に示す風量制御部を構成する風量弁開度演算部の処理フロー図である。It is a processing flow figure of the air volume valve opening calculating part which comprises the air volume control part shown in FIG. 本発明の他の実施例に係る実施例2の水処理システムの概略全体構成図である。It is a schematic whole block diagram of the water treatment system of Example 2 which concerns on the other Example of this invention. 図6に示す風量制御部の機能ブロック図である。It is a functional block diagram of the air volume control part shown in FIG. 図7に示す風量制御部を構成する第1目標風量演算部の処理フロー図である。It is a processing flow figure of the 1st target air volume calculating part which constitutes the air volume control part shown in FIG. 図7に示す風量制御部を構成する第2目標風量演算部の処理フロー図である。It is a processing flow figure of the 2nd target air volume calculating part which constitutes the air volume control part shown in FIG. 図7に示す風量制御部を構成する風量弁開度演算部の処理フロー図である。It is a processing flow figure of the air volume valve opening calculating part which comprises the air volume control part shown in FIG. 本発明の他の実施例に係る実施例3の風量制御部を構成する第2目標風量演算部の処理フロー図である。It is a processing flowchart of the 2nd target air volume calculating part which comprises the air volume control part of Example 3 which concerns on the other Example of this invention. 実施例3の風量制御部を構成する風量弁開度演算部33の処理フロー図である。It is a process flow figure of the air volume valve opening calculating part 33 which comprises the air volume control part of Example 3. FIG.
 以下、図面を用いて本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に、本発明の一実施例に係る実施例1の水処理システムの概略全体構成図を示す。図1において、実線は配管を示し、点線は信号線を示している。本実施例に係る水処理システム1は、生活廃水又は工業用排水等の下水(被処理水)を、標準活性汚泥法において、活性汚泥を用いて有機物とアンモニア性窒素を除去する水処理装置2及び、風量制御部3を備える。
(水処理装置) 
 図1に示すように、水処理装置2は、被処理水である下水の流入側より順に、好気槽(反応槽)4-1及び最終沈殿池5-1より構成される系列1と、同様に、被処理水である下水の流入側より順に、好気槽(反応槽)4-2及び最終沈殿池5-2より構成される系列2とを備え、系列1及び系列2は活性汚泥を用いた同一の処理方式、すなわち、標準活性汚泥法を用いるものである。また、系列1における好気槽(反応槽)4-1には複数の散気部6-1が設けられ、系列2における好気槽(反応槽)4-2には複数の散気部6-2が設けられている。 
 系列1の好気槽(反応槽)4-1には、流入配管14及び流入配管14より分岐する系列1流入配管14-1を介して被処理水である下水が流入すると共に、返送ポンプ9-1が設置された系列1返送汚泥配管17-1を介して最終沈殿池5-1より返送汚泥が流入し、活性汚泥中の硝化細菌により、アンモニア性窒素(NH-N)を硝酸性窒素(NO-N)へ酸化する硝化が行われる。また、好気性従属栄養細菌による有機物酸化が行われる。 
 同様に、系列2の好気槽(反応槽)4-2には、流入配管14及び流入配管14より分岐する系列2流入配管14-2を介して被処理水である下水が流入すると共に、返送ポンプ9-2が設置された系列2返送汚泥配管17-2を介して最終沈殿池5-2より返送汚泥が流入し、活性汚泥中の硝化細菌により、アンモニア性窒素(NH-N)を硝酸性窒素(NO-N)へ酸化する硝化が行われる。また、好気性従属栄養細菌による有機物酸化が行われる。
In FIG. 1, the schematic whole block diagram of the water treatment system of Example 1 which concerns on one Example of this invention is shown. In FIG. 1, the solid line indicates piping, and the dotted line indicates a signal line. The water treatment system 1 which concerns on a present Example is the water treatment apparatus 2 which removes organic substance and ammonia nitrogen using sewage (treated water), such as domestic waste water or industrial wastewater, in a standard activated sludge method. And the air volume control part 3 is provided.
(Water treatment equipment)
As shown in FIG. 1, the water treatment apparatus 2 includes a series 1 composed of an aerobic tank (reaction tank) 4-1 and a final sedimentation tank 5-1 in order from the inflow side of sewage to be treated. Similarly, in order from the inflow side of sewage to be treated water, a series 2 comprising an aerobic tank (reaction tank) 4-2 and a final sedimentation tank 5-2 is provided, and series 1 and series 2 are activated sludge. The same treatment method using, that is, a standard activated sludge method is used. Further, the aerobic tank (reaction tank) 4-1 in the series 1 is provided with a plurality of air diffusers 6-1 and the aerobic tank (reaction tank) 4-2 in the series 2 is provided with a plurality of air diffusers 6-1. -2 is provided.
The sewage which is the treated water flows into the aerobic tank (reaction tank) 4-1 of the series 1 through the inflow pipe 14 and the series 1 inflow pipe 14-1 branched from the inflow pipe 14, and the return pump 9 -1 is installed, the return sludge flows from the final sedimentation basin 5-1 through the series 1 return sludge pipe 17-1, and ammonia nitrogen (NH 4 -N) is nitrated by the nitrifying bacteria in the activated sludge. Nitrification is performed to oxidize to nitrogen (NO 3 —N). In addition, organic matter oxidation by aerobic heterotrophic bacteria is performed.
Similarly, the sewage water to be treated flows into the aerobic tank (reaction tank) 4-2 of the series 2 through the inflow pipe 14 and the series 2 inflow pipe 14-2 branched from the inflow pipe 14. Return sludge flows from the final sedimentation basin 5-2 through the series 2 return sludge pipe 17-2 where the return pump 9-2 is installed, and ammonia nitrogen (NH 4 -N) is produced by nitrifying bacteria in the activated sludge. Nitrification is performed to oxidize nitrile to nitrate nitrogen (NO 3 —N). In addition, organic matter oxidation by aerobic heterotrophic bacteria is performed.
 系列1の最終沈殿池5-1及び系列2の最終沈殿池5-2は、上澄み液と活性汚泥16-1,16-2とを重力沈降により沈降分離する設備である。沈降分離後の上澄み液は、処理水としてそれぞれ系列1流出配管15-1及び系列2流出配管15-2により系外に放流される。 
 また、最終沈殿池5-1及び最終沈殿池5-2には、底面に沈殿する活性汚泥16-1,16-2を掻き寄せる汚泥掻寄機(図示せず)が設けられている。汚泥掻寄機は、所定の間隔でチェーンに取り付けられた複数のフライト、最終沈殿池5-1,5-2の水上部に設置された駆動装置により回転力が伝達される駆動軸の両端に設けられた駆動スプロケットホイール、駆動スプロケットホイールの下流側に配置された中間軸の両端に設けられた従動スプロケットホイール、中間軸の両端に設けられた従動スプロケットホイールの下流側であって最終沈殿池5-1,5-2の底面付近に配置されたテール軸の両端に設けられた従動スプロケットホイール、及び最終沈殿池5-1,5-2の底面付近であってテール軸の両端に設けられた従動スプロケットホイールの上流側に配置されたヘッド軸の両端に設けられた従動スプロケットホイールを備える。複数のフライトが所定間隔にて取り付けられたチェーンが、これら、駆動スプロケットホイール及び従動スプロケットホイールに2条平行に張架され、駆動装置により循環駆動される。フライトは、この2条平行に張架されたチェーンを渡るように所定間隔にて取り付けられた平板形状を有する。そして、最終沈殿池5-1,5-2の下流側から上流側へ向かう方向に沿ってチェーンが移動する際、チェーンに取り付けられたフライトにより、最終沈殿池5-1,5-2の底面に沈殿する活性汚泥16-1,16-2は汚泥ピットに掻き寄せられる。汚泥ピットに掻き寄せられた活性汚泥16-1,16-2は、それぞれ返送ポンプ9-1,9-2により、系列1返送汚泥配管17-1及び系列2返送汚泥配管17-2を介して、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2へと返送され、再度一連の生物処理に供される。
The final sedimentation basin 5-1 of series 1 and the final sedimentation basin 5-2 of series 2 are facilities for settling and separating the supernatant liquid and the activated sludges 16-1 and 16-2 by gravity sedimentation. The supernatant liquid after settling and separation is discharged out of the system as treated water through the series 1 outflow pipe 15-1 and the series 2 outflow pipe 15-2, respectively.
The final sedimentation tank 5-1 and the final sedimentation tank 5-2 are provided with sludge scrapers (not shown) that scrape the activated sludges 16-1 and 16-2 that settle on the bottom surface. The sludge scraper has a plurality of flights attached to the chain at predetermined intervals, at both ends of the drive shaft to which the rotational force is transmitted by the drive device installed on the water surface of the final sedimentation tanks 5-1 and 5-2. The drive sprocket wheel provided, the driven sprocket wheel provided at both ends of the intermediate shaft disposed downstream of the drive sprocket wheel, the downstream of the driven sprocket wheel provided at both ends of the intermediate shaft, and the final settling basin 5 -1,5-2 Driven sprocket wheels provided at both ends of the tail shaft and near the bottom surfaces of the final sedimentation tanks 5-1 and 5-2 and provided at both ends of the tail shaft A driven sprocket wheel is provided at both ends of the head shaft disposed on the upstream side of the driven sprocket wheel. A chain to which a plurality of flights are attached at predetermined intervals is stretched in parallel with these drive sprocket wheel and driven sprocket wheel, and is circulated by a drive device. The flight has a flat plate shape that is attached at predetermined intervals so as to cross the chain stretched in parallel with the two strips. When the chain moves along the direction from the downstream side to the upstream side of the final sedimentation tanks 5-1 and 5-2, the bottom surface of the final sedimentation tanks 5-1 and 5-2 is caused by the flight attached to the chain. The activated sludges 16-1 and 16-2 that settle on the sludge are raked into the sludge pit. The activated sludges 16-1 and 16-2 raked into the sludge pits are returned by the return pumps 9-1 and 9-2 through the series 1 return sludge pipe 17-1 and the series 2 return sludge pipe 17-2, respectively. Then, it is returned to the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 and again subjected to a series of biological treatments.
 図1に示すように、系列1における好気槽(反応槽)4-1に設けられる複数の散気部6-1は、系列1散気配管18-1及び風量弁8-1を介してブロワ7に接続され、好気槽(反応槽)4-1に空気が供給される。また、同様に、系列2における好気槽(反応槽)4-2に設けられる複数の散気部6-2は、系列2散気配管18-2及び風量弁8-2を介してブロワ7に接続され、好気槽(反応槽)4-2に空気が供給される。散気部6-1と風量弁8-1とを接続する系列1散気配管18-1であって、風量弁8-1側には風量計13-1が設置され、風量計13-1により計測される系列1散気配管18-1を通流する空気の風量計測値は、信号線を介して風量制御部3へ出力される。 
 また、流入配管14より分岐し系列1の好気槽(反応槽)4-1へ接続される系列1流入配管14-1には流量計11-1が設置され、流量計11-1により計測される好気槽(反応槽)4-1へ流入する被処理水である下水の流入流量の計測値は、信号線を介して風量制御部3へ出力される。同様に、流入配管14より分岐し系列2の好気槽(反応槽)4-2へ接続される系列2流入配管14-2には流量計11-2が設置され、流量計11-2により計測される好気槽(反応槽)4-2へ流入する被処理水である下水の流入流量の計測値は、信号線を介して風量制御部3へ出力される。なお、ここで、流量計11-1及び流量計11-2は、流量推定部としても機能する。系列1における好気槽(反応槽)4-1には、水質計としてのアンモニア計10及び溶存酸素濃度計(DO計)12-1が設置され、アンモニア計10により計測されるアンモニア性窒素濃度及び、溶存酸素濃度計(DO計)12-1により計測される溶存酸素濃度(DO濃度)の計測値は、信号線を介して風量制御部3へ出力される。また、系列2における好気槽(反応槽)4-2には、溶存酸素濃度計(DO計)12-2が設置され、溶存酸素濃度計(DO計)12-2により計測される溶存酸素濃度(DO濃度)の計測値は、信号線を介して風量制御部3へ出力される。
(風量制御部) 
 図2は、図1に示す風量制御部3の機能ブロック図である。図2に示すように、風量制御部3は、目標風量演算部31、DO濃度目標値演算部32、風量弁開度演算部33、計測値取得部34、少なくとも詳細後述する各種演算式を格納する記憶部35、入力I/F36、及び出力I/F37を備え、これらは相互に内部バス38を介して接続されている。系列1散気配管18-1を通流し散気部6-1より系列1の好気槽(反応槽)4-1へ供給される空気の目標風量を算出する目標風量演算部31、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)の目標値を算出するDO濃度目標値演算部32、及びブロワ7と系列1の散気部6-1とを接続する系列1散気配管18-1に設置される風量弁8-1への開度指令値並びに、ブロワ7と系列2の散気部6-2とを接続する系列2散気配管18-2に設置される風量弁8-2への開度指令値を算出する風量弁開度演算部33は、例えば、図示しないCPU等のプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置等の記憶装置にて実現されると共に、CPU等のプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。なお、ここで演算結果又は演算過程のデータをRAMに代えて記憶部35に格納するよう構成しても良い。
As shown in FIG. 1, the plurality of air diffusers 6-1 provided in the aerobic tank (reaction tank) 4-1 in the series 1 are connected via the series 1 aeration pipe 18-1 and the air volume valve 8-1. Air is supplied to the aerobic tank (reaction tank) 4-1, connected to the blower 7. Similarly, the plurality of aeration units 6-2 provided in the aerobic tank (reaction tank) 4-2 in the series 2 are connected to the blower 7 via the series 2 aeration pipe 18-2 and the air volume valve 8-2. The air is supplied to the aerobic tank (reaction tank) 4-2. A series 1 air distribution pipe 18-1 connecting the air diffuser 6-1 and the air flow valve 8-1, and an air flow meter 13-1 is installed on the air flow valve 8-1 side. The air volume measurement value of the air flowing through the series 1 aeration pipe 18-1 measured by the above is output to the air volume control unit 3 through a signal line.
In addition, a flow meter 11-1 is installed in the series 1 inflow pipe 14-1 which branches from the inflow pipe 14 and is connected to the series 1 aerobic tank (reaction tank) 4-1, and is measured by the flow meter 11-1. The measured value of the inflow flow rate of the sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1 is output to the air volume control unit 3 through the signal line. Similarly, a flow meter 11-2 is installed in the series 2 inflow pipe 14-2 that branches from the inflow pipe 14 and is connected to the series 2 aerobic tank (reaction tank) 4-2. The measured value of the inflow flow rate of sewage that is treated water flowing into the measured aerobic tank (reaction tank) 4-2 is output to the air volume control unit 3 through a signal line. Here, the flow meter 11-1 and the flow meter 11-2 also function as a flow rate estimation unit. The aerobic tank (reaction tank) 4-1 in series 1 is provided with an ammonia meter 10 and a dissolved oxygen concentration meter (DO meter) 12-1 as water quality meters, and the ammonia nitrogen concentration measured by the ammonia meter 10 The measured value of the dissolved oxygen concentration (DO concentration) measured by the dissolved oxygen concentration meter (DO meter) 12-1 is output to the air volume control unit 3 through a signal line. Further, a dissolved oxygen concentration meter (DO meter) 12-2 is installed in the aerobic tank (reaction tank) 4-2 in series 2, and the dissolved oxygen concentration measured by the dissolved oxygen concentration meter (DO meter) 12-2. The measured value of the concentration (DO concentration) is output to the air volume control unit 3 via the signal line.
(Air volume control unit)
FIG. 2 is a functional block diagram of the air volume control unit 3 shown in FIG. As shown in FIG. 2, the air volume control unit 3 stores a target air volume calculating unit 31, a DO concentration target value calculating unit 32, an air volume valve opening calculating unit 33, a measured value acquiring unit 34, and at least various calculation formulas described in detail later. Storage section 35, input I / F 36, and output I / F 37, which are connected to each other via an internal bus 38. A target air volume calculation unit 31 for calculating a target air volume of air that flows through the series 1 air distribution pipe 18-1 and is supplied from the air diffuser 6-1 to the aerobic tank (reaction tank) 4-1 of the series 1; The DO concentration target value calculation unit 32 for calculating the target value of the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2, and the blower 7 and the series 1 aeration unit 6-1 The opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1 and the series 2 air diffusion pipe 18-2 connecting the blower 7 and the series 2 air diffusion section 6-2. The air flow valve opening calculation unit 33 for calculating the opening command value for the air flow valve 8-2 installed in the PC is, for example, a processor such as a CPU (not shown), a ROM storing various programs, and data of calculation processes temporarily. Is realized by a storage device such as a RAM and an external storage device, and a processor such as a CPU By reading and executing the various programs stored in the OM, it stores the result of calculation execution result RAM or the external storage device. Note that the calculation result or calculation process data may be stored in the storage unit 35 instead of the RAM.
 図2に示すように、入力I/F36は、系列1の好気槽(反応槽)4-1に設置されるアンモニア計10により計測されるアンモニア性窒素濃度の計測値、流量計(系列1)11-1により計測される好気槽(反応槽)4-1に流入する被処理水である下水の流入流量の計測値、流量計(系列2)11-2により計測される好気槽(反応槽)4-2に流入する被処理水である下水の流入流量の計測値、系列1の好気槽(反応槽)4-1に設置される溶存酸素濃度計(DO計)12-1により計測される溶存酸素濃度(DO濃度)の計測値、系列2の好気槽(反応槽)4-2に設置される溶存酸素濃度計(DO計)12-2により計測される溶存酸素濃度(DO計)により計測される溶存酸素濃度(DO濃度)の計測値、及び、系列1散気配管18-1に設置される風量計13-1により計測される風量計測値を入力する。なお、図2では、上記各計測器からの計測値を1つの信号線に重畳する信号配線として表記しているが、これは、図面の記載の便宜上このように表記したものであり、実際には、それぞれの計測器毎に設けられた信号線を介して、入力I/F36に並列に入力される信号配線となっている。 
 また、出力I/F37は、系列1散気配管18-1に設置される風量弁8-1へ開度指令値を出力すると共に、系列2散気配管18-2に設置される風量弁8-2へ開度指令値を出力する。なお、目標風量演算部31、DO濃度目標値演算部32、風量弁開度演算部33及び計測値取得部34の詳細については後述する。
As shown in FIG. 2, the input I / F 36 includes a measured value of ammonia nitrogen concentration measured by an ammonia meter 10 installed in a series 1 aerobic tank (reaction tank) 4-1, a flow meter (series 1). ) Measured value of the inflow flow rate of sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1 measured by 11-1, an aerobic tank measured by the flow meter (series 2) 11-2 (Reaction tank) Measured value of the inflow flow rate of sewage to be treated into 4-2, dissolved oxygen concentration meter (DO meter) 12- installed in the aerobic tank (reaction tank) 4-1 of series 1 Measured value of dissolved oxygen concentration (DO concentration) measured by 1 and dissolved oxygen concentration meter (DO meter) 12-2 installed in aerobic tank (reaction tank) 4-2 of series 2 Measured value of dissolved oxygen concentration (DO concentration) measured by concentration (DO meter), and series 1 aeration pipe The air volume meter 13-1 installed at 8-1 to enter the air volume measurement value measured. In FIG. 2, the measurement values from the respective measuring instruments are shown as signal wirings superimposed on one signal line, but this is shown in this way for the convenience of description of the drawings. Are signal wirings input in parallel to the input I / F 36 via signal lines provided for the respective measuring instruments.
The output I / F 37 outputs the opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1, and the air flow valve 8 installed in the system 2 air distribution pipe 18-2. Output the opening command value to -2. The details of the target air volume calculation unit 31, the DO concentration target value calculation unit 32, the air volume valve opening calculation unit 33, and the measurement value acquisition unit 34 will be described later.
 次に、水処理システム1、すなわち、水処理装置2及び風量制御部3の動作の概要について以下に説明する。 
 まず、流量推定部としても機能する流量計11-1は、系列1流入配管14-1を介して系列1の好気槽(反応槽)4-1へ流入する被処理水である下水の流入流量を計測し、同様に、流量推定部としても機能する流量計11-2は、系列2流入配管14-2を介して系列2の好気槽(反応槽)4-2へ流入する被処理水である下水の流入流量を計測する。系列1の好気槽(反応槽)4-1に設置される溶存酸素濃度計(DO計)12-1は、好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)を計測し、系列2の好気槽(反応槽)4-2に設置される溶存酸素濃度計(DO計)12-2は、好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)を計測する。 
 風量制御部3は、系列1の好気槽(反応槽)4-1に設置される水質計としてのアンモニア計10により計測される好気槽(反応槽)4-1内のアンモニア性窒素濃度の計測値に基づき、系列1への目標風量を求め設定する。系列2については、風量制御部3は、流量計11-1、流量計11-2によりそれぞれ計測された系列1の好気槽(反応槽)4-1へ流入する被処理水である下水の流入流量、系列2の好気槽(反応槽)4-2へ流入する被処理水である下水の流入流量と、溶存酸素濃度計(DO計)12-1により計測された系列1の好気槽4-1内の溶存酸素濃度(DO濃度)とに基づき、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を求め設定する。
Next, the outline | summary of operation | movement of the water treatment system 1, ie, the water treatment apparatus 2, and the air volume control part 3, is demonstrated below.
First, the flow meter 11-1 that also functions as a flow rate estimation unit has an inflow of sewage that is treated water flowing into the aerobic tank (reaction tank) 4-1 of the series 1 through the series 1 inflow pipe 14-1. The flow meter 11-2 that measures the flow rate and also functions as a flow rate estimation unit similarly flows into the aerobic tank (reaction tank) 4-2 of the series 2 via the series 2 inflow piping 14-2. Measure the inflow of sewage, which is water. The dissolved oxygen concentration meter (DO meter) 12-1 installed in the series 1 aerobic tank (reaction tank) 4-1 is used to calculate the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-1. The dissolved oxygen concentration meter (DO meter) 12-2, which is measured and installed in the series 2 aerobic tank (reaction tank) 4-2, is used for the dissolved oxygen concentration (DO) in the aerobic tank (reaction tank) 4-2. Concentration).
The air volume control unit 3 is configured so that the ammonia nitrogen concentration in the aerobic tank (reaction tank) 4-1 measured by the ammonia meter 10 as a water quality meter installed in the series 1 aerobic tank (reaction tank) 4-1. Based on the measured value, the target air volume for series 1 is obtained and set. For series 2, the air volume control unit 3 performs sewage treatment water flowing into the series 1 aerobic tank (reaction tank) 4-1 measured by the flow meter 11-1 and the flow meter 11-2, respectively. Inflow rate, inflow rate of sewage that is treated water flowing into a series 2 aerobic tank (reaction tank) 4-2, and a series 1 aerobic measured by a dissolved oxygen concentration meter (DO meter) 12-1. Based on the dissolved oxygen concentration (DO concentration) in the tank 4-1, the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 is obtained and set.
 次に、系列1及び系列2への風量制御の概要について説明する。風量制御部3は、系列1散気配管18―1に設置される風量計13-1により計測された風量計測値と上述の設定された系列1への目標風量との差分に応じて、系列1散気配管18-1に設置される風量弁8-1の開度を制御する。また、系列2については、風量制御部3は、系列2の好気槽(反応槽)4-2に設置された溶存酸素濃度計(DO計)12-2により計測された好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)の計測値と、上述の設定された系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値との差分に基づき、系列2散気配管18-2に設置される風量弁8-2の開度を制御する。 
 風量制御部3における系列1への目標風量の設定方法について以下に説明する。風量制御部3は、アンモニア計10により計測された系列1の好気槽(反応槽)4-1内のアンモニア性窒素濃度が、所望のアンモニア性窒素濃度目標値に近づくよう、フィードバック制御により、系列1への目標風量を設定する。系列1への目標風量の設定は、以下の式(1)、式(2)に従う。 
Next, the outline of the air volume control for the series 1 and the series 2 will be described. The air volume control unit 3 selects the series air flow according to the difference between the air volume measurement value measured by the air volume meter 13-1 installed in the series 1 air diffusion pipe 18-1 and the target air volume to the set series 1 described above. The opening degree of the air volume valve 8-1 installed in the one air diffusion pipe 18-1 is controlled. For series 2, the air volume control unit 3 performs the aerobic tank (reaction) measured by the dissolved oxygen concentration meter (DO meter) 12-2 installed in the aerobic tank (reaction tank) 4-2 of the series 2. Tank) The measured value of the dissolved oxygen concentration (DO concentration) in 4-2 and the target value of the dissolved oxygen concentration (DO concentration) in the set series 2 aerobic tank (reaction tank) 4-2 described above. Based on the difference, the opening degree of the air volume valve 8-2 installed in the series 2 aeration pipe 18-2 is controlled.
A method for setting the target air volume for the series 1 in the air volume controller 3 will be described below. The air volume control unit 3 performs feedback control so that the ammonia nitrogen concentration in the series 1 aerobic tank (reaction tank) 4-1 measured by the ammonia meter 10 approaches a desired ammonia nitrogen concentration target value. Sets the target air volume for series 1. The setting of the target air volume for the series 1 follows the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ここで、QB1_set(t)[m/min]:時刻tにおける系列1への目標風量設定値、NH(t)[mg―N/L]:時刻tにおける系列1の好気槽(反応槽)4-1内のアンモニア性窒素濃度、NH4tgt[mg―N/L]:アンモニア性窒素濃度目標値、Δt[min]:データ採取間隔(サンプリング間隔)、K[m(gas)・m(water)/(g―N・min)]:比例ゲイン、T[min]:積分時間である。
Figure JPOXMLDOC01-appb-M000002
Here, QB 1 — set (t) [m 3 / min]: target air volume setting value for series 1 at time t, NH 4 (t) [mg−N / L]: aerobic tank of series 1 at time t ( (Reaction tank) 4-1 ammonia nitrogen concentration in NH 4 , NH 4tgt [mg-N / L]: ammonia nitrogen concentration target value, Δt [min]: data collection interval (sampling interval), K P [m 3 (gas ) · M 3 (water) / (g−N · min)]: proportional gain, T i [min]: integration time.
 風量制御部3による系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値の設定方法について以下に説明する。硝化によるアンモニア性窒素濃度の減少量は、硝化速度と処理時間(滞留時間:HRT)との積となる。硝化速度は、以下の式(3)に示すように、溶存酸素濃度(DO濃度)の関数であり、溶存酸素濃度(DO濃度)が高いと、硝化速度は高くなる。そのため、被処理水である下水の流入流量が多く、処理時間(滞留時間:HRT)が短くなると、溶存酸素濃度(DO濃度)を高くし、硝化速度を上げる必要があると考えられる。そこで、風量制御部3では、系列1の好気槽(反応槽)4-1に設置される溶存酸素濃度計(DO計)12-1により計測された好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)に対し、系列1流入配管14-1に設置される流量計11-1、系列2流入配管14-2に設置される流量計11-2によりそれぞれ計測された、系列1の好気槽(反応槽)4-1への被処理水である下水の流入量の計測値、系列2の好気槽(反応槽)4-2への被処理水である下水の流入量の計測値の相違を補正するよう、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を求め設定する。系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値の設定は、以下の式(3)に従う。  The method for setting the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 by the air flow control unit 3 will be described below. The amount of decrease in ammonia nitrogen concentration due to nitrification is the product of nitrification rate and treatment time (residence time: HRT). The nitrification rate is a function of the dissolved oxygen concentration (DO concentration) as shown in the following formula (3). When the dissolved oxygen concentration (DO concentration) is high, the nitrification rate increases. Therefore, if the inflow flow rate of sewage, which is the water to be treated, is large and the treatment time (residence time: HRT) is shortened, it is considered necessary to increase the dissolved oxygen concentration (DO concentration) and increase the nitrification rate. Therefore, in the air volume control unit 3, the aerobic tank (reaction tank) 4-1 measured by the dissolved oxygen concentration meter (DO meter) 12-1 installed in the series 1 aerobic tank (reaction tank) 4-1. The dissolved oxygen concentration (DO concentration) was measured by the flow meter 11-1 installed in the series 1 inflow piping 14-1 and the flow meter 11-2 installed in the series 2 inflow piping 14-2, respectively. Measured value of inflow of sewage that is treated water to series 1 aerobic tank (reaction tank) 4-1, sewage that is treated water to series 2 aerobic tank (reaction tank) 4-2 The target value of dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2 of the series 2 is obtained and set so as to correct the difference in the measured value of the inflow amount. The target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 is set according to the following equation (3). *
Figure JPOXMLDOC01-appb-M000003
ここで、DO2_set(t)[mg/L]:時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値、DO(t)[mg/L]:時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)、Qin_i(t)[m/min]:時刻tにおける系列iの好気槽(反応槽)への被処理水である下水の流入流量(i=1もしくは2)、β,m[―]:係数である。
Figure JPOXMLDOC01-appb-M000003
Here, DO 2_set (t) [mg / L]: aerobic tank in sequence 2 at time t the concentration of dissolved oxygen (reaction tank) in 4-2 (DO concentration) the target value, DO 1 (t) [mg / L]: dissolved oxygen concentration (DO concentration) in series 1 aerobic tank (reaction tank) 4-1 at time t, Q in — i (t) [m 3 / min]: series i aerobic tank at time t The inflow flow rate (i = 1 or 2) of sewage to be treated water into the (reaction tank), β, m [−]: coefficient.
 また、風量制御部3は、系列1散気配管18-1に設置される風量弁8-1及び系列2散気配管18-2に設置される風量弁8-2の開度を、以下の式(4)から式(6)に基づき制御する。風量弁8-1の開度は、系列1への風量が風量制御部3で設定した系列1への目標風量の設定値に近づくように制御する。風量弁8-2の開度は、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が、風量制御部3で設定した系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値に近づくように制御する。  Further, the air volume control unit 3 sets the opening degree of the air volume valve 8-1 installed in the series 1 air diffuser 18-1 and the air volume valve 8-2 installed in the series 2 air diffuser 18-2 as follows. Control is performed based on the equations (4) to (6). The opening degree of the air volume valve 8-1 is controlled so that the air volume to the series 1 approaches the set value of the target air volume to the series 1 set by the air volume control unit 3. The opening degree of the air volume valve 8-2 is that the dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 is set in the series 2 aerobic tank (reaction tank). ) Control so that the dissolved oxygen concentration (DO concentration) in 4-2 approaches the target value. *
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
ここで、VO(t) [―]:時刻tにおける風量弁8-iの開度(i=1もしくは2)、QB(t)[m/min]:時刻tにおける系列1への風量計測値、QB1_set(t)[m/min]:時刻tにおける系列1への目標風量設定値、DO(t)[mg/L]:時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)の計測値、DO2_set(t)[mg/L]:時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値、Δt[min]:データ採取間隔(サンプリング間隔)、KP_1[min/m]:系列1での比例ゲイン、KP_2[L/mg]:系列2での比例ゲイン、TI_i [min]:系列iでの積分時間(i=1もしくは2)である。
Figure JPOXMLDOC01-appb-M000006
Here, VO i (t) [-]: Opening degree of air volume valve 8-i at time t (i = 1 or 2), QB 1 (t) [m 3 / min]: To series 1 at time t Airflow measurement value, QB 1 — set (t) [m 3 / min]: target airflow setting value for series 1 at time t, DO 2 (t) [mg / L]: series 2 aerobic tank (reaction at time t) measured value of the dissolved oxygen concentration in the bath) in 4-2 (DO concentration), DO 2_set (t) [ mg / L]: aerobic tank in sequence 2 at time t (dissolved oxygen concentration in the reaction vessel) in 4-2 (DO concentration) the target value, Δt [min]: data collection interval (sampling interval), K P_1 [min / m 3]: proportional gain on the sequence 1, K P_2 [L / mg ]: proportional gain in sequence 2 , T I — i [min]: integration time in series i (i = 1 or 2).
 このように、本実施例では、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列の好気槽(反応槽)内の溶存酸素濃度(DO濃度)の計測値を基に、水質計が設置される系列及び水質計が設置されない他の系列への被処理水である下水の流入流量の相違に基づき、上記他の系列の好気槽(反応槽)内の溶存酸素濃度(DO濃度)目標値を設定する。これにより、系列によって処理量や曝気風量が不足、もしくは過剰となることを抑制でき、安定的に所望の処理水質を確保できる。 As described above, in this example, based on the measured value of the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) of the series in which the air volume control using a water quality meter (for example, an ammonia meter) is executed. In addition, the dissolved oxygen in the aerobic tank (reaction tank) of the above other series based on the difference in the flow rate of sewage that is the treated water to the series where the water quality meter is installed and the other series where the water quality meter is not installed Set the density (DO density) target value. Thereby, it can suppress that the amount of processing and the amount of aeration air become insufficient or excessive depending on the series, and a desired treated water quality can be secured stably.
 以下に、風量制御部3を構成する、目標風量演算部31、DO濃度目標演算部32、及び風量弁開度演算部33による処理の詳細について説明する。
(目標風量演算部) 
 図3は、風量制御部3を構成する目標風量演算部31の処理フロー図である。 
 図3に示すように、系列1の好気槽(反応槽)4-1内に設置されるアンモニア計10により計測された、時刻tにおけるアンモニア性窒素濃度NH(t)の計測値は、入力I/F36及び内部バス38を介して、計測値取得部34(図2)に取り込まれる。計測値取得部34は、取り込んだ時刻tにおけるアンモニア性窒素濃度NH(t)の計測値を、内部バス38を介して目標風量演算部31へ転送する。これにより、目標風量演算部31は、系列1の好気槽(反応槽)4-1内の時刻tにおけるアンモニア性窒素濃度NH(t)の計測値を取得する(ステップS11)。 
 続いて、ステップS12では、目標風量演算部31は、内部バス38を介して記憶部35へアクセスし、記憶部35に予め格納される、アンモニア性窒素濃度目標値NH4tgt(系列1)を読み出す。
Below, the detail of the process by the target air volume calculating part 31, the DO density | concentration target calculating part 32, and the air volume valve opening degree calculating part 33 which comprise the air volume control part 3 is demonstrated.
(Target air volume calculation unit)
FIG. 3 is a process flow diagram of the target air volume calculation unit 31 constituting the air volume control unit 3.
As shown in FIG. 3, the measured value of the ammoniacal nitrogen concentration NH 4 (t) at time t, measured by the ammonia meter 10 installed in the aerobic tank (reaction tank) 4-1 of the series 1, is The data is taken into the measurement value acquisition unit 34 (FIG. 2) via the input I / F 36 and the internal bus 38. The measurement value acquisition unit 34 transfers the measured value of the ammonia nitrogen concentration NH 4 (t) at the time t taken to the target air volume calculation unit 31 via the internal bus 38. Thereby, the target air volume calculation unit 31 acquires the measured value of the ammonia nitrogen concentration NH 4 (t) at the time t in the series 1 aerobic tank (reaction tank) 4-1 (step S11).
Subsequently, in step S12, the target air volume calculation unit 31 accesses the storage unit 35 via the internal bus 38, and reads the ammonia nitrogen concentration target value NH 4tgt (series 1) stored in advance in the storage unit 35. .
 目標風量演算部31は、ステップS11にて取得した時刻tにおけるアンモニア性窒素濃度NH(t)の計測値と、ステップS12にて記憶部35より読み出したアンモニア性窒素濃度目標値NH4tgtの差分e(t)を算出する(ステップS13)。ここで差分e(t)は、上述の式(2)の演算式を実行することにより得られる。なお、上述の通り式(2)は予め記憶部35に格納され、目標風量演算部31が当該演算式である式(2)を読み出し実行する。なお、これに代えて、予め式(2)をプログラムとして組み込み、図示しないROMに格納する構成としても良い。 
 ステップS14では、目標風量演算部31は、ステップS13にて算出した差分e(t)に基づき、系列1の好気槽(反応槽)4-1への目標風量、すなわち、系列1散気配管18-1を通流させる風量の目標値を上述の式(1)を演算することにより算出する。なお、上記同様、式(1)を予め記憶部35に格納しても良く、また、式(1)をプログラムとして組み込み、図示しないROMに格納しても良い。 
 ステップS15では、目標風量算出部31は、算出した系列1の好気槽(反応槽)4-1への目標風量を、内部バス38を介して記憶部35の所定の記憶領域に格納する。なお、ステップS15に代えて、算出した系列1の好気槽(反応槽)4-1への目標風量を、内部バス38を介して後述する風量弁開度演算部33へ転送する構成としても良い。
(DO濃度目標値演算部) 
 図4は、風量制御部3を構成するDO濃度目標値演算部32の処理フロー図である。 
 図4に示すように、系列1の好気槽(反応槽)4-1内に設置される溶存酸素濃度計(DO計)12-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)DO(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)DO(t)の計測値を、内部バス38を介してDO濃度目標値演算部32へ転送する。これにより、DO濃度目標値演算部32は、系列1の好気槽(反応槽)4-1内の時刻tにおける溶存酸素濃度(DO濃度)DO(t)の計測値を取得する(ステップS21)。
The target air volume calculating unit 31 calculates the difference between the measured value of the ammonia nitrogen concentration NH 4 (t) at time t acquired in step S11 and the ammonia nitrogen concentration target value NH 4tgt read from the storage unit 35 in step S12. e (t) is calculated (step S13). Here, the difference e (t) can be obtained by executing the arithmetic expression (2) described above. As described above, the expression (2) is stored in the storage unit 35 in advance, and the target air volume calculation unit 31 reads and executes the expression (2) that is the calculation expression. Instead of this, equation (2) may be incorporated in advance as a program and stored in a ROM (not shown).
In step S14, the target air volume calculating unit 31 calculates the target air volume to the series 1 aerobic tank (reaction tank) 4-1 based on the difference e (t) calculated in step S13, that is, the series 1 aeration pipe. 18-1 is calculated by calculating the above-mentioned equation (1). Similarly to the above, Expression (1) may be stored in the storage unit 35 in advance, or Expression (1) may be incorporated as a program and stored in a ROM (not shown).
In step S 15, the target air volume calculation unit 31 stores the calculated target air volume to the series 1 aerobic tank (reaction tank) 4-1 in a predetermined storage area of the storage unit 35 via the internal bus 38. Instead of step S15, the calculated target air volume to the aerobic tank (reaction tank) 4-1 of the series 1 may be transferred to the air volume valve opening calculation unit 33 described later via the internal bus 38. good.
(DO concentration target value calculator)
FIG. 4 is a process flow diagram of the DO concentration target value calculation unit 32 constituting the air volume control unit 3.
As shown in FIG. 4, a series 1 aerobic tank at time t measured by a dissolved oxygen concentration meter (DO meter) 12-1 installed in a series 1 aerobic tank (reaction tank) 4-1. The measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the (reaction tank) 4-1 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the series 1 aerobic tank (reaction tank) 4-1 at the time t taken via the internal bus 38. Transfer to the DO concentration target value calculator 32. Thereby, the DO concentration target value calculation unit 32 acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) at the time t in the series 1 aerobic tank (reaction tank) 4-1 (Step S1). S21).
 続いて、ステップS22では、系列1流入配管14-1に設置される流量計11-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1へ流入する被処理水である下水の流入流量Qin_1(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1へ流入する被処理水である下水の流入流量Qin_1(t)の計測値を、内部バス38を介してDO濃度目標値演算部32へ転送する。これにより、DO濃度目標値演算部32は、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値を取得する。 
 ステップS23では、系列2流入配管14-2に設置される流量計11-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2へ流入する被処理水である下水の流入流量Qin_2(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2へ流入する被処理水である下水の流入流量Qin_2(t)の計測値を、内部バス38を介してDO濃度目標値演算部32へ転送する。これにより、DO濃度目標値演算部32は、時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値を取得する。なお、ステップS21~ステップS23を並列に実行するよう構成しても良い。
Subsequently, in step S22, the water to be treated that flows into the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the flow meter 11-1 installed in the series 1 inflow piping 14-1. The measured value of the inflow flow rate Q in — 1 (t) of the sewage is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 1 (t) of sewage that is the treated water flowing into the series 1 aerobic tank (reaction tank) 4-1 at the time t taken in, to the internal bus 38. And transferred to the DO concentration target value calculation unit 32. Thereby, the DO concentration target value calculation unit 32 acquires a measured value of the inflow flow rate Q in — 1 (t) of sewage (treated water) to the series 1 at time t.
In step S23, sewage that is treated water flowing into the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the flow meter 11-2 installed in the series 2 inflow piping 14-2. The measured value of the inflow flow rate Q in — 2 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 2 (t) of the sewage that is the treated water flowing into the series 2 aerobic tank (reaction tank) 4-2 at the time t taken in the internal bus 38. And transferred to the DO concentration target value calculation unit 32. Thereby, the DO concentration target value calculation unit 32 acquires a measured value of the inflow flow rate Q in — 2 (t) of sewage (treated water) to the series 2 at time t. Note that steps S21 to S23 may be executed in parallel.
 ステップS24では、DO濃度目標値演算部32は、ステップS21にて取得した系列1の好気槽(反応槽)4-1内の時刻tにおける溶存酸素濃度(DO濃度)DO(t)の計測値、ステップS22にて取得した時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値、及びステップS23にて取得した時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値に基づき、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出する。ここで、DO濃度目標値演算部32は、上述の式(3)を演算することにより、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出する。なお、式(3)を予め記憶部35に格納しても良く、また、式(3)をプログラムとして組み込み、図示しないROMに格納しても良い。 
 ステップS25では、DO濃度目標値演算部32は、算出した系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を、内部バス38を介して記憶部35の所定の記憶領域に格納する。なお、ステップS25に代えて、算出した系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を、内部バス38を介して後述する風量弁開度演算部33へ転送する構成としても良い。
(風量弁開度演算部) 
 図5は、風量制御部3を構成する風量弁開度演算部33の処理フロー図である。 
 図5に示すように、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)を読み出す(ステップS31)。ここで、記憶部35に格納される、系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)は、上述の目標風量演算部31により算出された目標風量(図3)である。 
 ステップS32では、系列1散気配管18-1に設置される風量計13-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)、すなわち、系列1散気配管18-1内を通流する時刻tにおける風量計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)を、内部バス38を介して風量開度演算部33へ転送する。これにより風量開度演算部33は、時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)を取得する。
In step S24, the DO concentration target value calculator 32 calculates the dissolved oxygen concentration (DO concentration) DO 1 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1 acquired in step S21. Measured value, measured value of inflow flow rate Q in — 1 (t) of sewage (treated water) to series 1 at time t acquired in step S22, and sewage to series 2 at time t acquired in step S23 ( Based on the measured value of the inflow flow rate Q in — 2 (t) of the water to be treated, a target value of dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2 of the series 2 is calculated. Here, the DO concentration target value calculation unit 32 calculates the dissolved oxygen concentration (DO concentration) target value in the series 2 aerobic tank (reaction tank) 4-2 by calculating the above equation (3). To do. Equation (3) may be stored in advance in the storage unit 35, or equation (3) may be incorporated as a program and stored in a ROM (not shown).
In step S25, the DO concentration target value calculation unit 32 stores the calculated dissolved oxygen concentration (DO concentration) target value in the series 2 aerobic tank (reaction tank) 4-2 via the internal bus 38. Stored in a predetermined storage area. Instead of step S25, the calculated dissolved oxygen concentration (DO concentration) target value in the aerobic tank (reaction tank) 4-2 of the series 2 is supplied to an air flow valve opening degree calculation unit described later via the internal bus 38. Alternatively, the data may be transferred to 33.
(Airflow valve opening calculator)
FIG. 5 is a process flow diagram of the air volume valve opening calculation unit 33 constituting the air volume control unit 3.
As shown in FIG. 5, the airflow valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38 and is stored in the storage unit 35 in the series 1 aerobic tank (reaction tank) 4-1. The target air volume QB 1 — set (t) is read (step S31). Here, the target air volume QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 stored in the storage unit 35 is the target air volume calculated by the target air volume calculating unit 31 (see FIG. 3).
In step S32, the air volume measurement value QB 1 (QB 1 ) to the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the air volume meter 13-1 installed in the series 1 air diffusion pipe 18-1. t), that is, the air volume measurement value at the time t flowing through the series 1 aeration pipe 18-1 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the air volume measurement value QB 1 (t) to the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken into the air volume opening degree calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t.
 ステップS33では、風量弁開度演算部33は、ステップS32にて得られた時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)と、ステップS31にて取得された系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)との差分e(t)を算出する。ここで、差分e(t)は上述の式(5)を風量弁開度演算部33が実行することにより算出される。 
 ステップS34では、系列2の好気槽(反応槽)4-2内に設置される溶存酸素濃度計(DO計)12-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)DO(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)DO(t)の計測値を、内部バス38を介して風量弁開度演算部33へ転送する。これにより、風量弁開度演算部33は、時刻tにおける系列2の好気槽内の溶存酸素濃度(DO濃度)DO(t)の計測値を取得する。
In step S33, the air volume valve opening calculator 33 calculates the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t obtained in step S32, and step S31. The difference e 1 (t) from the target air volume QB 1 — set (t) to the aerobic tank (reaction tank) 4-1 of the series 1 obtained in step ( 1 ) is calculated. Here, the difference e 1 (t) is calculated by the above-described equation (5) being executed by the air flow valve opening degree calculation unit 33.
In step S34, the series 2 aerobic tank (reaction tank) at time t, measured by a dissolved oxygen concentration meter (DO meter) 12-2 installed in the series 2 aerobic tank (reaction tank) 4-2. ) The measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in 4-2 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank (reaction tank) 4-2 at the time t taken through the internal bus 38. Transfer to the air flow valve opening calculator 33. Thereby, the air quantity valve opening calculating unit 33 acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank at time t.
 ステップS35では、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値DO2_set(t)を読み出す。ここで、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値DO2_set(t)は、上述のDO濃度目標値演算部32により算出された溶存酸素濃度(DO濃度)目標値(図4)である。 
 ステップS36では、風量弁開度演算部33は、ステップS34にて取得された時刻tにおける系列2の好気槽内の溶存酸素濃度(DO濃度)DO(t)の計測値と、ステップS35にて得られた時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値DO2_set(t)との差分e(t)を算出する。ここで、差分e(t)は上述の式(6)を風量弁開度演算部33が実行することにより算出される。
In step S35, the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and stores in the series 2 aerobic tank (reaction tank) 4-2 at time t stored in the storage unit 35. The dissolved oxygen concentration (DO concentration) target value DO 2 — set (t) is read out. Here, the dissolved oxygen concentration (DO concentration) target value DO 2_set (t) in the series 2 aerobic tank (reaction tank) 4-2 at time t, which is stored in the storage unit 35, is the DO concentration target described above. It is a dissolved oxygen concentration (DO concentration) target value (FIG. 4) calculated by the value calculation unit 32.
In step S36, the air volume valve opening calculator 33 calculates the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank at time t acquired in step S34, and step S35. The difference e 2 (t) from the dissolved oxygen concentration (DO concentration) target value DO 2 — set (t) in the series 2 aerobic tank (reaction tank) 4-2 at time t obtained in step (b) is calculated. Here, the difference e 2 (t) is calculated by the above-described equation (6) being executed by the air flow valve opening degree calculation unit 33.
 ステップ37では、風量弁開度演算部33は、系列1散気配管18-1に設置される風量弁8-1の時刻tにおける開度計測値VO(t)、及び系列2散気配管18―2に設置される風量弁8-2の時刻tにおける開度計測値VO(t)を、入力I/F36、計測値取得部34、及び内部バス38を介して取り込む。 In step 37, the air volume valve opening calculator 33 calculates the opening degree measured value VO 1 (t) at the time t of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1, and the series 2 aeration pipe. The opening measurement value VO 2 (t) at the time t of the air flow valve 8-2 installed in 18-2 is taken in via the input I / F 36, the measurement value acquisition unit 34, and the internal bus 38.
 ステップS38では、ステップS37にて取り込まれた系列1の風量弁8-1の開度計測値VO(t)、系列2の風量弁8-2の開度計測値VO(t)、ステップS33にて得られた差分e(t)、及びステップS36にて得られた差分e(t)に基づき、風量弁開度演算部33は、系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度を算出する。ここで、系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度は、上述の式(4)を風量弁開度演算部33が実行することにより算出される。 
 ステップS39では、風量弁開度演算部33は、ステップS38にて算出した系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度を、それぞれ指令値として、内部バス38及び出力I/F37を介して系列1の風量弁8-1及び系列2の風量弁8-2へ出力する。
At step S38, the opening degree measurement value VO 1 of Kazeryouben 8-1 series 1 taken at step S37 (t), opening the measurement value VO 2 of Kazeryouben 8-2 series 2 (t), step Based on the difference e 1 (t) obtained in S33 and the difference e 2 (t) obtained in step S36, the air flow valve opening calculator 33 opens the opening of the series 1 air flow valve 8-1. And the opening degree of the air volume valve 8-2 of the series 2 is calculated. Here, the opening degree of the series 1 air volume valve 8-1 and the opening degree of the series 2 air volume valve 8-2 are calculated by the above-described equation (4) being executed by the air volume valve opening degree calculation unit 33. .
In step S39, the air volume valve opening calculator 33 uses the opening of the series 1 air volume valve 8-1 and the opening of the series 2 air volume valve 8-2 calculated in step S38 as command values, respectively. It outputs to the air volume valve 8-1 of the series 1 and the air volume valve 8-2 of the series 2 via the bus 38 and the output I / F 37.
 上述の通り、風量制御部3を構成する、目標風量演算部31、DO濃度目標値演算部32及び風量弁開度演算部33が動作することにより、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列1の溶存酸素濃度(DO濃度)の計測値を基に、水質計が設置される系列1及び水質計が設置されない他の系列2への被処理水である下水の流入流量の相違に基づき、上記他の系列2の溶存酸素濃度(DO濃度)目標値を設定する。そして、少なくとも設定された系列2の溶存酸素濃度(DO濃度)の目標値と系列2の溶存酸素濃度(DO濃度)の差分に基づき、系列1への曝気風量を調整する風量弁8-1及び系列2への曝気風量を調整する風量弁8-2の開度を制御することにより、系列によって処理量や曝気風量が不足、もしくは過剰となることを抑制でき、安定的に所望の処理水質を確保することが可能となる。 As described above, a water quality meter (for example, an ammonia meter) is used by operating the target air volume calculation unit 31, the DO concentration target value calculation unit 32, and the air volume valve opening calculation unit 33 that constitute the air volume control unit 3. Based on the measured value of dissolved oxygen concentration (DO concentration) of series 1 that is executing the air flow control, sewage that is treated water to series 1 where the water quality meter is installed and other series 2 where the water quality meter is not installed Based on the difference in the inflow rate, the dissolved oxygen concentration (DO concentration) target value of the other series 2 is set. An air volume valve 8-1 that adjusts the aeration air volume to the series 1 based on at least the difference between the set target value of the dissolved oxygen concentration (DO density) of the series 2 and the dissolved oxygen concentration (DO density) of the series 2; By controlling the opening of the air volume valve 8-2 that adjusts the aeration air flow to the series 2, it is possible to suppress the processing amount and the aeration air volume from being insufficient or excessive depending on the series, and to stably provide the desired treated water quality. It can be secured.
 なお、本実施例では、標準活性汚泥法を用いる水処理装置2を一例として説明したが、これに限られることなく、例えば、嫌気好気活性汚泥法又は循環式硝化脱窒法等、好気槽を有する処理方式であれば、同様に適用できる。また、本実施例では、説明を分かり易くするため、水質計としてのアンモニア計及び溶存酸素濃度計(DO計)を好気槽(反応槽)内に設置する系列1と、溶存酸素濃度計(DO計)のみを好気槽(反応槽)内に設置する系列2との2系列のみを対象としたが、3系列以上を有する水処理装置においても、各系列における処理方式が同一であれば、同様に適用できる。 In the present embodiment, the water treatment apparatus 2 using the standard activated sludge method has been described as an example. However, the present invention is not limited to this, and an aerobic tank such as an anaerobic aerobic activated sludge method or a circulating nitrification denitrification method is used. Any other processing method can be applied in the same manner. Moreover, in this example, in order to make the explanation easy to understand, an ammonia meter as a water quality meter and a dissolved oxygen concentration meter (DO meter) are installed in an aerobic tank (reaction tank), and a dissolved oxygen concentration meter ( (DO meter) only in the aerobic tank (reaction tank) and the two lines with the line 2 are targeted, but even in the water treatment apparatus having three lines or more, if the treatment method in each line is the same Can be applied as well.
 また、本実施例では、系列1の系列1流入配管14-1に流量計11-1を、系列2の系列2流入配管14-2に流量計11-2を設置する構成としたが、必ずしも系列毎に流量計を設置しなくとも良い。例えば、系列毎への分岐点(流入配管14より各系列へ分岐する分岐点)より上流側に1つの流量計を設置し、流入配管14へ流入する被処理水である下水の流入流量を計測し、予め設定した分配比によって、各系列の流量を算出する構成としても良い。更に、流量計を設置せず、各系列へ流入する被処理水である下水の過去の流入流量実績データを格納するデータベースを用意し、各系列の流量を推定する構成としても良い。この場合、各系列の流量を推定する構成要素を流量制御部と称する。以下では、特に、ことわりない限り、流量計は、流量推定部に置き換え可能である。 In this embodiment, the flow meter 11-1 is installed in the series 1 inflow piping 14-1 and the flow meter 11-2 is installed in the series 2 inflow piping 14-2. It is not necessary to install a flow meter for each series. For example, one flow meter is installed upstream from a branch point for each series (a branch point branching from the inflow pipe 14 to each series), and an inflow flow rate of sewage that is treated water flowing into the inflow pipe 14 is measured. The flow rate of each series may be calculated based on a preset distribution ratio. Furthermore, it is good also as a structure which prepares the database which stores the past inflow flow volume actual data which is a to-be-processed water which flows into each series, without installing a flowmeter, and estimates the flow volume of each series. In this case, the component that estimates the flow rate of each series is referred to as a flow rate control unit. In the following, unless otherwise specified, the flow meter can be replaced with a flow rate estimation unit.
 なお、本実施例では、系列1、系列2への風量をそれぞれ風量弁8-1、風量弁8-2により制御したが、インレットベーン制御など風量制御が可能なブロワ7の場合、併せてブロワ7の風量を制御しても良く、また、系列毎にブロワ7が設置されている場合には、ブロワ7のみで系列1及び系列2への風量を制御する構成としても良い。 
 なお、本実施例では、硝化制御への適用を想定し、水質計としてアンモニア計10を用いる場合を示したが、例えば、有機物除去、窒素除去、或いはリン除去に関する制御を行う系列への適用も可能である。その場合、水質計として、硝酸性窒素濃度、全窒素濃度、リン酸性リン濃度、全リン濃度や、BOD(Biochemical Oxygen Demand)、CODMn(過マンガン酸カリウムによる酸素要求量)、CODCr(ニクロム酸カリウムによる酸素要求量)、TOC(Total Organic Carbon)などの有機物濃度を計測する計測器を用いても良い。
In this embodiment, the air flow to the series 1 and the series 2 is controlled by the air volume valve 8-1 and the air volume valve 8-2, respectively. However, in the case of the blower 7 capable of air volume control such as inlet vane control, the blower is also combined. 7 may be controlled, and when the blower 7 is installed for each series, the air quantity to the series 1 and the series 2 may be controlled only by the blower 7.
In the present embodiment, the case where the ammonia meter 10 is used as the water quality meter is assumed assuming application to nitrification control. However, for example, the present invention is also applicable to a system that performs control related to organic matter removal, nitrogen removal, or phosphorus removal. Is possible. In this case, as a water quality meter, nitrate nitrogen concentration, total nitrogen concentration, phosphoric acid phosphorus concentration, total phosphorus concentration, BOD (Biochemical Oxygen Demand), COD Mn (oxygen demand by potassium permanganate), COD Cr (nichrome) A measuring instrument that measures the organic substance concentration such as oxygen demand by potassium acid) or TOC (Total Organic Carbon) may be used.
 本実施例では、アンモニア計10を系列1の好気槽(反応槽)4-1内に設置し、フィードバック的に系列1への目標風量を設定したが、その設置位置、目標風量の設定方法は問わない。例えば、アンモニア計10を系列1の好気槽(反応槽)4-1の上流に設置し、好気槽(反応槽)4-1へ流入する被処理水である下水のアンモニア性窒素濃度を計測し、当該計測されたアンモニア性窒素濃度に基づき、フィードフォワード的に系列1への目標風量を設定する構成としても良い。なお、アンモニア計10を好気槽(反応槽)4-1の下流側に設置する構成としても良い。 
 なお、本実施例では、アンモニア計10により計測されるアンモニア性窒素濃度の計測値に基づき系列1への目標風量を設定する構成としたが、これに限られるものではない。例えば、アンモニア計10により計測されるアンモニア性窒素濃度の計測値に基づき、系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)目標値を設定し、設定した溶存酸素濃度(DO濃度)目標値と、好気槽(反応槽)4-1に設置される溶存酸素濃度計(DO計)12-1の計測値との差分に基づき風量を制御する構成としても良い。なお、この場合において、必ずしも好気槽(反応槽)4-1内にアンモニア計10を設置する必要はなく、例えば、好気槽(反応槽)4-1内でのアンモニア除去性能及び溶存酸素濃度(DO濃度)の関係を、過去の実績データに基づき予め格納するデータベースを用意し、このデータベースを参照することにより、好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)目標値を設定する構成としても良い。
In this embodiment, the ammonia meter 10 is installed in the series 1 aerobic tank (reaction tank) 4-1, and the target air volume for the series 1 is set in a feedback manner. Does not matter. For example, an ammonia meter 10 is installed upstream of a series 1 aerobic tank (reaction tank) 4-1, and the ammonia nitrogen concentration of the sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1. It is good also as a structure which measures and sets the target air volume to the series 1 in feedforward based on the measured ammoniacal nitrogen concentration. The ammonia meter 10 may be installed downstream of the aerobic tank (reaction tank) 4-1.
In the present embodiment, the target air volume for the series 1 is set based on the measured value of the ammonia nitrogen concentration measured by the ammonia meter 10, but the present invention is not limited to this. For example, based on the measurement value of the ammonia nitrogen concentration measured by the ammonia meter 10, the target value of dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 is set, and the dissolved The air volume is controlled based on the difference between the target value of oxygen concentration (DO concentration) and the measured value of the dissolved oxygen concentration meter (DO meter) 12-1 installed in the aerobic tank (reaction tank) 4-1. good. In this case, it is not always necessary to install the ammonia meter 10 in the aerobic tank (reaction tank) 4-1, for example, ammonia removal performance and dissolved oxygen in the aerobic tank (reaction tank) 4-1. Prepare a database that stores the relationship of concentration (DO concentration) in advance based on past performance data. By referring to this database, dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-1 It is good also as a structure which sets a target value.
 また、本実施例では、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値と、系列2の好気槽(反応槽)4-2内に設置される溶存酸素濃度計(DO計)12-2の計測値との差分に基づき、風量弁8-2の開度を制御する構成としたが、必ずしもこれに限られるものではない。例えば、系列1散気配管18-1に設置される風量計13-1と同様に、系列2散気配管18-2に風量計を設置し、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を満足するよう設定した目標風量と、系列2散気配管18-2に設置した風量計による風量計測値との差分に基づき、風量弁8-2の開度を制御するよう構成しても良い。 
 なお、本実施例では、図4に示したように、DO濃度目標演算部32が、時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)DO(t)の計測値に対し、時刻tにおける系列1への下水(被処理水)流入流量Qin_1(t)の計測値と時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値による流入流量比に係る関数を乗ずること(上述の式(3))で、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出し設定する構成としたが、これに限られるものではない。例えば、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値と時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値に係る他の関数を用いても良く、例えば、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値と時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値の差分に係る関数を乗じても良い。また、時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)DO(t)の計測値に対し、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値と時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値に係る関数を加えることで、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出し設定しても良い。
In the present embodiment, the dissolved oxygen concentration (DO concentration) target value in the series 2 aerobic tank (reaction tank) 4-2 and the series 2 aerobic tank (reaction tank) 4-2 are installed. However, the present invention is not limited to this. For example, in the same manner as the anemometer 13-1 installed in the series 1 aeration pipe 18-1, an anemometer is installed in the series 2 aeration pipe 18-2, and a series 2 aerobic tank (reaction tank) 4- 2 based on the difference between the target air volume set so as to satisfy the target value of dissolved oxygen concentration (DO concentration) in 2 and the air volume measured by the anemometer installed in the series 2 aeration pipe 18-2. You may comprise so that the opening degree of may be controlled.
In the present embodiment, as shown in FIG. 4, the DO concentration target calculation unit 32 performs the dissolved oxygen concentration (DO concentration) DO 1 in the series 1 aerobic tank (reaction tank) 4-1 at time t. With respect to the measured value of (t), the measured value of the sewage (treated water) inflow rate Q in — 1 (t) to series 1 at time t and the inflow rate Q of sewage (treated water) to series 2 at time t. Target of dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-2 of series 2 by multiplying the function related to the inflow rate ratio by the measured value of in_2 (t) (the above-mentioned formula (3)) Although the configuration is such that the value is calculated and set, the present invention is not limited to this. For example, measurement of the sewage inflow rate Q IN_2 of the sewage into the system 2 in the measurement value and the time t of the inlet flow Q IN_1 of (water to be treated) (t) (treated water) (t) to the system 1 at time t Other functions relating to the value may be used, for example, the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) to the series 1 at the time t and the sewage (treated) to the series 2 at the time t. You may multiply the function which concerns on the difference of the measured value of inflow flow rate Qin_2 (t) of water. Further, the sewage (treated water) to the series 1 at the time t with respect to the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the series 1 aerobic tank (reaction tank) 4-1 at the time t. ) Inflow rate Q in — 1 (t) and a function relating to the measured value of inflow rate Q in — 2 (t) of sewage (treated water) to series 2 at time t. The target value of dissolved oxygen concentration (DO concentration) in the tank (reaction tank) 4-2 may be calculated and set.
 また、硝化速度は一般的に以下の式(7)で表されるため、以下の式(8)に示す演算式により、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出し設定しても良い。 Further, since the nitrification rate is generally expressed by the following formula (7), the dissolved oxygen concentration in the series 2 aerobic tank (reaction tank) 4-2 is calculated by the arithmetic expression shown in the following formula (8). (DO concentration) A target value may be calculated and set.
Figure JPOXMLDOC01-appb-M000007
ここで、μ[mg―N/L/h]:硝化速度、DO[mg/L]:DO濃度、α, K[―]:係数である。 
Figure JPOXMLDOC01-appb-M000007
Here, μ [mg−N / L / h]: nitrification rate, DO [mg / L]: DO concentration, α, K [−]: coefficient.
Figure JPOXMLDOC01-appb-M000008
ここで、DO2_set(t)[mg/L]:時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値、DO(t)[mg/L]:時刻tにおける系列1の好気槽(反応槽)4-1内のDO濃度、Qin_i(t)[m/min]:時刻tにおける系列iの好気槽(反応槽)への被処理水である下水の流入流量(i=1もしくは2)、αi、 K[―]:係数(i=1もしくは2)である。
Figure JPOXMLDOC01-appb-M000008
Here, DO 2_set (t) [mg / L]: aerobic tank in sequence 2 at time t the concentration of dissolved oxygen (reaction tank) in 4-2 (DO concentration) the target value, DO 1 (t) [mg / L]: DO concentration in series 1 aerobic tank (reaction tank) 4-1 at time t, Q in — i (t) [m 3 / min]: To series i aerobic tank (reaction tank) at time t Sewage inflow (i = 1 or 2), α i, K i [−]: coefficient (i = 1 or 2).
 なお、本実施例では、上記式(3)において、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値と時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値を用いて、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出し設定する構成としたが、これに加え、系列1返送汚泥配管17-1及び系列2返送汚泥配管17-2に流量計を設置し、以下の式(9)のように、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値と系列1返送汚泥配管17-1を通流する返送汚泥の流量との合計、及び、時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値と系列2返送汚泥配管17-2を通流する返送汚泥の流量との合計との比率に係る関数に基づいて、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出し設定する構成としても良い。また、循環式硝化脱窒法など活性汚泥混合液の循環を行っている場合には、循環流量も流量の項に追加して良い。  In this embodiment, in the above equation (3), the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) to the series 1 at the time t and the sewage (treated) to the series 2 at the time t. The measured value of the inflow flow rate Q in — 2 (t) of water) is used to calculate and set the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2. In addition to this, a flow meter is installed in the series 1 return sludge pipe 17-1 and the series 2 return sludge pipe 17-2, and the sewage to the series 1 at the time t as shown in the following equation (9) The sum of the measured value of the inflow flow rate Q in — 1 (t) of the water) and the flow rate of the return sludge flowing through the series 1 return sludge pipe 17-1, and the sewage (treated water) to the series 2 at time t flows through the measured value and sequence 2 return sludge pipe 17-2 inlet flow Q in_2 (t) Based on a function related to the ratio to the total flow rate of the sludge sent, the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 may be calculated and set. . In addition, when the activated sludge mixed liquid is circulated, such as a circulation nitrification denitrification method, the circulation flow rate may be added to the flow rate term.
Figure JPOXMLDOC01-appb-M000009
ここで、Qr_i[m/h]:系列i返送汚泥配管17-iを通流する返送汚泥の流量(i=1もしくは2)である。
Figure JPOXMLDOC01-appb-M000009
Here, Q r — i [m 3 / h]: the flow rate of return sludge (i = 1 or 2) flowing through the series i return sludge piping 17-i.
 本実施例では、上述の式(3)では、各系列に流入する被処理水である下水の流入流量のみの相違を考慮したが、各系列の好気槽内のMLSS(Mixed Liquor Suspended Solids)濃度(曝気混合液浮遊物濃度又は活性汚泥浮遊物質濃度)の相違も考慮し、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)目標値を算出し設定しても良い。例えば、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内にMLSS計を設置し、以下の式(10)に示すように、上述の式(3)にMLSS濃度に関する項を追加しても良い。  In the present embodiment, in the above-described equation (3), the difference in only the inflow flow rate of sewage that is treated water flowing into each series is considered. However, MLSS (Mixed Liquid Suspended Solids) in the aerobic tank of each series is considered. Calculate and set the target value of dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2, taking into account differences in concentration (concentration of suspended solids or activated sludge suspended solids) May be. For example, an MLSS meter is installed in a series 1 aerobic tank (reaction tank) 4-1 and a series 2 aerobic tank (reaction tank) 4-2, and the above-described formula (10) is used. You may add the term regarding MLSS density | concentration to Formula (3). *
Figure JPOXMLDOC01-appb-M000010
ここで、MLSSi[mg/L]:系列iの好気槽(反応槽)4-i内のMLSS濃度(i=1もしくは2)、β’,n[-]:係数である。
Figure JPOXMLDOC01-appb-M000010
Here, MLSSi [mg / L]: MLSS concentration (i = 1 or 2) in the aerobic tank (reaction tank) 4-i of series i, β ′, n [−]: coefficient.
 また、上述の式(8)において、係数αをMLSSi[mg/L]:系列iの好気槽(反応槽)4-i内のMLSS濃度(i=1もしくは2)としても良い。 
 更に、本実施例では、上述の式(3)において、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値及び時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値、すなわち、系列1及び系列2に流入する下水(被処理水)の流入流量の瞬時値を用いて、系列2の好気槽(反応槽)4-2の溶存酸素濃度(DO濃度)目標値を算出し設定する構成としたが、これに代えて、任意の期間の下水(被処理水)の流入流量の平均値を用いても良い。また、上記式(8)、(9)、(10)における、各系列に流入する下水(被処理水)の流入流量の計測値、各系列の返送汚泥配管内を通流する返送汚泥の流量の計測値、各系列の好気槽(反応槽)内のMLSS濃度の計測値についても、同様に任意の期間の平均値を用いても良い。
In the above equation (8), the coefficient α i may be MLSSi [mg / L]: MLSS concentration (i = 1 or 2) in the series i aerobic tank (reaction tank) 4-i.
Further, in this embodiment, in the above-described equation (3), the measured value of the inflow flow rate Q in — 1 (t) of sewage (treated water) to the series 1 at time t and the sewage (covered to the series 2 at time t). The measured value of the inflow flow rate Q in — 2 (t) of the treated water), that is, the instantaneous value of the inflow rate of the sewage (treated water) flowing into the series 1 and the series 2, and the aerobic tank of the series 2 (reaction tank) ) Although the 4-2 dissolved oxygen concentration (DO concentration) target value is calculated and set, the average value of the inflow flow rate of sewage (treated water) for an arbitrary period may be used instead. . In addition, in the above formulas (8), (9), and (10), the measured value of the inflow flow rate of sewage (treated water) flowing into each series, the flow rate of return sludge flowing through the return sludge piping of each series Similarly, an average value of an arbitrary period may be used for the measured value of MLSS and the measured value of the MLSS concentration in the aerobic tank (reaction tank) of each series.
 以上の通り、本実施例によれば、水質計が設置される代表系列におけるDO濃度に基づき他の複数系列における曝気風量の設定を、各系列への被処理水の流入流量に基づき補正することで、各系列における被処理水に対する処理量又は曝気風量を最適に制御可能とし得る水処理システムを提供することが可能となる。 
 更に、具体的には、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列の溶存酸素濃度(DO濃度)の計測値を基に、水質計が設置される系列及び水質計が設置されない他の系列への被処理水である下水の流入流量の相違に基づき、上記他の系列の溶存酸素濃度(DO濃度)目標値が設定されることにより、系列によって処理量や曝気風量が不足、もしくは過剰となることを抑制でき、安定的に所望の処理水質を確保できる。
As described above, according to the present embodiment, the setting of the aeration air volume in the other multiple series is corrected based on the inflow rate of the treated water to each series based on the DO concentration in the representative series where the water quality meter is installed. Thus, it is possible to provide a water treatment system that can optimally control the treatment amount or aeration air amount for the water to be treated in each series.
More specifically, based on the measured value of the dissolved oxygen concentration (DO concentration) of the series in which the air volume control using a water quality meter (for example, ammonia meter) is executed, the water quality meter and the series in which the water quality meter is installed By setting the target value of dissolved oxygen concentration (DO concentration) for the other series based on the difference in the inflow flow rate of sewage, which is the treated water to other series where no meter is installed, the treatment amount and aeration are set according to the series. It is possible to suppress the air volume from becoming insufficient or excessive, and to secure a desired treated water quality stably.
 図6に、本発明の他の実施例に係る実施例2の水処理システムの概略全体構成図を示し、図7に、図6に示す風量制御部の機能ブロック図を示す。本実施例の水処理システムでは、水処理装置2を構成する系列2散気配管18-2に設置される風量計13-2を有する点、及び、風量制御部3aが、実施例1における目標風量演算部31及びDO濃度目標値演算部32に代えて、第1目標風量演算部31a及び第2目標演算部31bを備える点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付し、以下では実施例1と重複する説明を省略する。 FIG. 6 shows a schematic overall configuration diagram of a water treatment system of Example 2 according to another embodiment of the present invention, and FIG. 7 shows a functional block diagram of the air volume control unit shown in FIG. In the water treatment system of the present embodiment, the point having the air flow meter 13-2 installed in the series 2 aeration pipe 18-2 constituting the water treatment apparatus 2, and the air flow control unit 3a are the target in the first embodiment. Instead of the air volume calculation unit 31 and the DO concentration target value calculation unit 32, the first embodiment differs from the first embodiment in that it includes a first target air volume calculation unit 31a and a second target calculation unit 31b. The same components as those in the first embodiment are denoted by the same reference numerals, and the description overlapping with that in the first embodiment is omitted below.
 図6に示すように、本実施例の水処理装置2は、系列2における好気槽(反応槽)4-2にそれぞれ設けられる散気部6-2とブロワ7とを接続する系列2散気配管18-2に設置される風量計13-2を備える。なお、系列2散気配管18-2には風量弁8-2が設置されており、風量計13-2は、この系列2散気配管18-2であって風量弁8-2側に設置されている。風量計13-2により計測される、ブロワ7より風量弁8-2を介して系列2散気配管18-2内を通流する空気の流量、すなわち、系列2への風量計測値は、信号線を介して風量制御部3aへ出力される。その他については、実施例1の水処理装置2と同様である。 As shown in FIG. 6, the water treatment apparatus 2 of the present embodiment is a series 2 sprayer that connects a diffuser 6-2 and a blower 7 provided in an aerobic tank (reaction tank) 4-2 in the series 2, respectively. An air flow meter 13-2 installed in the air pipe 18-2 is provided. Note that an air volume valve 8-2 is installed in the series 2 air diffusion pipe 18-2, and the air flow meter 13-2 is installed on the air volume valve 8-2 side of the series 2 air diffusion pipe 18-2. Has been. The flow rate of the air flowing from the blower 7 through the air flow valve 8-2 through the system 2 aeration pipe 18-2 measured by the air flow meter 13-2, that is, the air flow measurement value to the system 2 is a signal. It is output to the air volume control unit 3a via the line. About others, it is the same as that of the water treatment apparatus 2 of Example 1. FIG.
 図7に示すように、本実施例の風量制御部3aは、第1目標風量演算部31a、第2目標風量演算部31b、風量弁開度演算部33、計測値取得部34、少なくとも詳細後述する各種演算式を格納する記憶部35、入力I/F36、及び出力I/F37を備え、これらは相互に内部バス38を介して接続されている。系列1散気配管18-1を通流し散気部6-1より系列1の好気槽(反応槽)4-1へ供給される空気の目標風量を算出する第1目標風量演算部31a、系列2散気配管18-2を通流し散気部6-2より系列2の好気槽(反応槽)4-2へ供給される空気の目標風量を算出する第2目標風量演算部31b、及びブロワ7と系列1の散気部6-1とを接続する系列1散気配管18-1に設置される風量弁8-1への開度指令値並びに、ブロワ7と系列2の散気部6-2とを接続する系列2散気配管18-2に設置される風量弁8-2への開度指令値を算出する風量弁開度演算部33は、例えば、図示しないCPU等のプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置等の記憶装置にて実現されると共に、CPU等のプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。なお、ここで演算結果又は演算過程のデータをRAMに代えて記憶部35に格納するよう構成しても良い。 As shown in FIG. 7, the air volume control unit 3a of the present embodiment includes a first target air volume calculating unit 31a, a second target air volume calculating unit 31b, an air volume valve opening calculating unit 33, a measurement value acquiring unit 34, and at least details later. A storage unit 35 for storing various arithmetic expressions, an input I / F 36 and an output I / F 37 are connected to each other via an internal bus 38. A first target air volume calculator 31a that calculates the target air volume of air that flows through the series 1 air diffuser 18-1 and is supplied from the air diffuser 6-1 to the aerobic tank (reaction tank) 4-1 of the system 1; A second target air volume calculation unit 31b that calculates a target air volume of air that flows through the series 2 air distribution pipe 18-2 and is supplied from the air diffusion unit 6-2 to the aerobic tank (reaction tank) 4-2 of the system 2; And the opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1 connecting the blower 7 and the series 1 air diffuser 6-1 and the air blow of the blower 7 and the series 2 An air flow valve opening calculation unit 33 for calculating an opening command value for the air flow valve 8-2 installed in the series 2 aeration pipe 18-2 connected to the unit 6-2 is, for example, a CPU or the like (not shown). In a storage device such as a processor, a ROM for storing various programs, a RAM for temporarily storing calculation process data, and an external storage device Together they are realized by reading and executing the various programs by the processor such as a CPU is stored in the ROM, and stores the calculation result as an execution result RAM or the external storage device. Note that the calculation result or calculation process data may be stored in the storage unit 35 instead of the RAM.
 図7に示すように、入力I/F36は、系列1の好気槽(反応槽)4-1に設置されるアンモニア計10により計測されるアンモニア性窒素濃度の計測値、流量計(系列1)11-1により計測される好気槽(反応槽)4-1に流入する被処理水である下水の流入流量の計測値、流量計(系列2)11-2により計測される好気槽(反応槽)4-2に流入する被処理水である下水の流入流量の計測値、系列1の好気槽(反応槽)4-1に設置される溶存酸素濃度計(DO計)12-1により計測される溶存酸素濃度(DO濃度)の計測値、系列2の好気槽(反応槽)4-2に設置される溶存酸素濃度計(DO計)12-2により計測される溶存酸素濃度(DO計)により計測される溶存酸素濃度(DO濃度)の計測値、及び、系列1散気配管18-1に設置される風量計13-1により計測される風量計測値を入力する。 As shown in FIG. 7, the input I / F 36 includes a measured value of ammonia nitrogen concentration measured by an ammonia meter 10 installed in a series 1 aerobic tank (reaction tank) 4-1, a flow meter (series 1). ) Measured value of the inflow flow rate of sewage that is the treated water flowing into the aerobic tank (reaction tank) 4-1 measured by 11-1, an aerobic tank measured by the flow meter (series 2) 11-2 (Reaction tank) Measured value of the inflow flow rate of sewage to be treated into 4-2, dissolved oxygen concentration meter (DO meter) 12- installed in the aerobic tank (reaction tank) 4-1 of series 1 Measured value of dissolved oxygen concentration (DO concentration) measured by 1 and dissolved oxygen concentration meter (DO meter) 12-2 installed in aerobic tank (reaction tank) 4-2 of series 2 Measured value of dissolved oxygen concentration (DO concentration) measured by concentration (DO meter) and series 1 aeration The air volume meter 13-1 installed at 18-1 entering the air volume measurement value measured.
 また、出力I/F37は、系列1散気配管18-1に設置される風量弁8-1へ開度指令値を出力すると共に、系列2散気配管18-2に設置される風量弁8-2へ開度指令値を出力する。なお、第1目標風量演算部31a、第2目標風量演算部31b、風量弁開度演算部33及び計測値取得部34の詳細については後述する。 The output I / F 37 outputs the opening command value to the air flow valve 8-1 installed in the series 1 air distribution pipe 18-1, and the air flow valve 8 installed in the system 2 air distribution pipe 18-2. Output the opening command value to -2. The details of the first target air volume calculator 31a, the second target air volume calculator 31b, the air volume valve opening calculator 33, and the measured value acquisition unit 34 will be described later.
 次に、水処理システム1、すなわち、水処理装置2及び風量制御部3aの動作の概要について以下に説明する。 
 風量制御部3aは、水質計としてのアンモニア計10により計測される系列1の好気槽(反応槽)4-1内のアンモニア性窒素濃度の計測値に基づき、系列1への目標風量を求め設定する。設定方法は、上述の式(1)、式(2)に従う。系列2については、風量制御部3aは、まず以下の式(11)、式(12)に従い、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が、系列1の好気槽(反応槽)4-1と同様になるような系列2への目標風量を演算する。上述の通り、系列毎に好気槽(反応槽)への下水(被処理水)の流入流量が異なると、アンモニア性窒素の除去量に相違が生じる恐れがある。そのため、式(11)、式(12)により算出した目標風量に対し、系列1流入配管14-1に設置される流量計11-1及び系列2流入配管14-2に設置される流量計11-2によりそれぞれ計測された、系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量と系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量との相違を補正する係数を乗ずることで、系列2への補正後の目標風量を求め設定する。系列2への補正後の目標風量設定式を式(13)に示す。 
Next, the outline | summary of operation | movement of the water treatment system 1, ie, the water treatment apparatus 2, and the air volume control part 3a is demonstrated below.
The air volume control unit 3a obtains the target air volume to the series 1 based on the measured value of the ammonia nitrogen concentration in the series 1 aerobic tank (reaction tank) 4-1 measured by the ammonia meter 10 as a water quality meter. Set. The setting method follows the above formulas (1) and (2). For series 2, the air volume control unit 3a first determines the dissolved oxygen concentration (DO concentration) in the series 2 aerobic tank (reaction tank) 4-2 according to the following formulas (11) and (12). The target air volume for series 2 is calculated so as to be the same as that of one aerobic tank (reaction tank) 4-1. As described above, if the flow rate of sewage (treated water) into the aerobic tank (reaction tank) differs for each series, there is a possibility that a difference occurs in the removal amount of ammonia nitrogen. Therefore, the flow meter 11-1 installed in the series 1 inflow pipe 14-1 and the flow meter 11 installed in the series 2 inflow pipe 14-2 with respect to the target air volume calculated by the expressions (11) and (12). -2 respectively, the inflow rate of sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2. The target air volume after correction to the series 2 is obtained and set by multiplying the coefficient for correcting the difference from the inflow rate of sewage (treated water). The target air volume setting formula after correction to series 2 is shown in formula (13).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
ここで、QB2_DO(t)[m3/min]:時刻tにおいて、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が同様になるような系列2への目標風量、QB2_set(t)[m3/min]:時刻tにおける系列2への目標風量設定値、DOi(t)[mg/L]:時刻tにおける系列iの好気槽(反応槽)4-i内の溶存酸素濃度(DO濃度)の計測値(i=1もしくは2)、Δt[min]:データ採取間隔、K[m3(gas)・m3(water)/(g・min)]:比例ゲイン、T[min]:積分時間である。 
Figure JPOXMLDOC01-appb-M000012
QB 2 — DO (t) [m 3 / min]: dissolved oxygen in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 at time t Target air volume to series 2 with similar concentrations (DO concentrations), QB 2 — set (t) [m 3 / min]: Target air volume set value to series 2 at time t, DOi (t) [mg / L ]: Measurement value (i = 1 or 2) of dissolved oxygen concentration (DO concentration) in aerobic tank (reaction tank) 4-i of series i at time t, Δt [min]: data collection interval, K P [ m 3 (gas) · m 3 (water) / (g · min)]: proportional gain, T i [min]: integration time.
Figure JPOXMLDOC01-appb-M000013
ここで、Qin_i(t)[m3/min]:時刻tにおける系列iの好気槽(反応槽)への被処理水である下水の流入流量(i=1もしくは2)、γ,p[-]:係数である。
Figure JPOXMLDOC01-appb-M000013
Here, Q in — i (t) [m 3 / min]: the inflow flow rate of sewage (i = 1 or 2) to the aerobic tank (reaction tank) of series i at time t, γ, p [-]: Coefficient.
 また、風量制御部3aは、系列1散気配管18-1に設置される風量弁8-1及び系列2散気配管18-2に設置される風量弁8-2の開度を、上述の式(4)、式(5)に基づき制御する。風量弁8-1の開度は、系列1への風量が風量制御部3aで設定した系列1への目標風量の設定値に近づくように制御する。また、風量弁8-2の開度は、系列2への風量が風量制御部3aで設定した系列2への目標風量の設定値に近づくように制御する。 
 このように、本実施例では、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列の好気槽(反応槽)内の溶存酸素濃度(DO濃度)の計測値に基づき演算した水質計が設置されない他の系列へ風量に対し、水質計が設置される系列及び水質計が設置されない他の系列への被処理水である下水の流入流量の相違に基づき補正を行うことで、水質計が設置されない他の系列への適切な風量制御を実現できる。
Further, the air volume control unit 3a determines the opening degree of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1 and the air volume valve 8-2 installed in the series 2 aeration pipe 18-2. It controls based on Formula (4) and Formula (5). The opening degree of the air volume valve 8-1 is controlled so that the air volume to the series 1 approaches the set value of the target air volume to the series 1 set by the air volume control unit 3a. Further, the opening degree of the air volume valve 8-2 is controlled so that the air volume to the series 2 approaches the set value of the target air volume to the series 2 set by the air volume control unit 3a.
As described above, in this embodiment, based on the measured value of the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) of the series executing the air volume control using the water quality meter (for example, the ammonia meter). Compensate for the flow rate to the other series where the calculated water quality meter is not installed based on the difference in the inflow rate of the sewage that is the treated water to the series where the water quality meter is installed and the other series where the water quality meter is not installed Therefore, it is possible to realize appropriate air volume control to other systems where no water quality meter is installed.
 以下に、風量制御部3aを構成する、第1目標風量演算部31a、第2目標風量演算部31b、及び風量弁開度演算部33による処理の詳細について説明する。 
(第1目標風量演算部) 
 図8は、風量制御部3aを構成する第1目標風量演算部31aの処理フロー図である。 
 図8に示すように、第1目標風量演算部31aの処理フローは、上述の実施例1における目標風量演算部31の処理フローと同様である。 
 図8に示すように、ステップS11では、系列1の好気槽(反応槽)4-1内に設置されるアンモニア計10により計測された、時刻tにおけるアンモニア性窒素濃度NH(t)の計測値は、入力I/F36及び内部バス38を介して、計測値取得部34(図7)に取り込まれる。計測値取得部34は、取り込んだ時刻tにおけるアンモニア性窒素濃度NH(t)の計測値を、内部バス38を介して目標風量演算部31へ転送する。これにより、第1目標風量演算部31aは、系列1の好気槽(反応槽)4-1内の時刻tにおけるアンモニア性窒素濃度NH(t)の計測値を取得する。
Below, the detail of the process by the 1st target air volume calculating part 31a, the 2nd target air volume calculating part 31b, and the air volume valve opening degree calculating part 33 which comprises the air volume control part 3a is demonstrated.
(First target air volume calculation unit)
FIG. 8 is a process flow diagram of the first target air volume calculation unit 31a constituting the air volume control unit 3a.
As shown in FIG. 8, the processing flow of the first target air volume calculating unit 31a is the same as the processing flow of the target air volume calculating unit 31 in the first embodiment.
As shown in FIG. 8, in step S11, the ammoniacal nitrogen concentration NH 4 (t) at time t, measured by the ammonia meter 10 installed in the series 1 aerobic tank (reaction tank) 4-1, was measured. The measurement value is taken into the measurement value acquisition unit 34 (FIG. 7) via the input I / F 36 and the internal bus 38. The measurement value acquisition unit 34 transfers the measured value of the ammonia nitrogen concentration NH 4 (t) at the time t taken to the target air volume calculation unit 31 via the internal bus 38. As a result, the first target air volume calculating unit 31a acquires the measured value of the ammonia nitrogen concentration NH 4 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1.
 続いて、ステップS12では、第1目標風量演算部31aは、内部バス38を介して記憶部35へアクセスし、記憶部35に予め格納される、アンモニア性窒素濃度目標値NH4tgt(系列1)を読み出す。 
 第1目標風量演算部31aは、ステップS11にて取得した時刻tにおけるアンモニア性窒素濃度NH(t)の計測値と、ステップS12にて記憶部35より読み出したアンモニア性窒素濃度目標値NH4tgtの差分e(t)を算出する(ステップS13)。ここで差分e(t)は、上述の式(2)の演算式を実行することにより得られる。なお、上述の通り式(2)は予め記憶部35に格納され、目標風量演算部31が当該演算式である式(2)を読み出し実行する。なお、これに代えて、予め式(2)をプログラムとして組み込み、図示しないROMに格納する構成としても良い。 
 ステップS14では、第1目標風量演算部31aは、ステップS13にて算出した差分e(t)に基づき、系列1の好気槽(反応槽)4-1への目標風量、すなわち、系列1散気配管18-1を通流させる風量の目標値を上述の式(1)を演算することにより算出する。なお、上記同様、式(1)を予め記憶部35に格納しても良く、また、式(1)をプログラムとして組み込み、図示しないROMに格納しても良い。 
 ステップS15では、第1目標風量算出部31aは、算出した系列1の好気槽(反応槽)4-1への目標風量を、内部バス38を介して記憶部35の所定の記憶領域に格納する。なお、ステップS15に代えて、算出した系列1の好気槽(反応槽)4-1への目標風量を、内部バス38を介して後述する風量弁開度演算部33へ転送する構成としても良い。
(第2目標風量演算部) 
 図9は、風量制御部3aを構成する第2目標風量演算部31bの処理フロー図である。 
 図9に示すように、系列1の好気槽(反応槽)4-1内に設置される溶存酸素濃度計(DO計)12-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)DO(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)DO(t)の計測値を、内部バス38を介して第2目標風量演算部31bへ転送する。これにより、第2目標風量演算部31bは、系列1の好気槽(反応槽)4-1内の時刻tにおける溶存酸素濃度(DO濃度)DO(t)の計測値を取得する(ステップS41)。
Subsequently, in step S12, the first target air volume calculation unit 31a accesses the storage unit 35 via the internal bus 38, and is stored in advance in the storage unit 35 as an ammoniacal nitrogen concentration target value NH 4tgt (series 1). Is read.
The first target air volume calculating unit 31a obtains the measured value of the ammonia nitrogen concentration NH 4 (t) at time t acquired in step S11 and the ammonia nitrogen concentration target value NH 4tgt read from the storage unit 35 in step S12. Difference e (t) is calculated (step S13). Here, the difference e (t) can be obtained by executing the arithmetic expression (2) described above. As described above, the expression (2) is stored in the storage unit 35 in advance, and the target air volume calculation unit 31 reads and executes the expression (2) that is the calculation expression. Instead of this, equation (2) may be incorporated in advance as a program and stored in a ROM (not shown).
In step S14, the first target air volume calculation unit 31a, based on the difference e (t) calculated in step S13, sets the target air volume to the series 1 aerobic tank (reaction tank) 4-1, that is, the series 1 dispersion. The target value of the air volume to be passed through the air pipe 18-1 is calculated by calculating the above equation (1). Similarly to the above, Expression (1) may be stored in the storage unit 35 in advance, or Expression (1) may be incorporated as a program and stored in a ROM (not shown).
In step S15, the first target air volume calculation unit 31a stores the calculated target air volume to the series 1 aerobic tank (reaction tank) 4-1 in a predetermined storage area of the storage unit 35 via the internal bus 38. To do. Instead of step S15, the calculated target air volume to the aerobic tank (reaction tank) 4-1 of the series 1 may be transferred to the air volume valve opening calculation unit 33 described later via the internal bus 38. good.
(Second target air volume calculation unit)
FIG. 9 is a process flow diagram of the second target air volume calculation unit 31b constituting the air volume control unit 3a.
As shown in FIG. 9, a series 1 aerobic tank at time t measured by a dissolved oxygen concentration meter (DO meter) 12-1 installed in a series 1 aerobic tank (reaction tank) 4-1. The measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the (reaction tank) 4-1 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) in the series 1 aerobic tank (reaction tank) 4-1 at the time t taken via the internal bus 38. It transfers to the 2nd target air volume calculating part 31b. As a result, the second target air volume calculation unit 31b acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 1 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1 (step S1). S41).
 続いて、ステップS42では、系列2の好気槽(反応槽)4-2内に設置される溶存酸素濃度計(DO計)12-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)DO(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)DO(t)の計測値を、内部バス38を介して第2目標風量演算部31bへ転送する。これにより、第2目標風量演算部31bは、系列2の好気槽(反応槽)4-2内の時刻tにおける溶存酸素濃度(DO濃度)DO(t)の計測値を取得する。 
 ステップS43では、第2目標風量演算部31bは、ステップ42にて取得された時刻tにおける系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)DO(t)の計測値と、ステップS41にて取得された系列1の好気槽(反応槽)4-1内の時刻tにおける溶存酸素濃度(DO濃度)DO(t)の計測値との差分e(t)を算出する。ここで、差分e(t)は上述の式(12)を第2目標風量演算部31bが実行することにより算出される。
Subsequently, in step S42, a series 2 aerobic tank at time t measured by a dissolved oxygen concentration meter (DO meter) 12-2 installed in the series 2 aerobic tank (reaction tank) 4-2. The measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the (reaction tank) 4-2 is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank (reaction tank) 4-2 at the time t taken through the internal bus 38. It transfers to the 2nd target air volume calculating part 31b. As a result, the second target air volume calculating unit 31b acquires the measured value of the dissolved oxygen concentration (DO concentration) DO 2 (t) at time t in the series 2 aerobic tank (reaction tank) 4-2.
In step S43, the second target air volume calculation unit 31b obtains the dissolved oxygen concentration (DO concentration) DO 2 (t) in the series 2 aerobic tank (reaction tank) 4-2 at time t acquired in step 42. And the difference e () between the measured value of dissolved oxygen concentration (DO concentration) DO 1 (t) at time t in the series 1 aerobic tank (reaction tank) 4-1 acquired in step S41. t) is calculated. Here, the difference e (t) is calculated by the second target air volume calculation unit 31b executing the above-described equation (12).
 次に、第2目標風量演算部31bは、内部バス38を介して記憶部35へアクセスし、記憶部35に予め格納される、時刻tにおける系列2の好気槽(反応槽)4-2への目標風量設定値QB2_set(t)を読み出す(ステップS44)。 
 ステップS45では、第2目標風量演算部31bは、ステップS43にて算出された差分e(t)と、ステップS44にて記憶部35より読み出した時刻tにおける系列2の好気槽(反応槽)4-2への目標風量設定値QB2_set(t)に基づき、時刻tにおいて系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が同様になるような系列2への目標風量QB2_DO(t)を算出する。ここで、時刻tにおいて系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が同様になるような系列2への目標風量QB2_DO(t)は、上述の式(11)を第2目標風量演算部31bが実行することにより算出される。
Next, the second target air volume calculation unit 31b accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35 in advance, the series 2 aerobic tank (reaction tank) 4-2 at time t. The target air volume setting value QB 2 — set (t) is read (step S44).
In step S45, the second target air volume calculation unit 31b calculates the difference e (t) calculated in step S43 and the series 2 aerobic tank (reaction tank) at time t read from the storage unit 35 in step S44. 4-2 dissolved in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 at time t based on the target airflow setting value QB 2_set (t) A target air volume QB 2_DO (t) for series 2 is calculated so that the oxygen concentration (DO concentration) is the same. Here, a series 2 in which dissolved oxygen concentrations (DO concentrations) in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 become similar at time t. The target air volume QB 2_DO (t) is calculated when the second target air volume calculating unit 31b executes the above-described equation (11).
 続いて、系列1流入配管14-1に設置される流量計11-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量Qin_1(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量Qin_1(t)の計測値を、内部バス38を介して第2目標風量演算部31bへ転送する。これにより、第2目標風量演算部31bは、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値を取得する(ステップS46)。 
 ステップS47では、系列2流入配管14-2に設置される流量計11-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量Qin_2(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量Qin_2(t)の計測値を、内部バス38を介して第2目標風量演算部31bへ転送する。これにより、第2目標風量演算部31bは、時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値を取得する。
Subsequently, the sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the flow meter 11-1 installed in the series 1 inflow pipe 14-1. The measured value of the inflow flow rate Q in — 1 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken, Is transferred to the second target air volume calculation unit 31b. Thereby, the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_1 (t) of the sewage (treated water) to the series 1 in the time t (step S46).
In step S47, sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the flow meter 11-2 installed in the series 2 inflow pipe 14-2. The measured value of the inflow flow rate Q in — 2 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 2 (t) of the sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at the time t taken in the internal bus Is transferred to the second target air volume calculation unit 31b. Thereby, the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_2 (t) of the sewage (treated water) to the series 2 in the time t.
 ステップS48では、第2目標風量演算部31bは、ステップS45にて算出された時刻tにおいて系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が同様になるような系列2への目標風量QB2_DO(t)、ステップS46にて取得された時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値、及びステップS47にて取得された時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値に基づき、系列2の好気槽(反応槽)4-2への目標風量(補正後)を算出する。ここで、系列2の好気槽(反応槽)4-2への目標風量(補正後)は、上述の式(13)を第2目標風量演算部31bが実行することにより算出される。これにより、ステップS45にて算出された系列2への目標風量が、系列1及び系列2へ流入する下水(被処理水)の流入流量の相違に基づき補正され、補正後の値が系列2への目標風量(補正後)として得られる。 
 ステップS49では、第2目標風量演算部31bは、算出した系列2の好気槽(反応槽)4-2への補正後の目標風量を、内部バス38を介して記憶部35の所定の記憶領域に格納する。なお、ステップS49に代えて、算出した系列2の好気槽(反応槽)4-2への目標風量を、内部バス38を介して後述する風量弁開度演算部33へ転送する構成としても良い。 
 また、ステップS41及びステップS42、並びに、ステップS46及びステップS47をそれぞれ並列に実行するよう構成しても良い。
(風量弁開度演算部) 
 図10は、風量制御部3aを構成する風量弁開度演算部33の処理フロー図である。 
 図10に示すように、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、時刻tにおける系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)を読み出す(ステップS51)。ここで、記憶部35に格納される、時刻tにおける系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)は、上述の第1目標風量演算部31aにより算出された目標風量(図8)である。 
 ステップS52では、系列1散気配管18-1に設置される風量計13-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)、すなわち、系列1散気配管18-1内を通流する時刻tにおける風量計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)を、内部バス38を介して風量開度演算部33へ転送する。これにより風量開度演算部33は、時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)を取得する。
In step S48, the second target air volume calculating unit 31b performs the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 at the time t calculated in step S45. Target air volume QB 2_DO (t) to series 2 such that the dissolved oxygen concentration (DO concentration) in the inside becomes the same, the inflow flow rate of sewage (treated water) to series 1 at time t acquired in step S46 Based on the measured value of Q in — 1 (t) and the measured value of the inflow flow rate Q in — 2 (t) of sewage (treated water) to the series 2 at time t acquired in step S47, the aerobic tank of series 2 (Reaction tank) Calculate the target air volume (after correction) to 4-2. Here, the target air volume (after correction) to the series 2 aerobic tank (reaction tank) 4-2 is calculated by the second target air volume calculating unit 31b executing the above-described equation (13). As a result, the target air volume for series 2 calculated in step S45 is corrected based on the difference in the inflow flow rate of sewage (treated water) flowing into series 1 and series 2, and the corrected value becomes series 2. Obtained as the target air volume (after correction).
In step S49, the second target air volume calculation unit 31b stores the calculated target air volume to the aerobic tank (reaction tank) 4-2 in the series 2 in the storage unit 35 via the internal bus 38. Store in the area. In place of step S49, the calculated target air volume to the aerobic tank (reaction tank) 4-2 of the series 2 may be transferred to the air volume valve opening calculator 33 described later via the internal bus 38. good.
Moreover, you may comprise so that step S41 and step S42 and step S46 and step S47 may be performed in parallel, respectively.
(Airflow valve opening calculator)
FIG. 10 is a process flow diagram of the air flow valve opening calculation unit 33 constituting the air flow control unit 3a.
As shown in FIG. 10, the air flow valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, a series 1 aerobic tank (reaction tank) at time t. The target air volume QB 1_set (t) to 4-1 is read (step S51). Here, the target air volume QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t stored in the storage unit 35 is calculated by the first target air volume calculating unit 31a. The target air volume (FIG. 8).
In step S52, the air volume measurement value QB 1 (indicated in the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the air volume meter 13-1 installed in the series 1 aeration pipe 18-1. t), that is, the air volume measurement value at the time t flowing through the series 1 aeration pipe 18-1 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the air volume measurement value QB 1 (t) to the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken into the air volume opening degree calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t.
 ステップS53では、風量弁開度演算部33は、ステップS52にて得られた時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)と、ステップS51にて取得された系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)との差分e(t)を算出する。ここで、差分e(t)は上述の式(5)を風量弁開度演算部33が実行することにより算出される。 
 ステップS54では、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2への目標風量QB2_set(t)を読み出す。ここで、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2への目標風量QB2_set(t)は、上述の第2目標風量演算部31bにより算出された補正後の目標風量(図9)である。 
 ステップS55では、系列2散気配管18-2に設置される風量計13-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)、すなわち、系列2散気配管18-2内を通流する時刻tにおける風量計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)を、内部バス38を介して風量開度演算部33へ転送する。これにより風量開度演算部33は、時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)を取得する。
In step S53, the air volume valve opening calculator 33 calculates the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t obtained in step S52, and step S51. The difference e 1 (t) from the target air volume QB 1 — set (t) to the aerobic tank (reaction tank) 4-1 of the series 1 obtained in step ( 1 ) is calculated. Here, the difference e 1 (t) is calculated by the above-described equation (5) being executed by the air flow valve opening degree calculation unit 33.
In step S54, the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35. The series 2 aerobic tank (reaction tank) 4-2 at time t is stored. The target air volume QB 2 — set (t) is read out. Where it is stored in the storage unit 35, aerobic tank sequence 2 at time t target airflow QB 2_Set to (reaction tank) 4-2 (t) is calculated by the second target air amount calculation unit 31b of the above The corrected target air volume (FIG. 9).
In step S55, the air flow measurement value QB 2 (measured by the air flow meter 13-2 installed in the system 2 aeration pipe 18-2 to the system 2 aerobic tank (reaction tank) 4-2 at time t ( t), that is, the air volume measurement value at the time t flowing through the series 2 aeration pipe 18-2 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measurement value acquisition unit 34 sends the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at the time t taken to the air volume opening calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t.
 ステップS56では、風量弁開度演算部33は、ステップS55にて取得された時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)と、ステップS54にて得られた時刻tにおける系列2の好気槽(反応槽)4-2への目標風量QB2_set(t)との差分e’(t)を算出する。ここで、差分e’(t)は上述の式(5)において、QB(t)をQB(t)に、QB1_set(t)をQB2_set(t)に置き換え、風量弁開度演算部33が実行することにより算出される。 
 ステップS57では、風量弁開度演算部33は、系列1散気配管18-1に設置される風量弁8-1の時刻tにおける開度計測値VO(t)、及び系列2散気配管18―2に設置される風量弁8-2の時刻tにおける開度計測値VO(t)を、入力I/F36、計測値取得部34、及び内部バス38を介して取り込む。
In step S56, the air volume valve opening calculator 33 calculates the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t acquired in step S55, and step S54. The difference e 1 ′ (t) from the target air volume QB 2 — set (t) to the aerobic tank (reaction tank) 4-2 in the series 2 at time t obtained in (5) is calculated. Here, the difference e 1 ′ (t) is obtained by replacing QB 1 (t) with QB 2 (t) and QB 1_set (t) with QB 2_set (t) in the above equation (5), and the air flow valve opening degree. It is calculated by the calculation unit 33 executing.
In step S57, the air volume valve opening calculator 33 calculates the opening degree measured value VO 1 (t) at the time t of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1, and the series 2 aeration pipe. The opening measurement value VO 2 (t) at the time t of the air flow valve 8-2 installed in 18-2 is taken in via the input I / F 36, the measurement value acquisition unit 34, and the internal bus 38.
 ステップS58では、ステップS57にて取り込まれた系列1の風量弁8-1の開度計測値VO(t)、系列2の風量弁8-2の開度計測値VO(t)、ステップS53にて得られた差分e(t)、及びステップS56にて得られた差分e’(t)に基づき、風量弁開度演算部33は、系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度を算出する。ここで、系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度は、上述の式(4)において、e(t)をe’(t)に置き換え、風量弁開度演算部33が実行することにより算出される。 
 ステップS59では、風量弁開度演算部33は、ステップS58にて算出した系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度を、それぞれ指令値として、内部バス38及び出力I/F37を介して系列1の風量弁8-1及び系列2の風量弁8-2へ出力する。
At step S58, the opening degree measurement value VO 1 of Kazeryouben 8-1 series 1 taken at step S57 (t), opening the measurement value VO 2 of Kazeryouben 8-2 series 2 (t), step Based on the difference e 1 (t) obtained in S53 and the difference e 1 ′ (t) obtained in step S56, the air volume valve opening calculator 33 opens the series 1 air volume valves 8-1. And the opening degree of the air volume valve 8-2 of the series 2 are calculated. Here, the opening degree of the series 1 air volume valve 8-1 and the opening degree of the series 2 air volume valve 8-2 are changed by replacing e 2 (t) with e 1 ′ (t) in the above equation (4). It is calculated by the air volume valve opening calculation unit 33 executing.
In step S59, the air volume valve opening calculator 33 uses the opening of the series 1 air volume valve 8-1 and the opening of the series 2 air volume valve 8-2 calculated in step S58 as command values, respectively. The air is output to the series 1 air volume valve 8-1 and the series 2 air volume valve 8-2 via the bus 38 and the output I / F 37.
 上述の通り、風量制御部3aを構成する、第1目標風量演算部31a、第2目標風量演算部31b及び風量弁開度演算部33が動作することにより、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列1の溶存酸素濃度(DO濃度)の計測値に基づき、水質計が設置されない他の系列2への目標風量を算出する。算出された系列2への目標風量に対し、水質計が設置される系列1及び水質計が設置されない他の系列2へ流入する下水(被処理水)の流入流量の相違を補正する係数を乗ずることで、補正後の系列2への目標風量を求める。求めた補正後の系列2への目標風量に基づき、系列1への曝気風量を調整する風量弁8-1及び系列2への曝気風量を調整する風量弁8-2の開度を制御することにより、水質計が設置されない他の系列2への適切な風量制御を実現することが可能となる。 As described above, a water quality meter (for example, an ammonia meter) is operated by operating the first target air volume calculating unit 31a, the second target air volume calculating unit 31b, and the air volume valve opening degree calculating unit 33 that constitute the air volume control unit 3a. Based on the measured value of the dissolved oxygen concentration (DO concentration) of the series 1 performing the used air volume control, the target air volume to the other series 2 where no water quality meter is installed is calculated. Multiply the calculated target air volume for series 2 by a coefficient that corrects the difference in the inflow rate of sewage (treated water) flowing into series 1 where the water quality meter is installed and other series 2 where the water quality meter is not installed. Thus, the target air volume for the corrected series 2 is obtained. Based on the corrected target air volume for series 2, the opening degree of the air volume valve 8-1 for adjusting the aeration air volume for series 1 and the air volume valve 8-2 for adjusting the aeration air volume for series 2 is controlled. Thus, it is possible to realize appropriate air volume control to the other series 2 in which no water quality meter is installed.
 なお、本実施例では、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が等しくなるような系列2への目標風量を、式(11)を用いて算出したが、これに限られるものではない。例えば、系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)に、補正係数を乗じる、もしくは補正係数を加えた値と、系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が等しくなるような系列2への目標風量を算出する構成としても良い。 In this embodiment, the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 and in the series 2 aerobic tank (reaction tank) 4-2 is equal. Although the target air volume to is calculated using Expression (11), the present invention is not limited to this. For example, the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 is multiplied by or added with a correction coefficient, and the series 2 aerobic tank (reaction tank). A configuration may be adopted in which the target air volume for series 2 is calculated so that the dissolved oxygen concentration (DO concentration) in 4-2 becomes equal.
 また、本実施例では、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が等しくなるような系列2への目標風量に対し、系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量と、系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量の流量比に係る関数を乗ずることで、補正後の系列2への目標風量を求め設定する構成としたが、これに限られるものではない。系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量と、系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量に係る他の関数でも良く、例えば、系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量と、系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量の差分に係る関数を乗ずる構成としても良い。更にまた、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内の溶存酸素濃度(DO濃度)が等しくなるような系列2への目標風量に対し、系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量と、系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量に係る関数を加えることで、補正後の系列2への目標風量を求め設定しても良い。 
 なお、本実施例では、上述の式(13)において、系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量及び系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量を用いて、補正後の系列2への目標風量を求め設定したが、返送汚泥の流量及び/又は活性汚泥混合液の循環流量を、それぞれ系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量、系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量に加えても良い。
In this embodiment, the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 is equal. The flow rate of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 and the aerobic tank (reaction tank) 4-2 of the series 2 with respect to the target air volume to The target air volume to the corrected series 2 is obtained and set by multiplying the function related to the flow rate ratio of the inflow flow rate of sewage (treated water), but is not limited thereto. The flow rate of sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 and the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-2 of the series 2 Other functions related to the inflow rate may be used. For example, the inflow rate of sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1, and the series 2 aerobic tank (reaction tank) 4 -2 may be multiplied by a function related to the difference in the inflow rate of the sewage (treated water) flowing into -2. Furthermore, the target air volume to the series 2 such that the dissolved oxygen concentration (DO concentration) in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2 becomes equal. In contrast, the flow rate of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 and the sewage (treated) that flows into the aerobic tank (reaction tank) 4-2 of the series 2 The target air volume to the corrected series 2 may be obtained and set by adding a function related to the inflow flow rate of water.
In the present embodiment, the flow rate of the sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) in the above equation (13). ) The target air volume to the corrected series 2 was obtained and set using the inflow flow rate of sewage (treated water) flowing into 4-2, but the return sludge flow rate and / or the circulating flow rate of the activated sludge mixed liquid was set. The flow rate of sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1, respectively, and the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-2 of the series 2 May be added to the inflow flow rate.
 本実施例によれば、水質計が設置される代表系列におけるDO濃度に基づき他の複数系列における曝気風量の設定を、各系列への被処理水の流入流量に基づき補正することで、各系列における被処理水に対する処理量又は曝気風量を最適に制御可能とし得る水処理システムを実現することが可能となる。 
 更に、具体的には、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列の溶存酸素濃度(DO濃度)の計測値に基づき、水質計が設置されない他の系列への目標風量を算出する。算出された他の系列への目標風量に対し、水質計が設置される系列及び水質計が設置されない他の系列へ流入する下水(被処理水)の流入流量の相違を補正する係数を乗ずることで、補正後の他の系列2への目標風量を求める。求めた補正後の他の系列への目標風量に基づき、水質計が設置される系列への曝気風量を調整する風量弁8及び水質計が設置されない他の系列への曝気風量を調整する風量弁の開度を制御することにより、水質計が設置されない他の系列への適切な風量制御を実現することが可能となる。
According to the present embodiment, each series is corrected by correcting the setting of the aeration air volume in other series based on the DO concentration in the representative series where the water quality meter is installed based on the inflow flow rate of the water to be treated to each series. Therefore, it is possible to realize a water treatment system that can optimally control the amount of a water to be treated or the amount of aeration air.
Furthermore, specifically, based on the measured value of the dissolved oxygen concentration (DO concentration) of the series in which the air volume control using a water quality meter (for example, an ammonia meter) is executed, the flow to other series where the water quality meter is not installed. Calculate the target air volume. Multiplying the calculated target airflow to another series by a coefficient that corrects the difference in the inflow rate of sewage (treated water) that flows into the series where the water quality meter is installed and the other series where the water quality meter is not installed Thus, the target air volume to the other series 2 after correction is obtained. An air volume valve 8 that adjusts the aeration air volume to the series where the water quality meter is installed and an air volume valve that adjusts the aeration air volume to other series where the water quality meter is not installed based on the corrected target air volume to the other series By controlling the opening degree, it is possible to realize appropriate air volume control to other systems where no water quality meter is installed.
 図11に、本発明の他の実施例に係る実施例3の風量制御部を構成する第2目標風量演算部の処理フロー図を示し、図12に、実施例3の風量制御部を構成する風量弁開度演算部の処理フロー図を示す。なお、本実施例に係る水処理装置の構成は、上述の実施例2で示した図6の構成と同一である。また、本実施例の風量制御部の構成は、上述の実施例2で示した図7の機能ブロック図と同一である。本実施例では、実施例2で示した系列2への補正後の目標風量に加え、実施例1又は実施例2に示した系列1への目標風量に基づき系列2への目標風量を求め、当該求めた系列2への目標風量と上記系列2への補正後の目標風量を比較し、大となるいずれか一方の目標風量を系列2への目標風量とするよう構成した点が、実施例1及び実施例2と異なる。以下では、実施例1又は実施例2と重複する説明を省略する。 FIG. 11 shows a process flow diagram of the second target air volume calculation unit constituting the air volume control unit of the third embodiment according to another embodiment of the present invention, and FIG. 12 shows the air volume control unit of the third embodiment. The processing flow figure of an airflow valve opening calculating part is shown. In addition, the structure of the water treatment apparatus which concerns on a present Example is the same as the structure of FIG. 6 shown in the above-mentioned Example 2. FIG. Moreover, the structure of the air volume control part of a present Example is the same as the functional block diagram of FIG. 7 shown in the above-mentioned Example 2. FIG. In the present embodiment, in addition to the target air volume after correction to the series 2 shown in the second embodiment, the target air volume to the series 2 is obtained based on the target air volume to the series 1 shown in the first embodiment or the second embodiment. The embodiment is configured such that the target air volume for the series 2 thus obtained is compared with the corrected target air volume for the series 2, and any one of the target air volumes that are large is used as the target air volume for the series 2. 1 and different from Example 2. Below, the description which overlaps with Example 1 or Example 2 is abbreviate | omitted.
 本実施例では、風量制御部3a(図7)が、図6に示す系列1の好気槽(反応槽)4-1への目標風量に基づき、系列2の好気槽(反応槽)4-2への目標風量も演算する。水処理に必要な風量は、被処理水である下水の流入流量及び散気部の性能によって影響を受ける。そのため、系列2において系列1と処理性能を同様にするには、下水(被処理水)の流入流量及び散気部の性能の違いを補正し、目標風量を設定することが望ましい。系列1への目標風量に基づく系列2への目標風量設定式を式(14)に示す。  In the present embodiment, the air volume control unit 3a (FIG. 7) performs the aerobic tank (reaction tank) 4 of the series 2 based on the target air volume to the aerobic tank (reaction tank) 4-1 of the series 1 shown in FIG. The target air volume to -2 is also calculated. The amount of air necessary for water treatment is affected by the inflow rate of sewage to be treated and the performance of the diffuser. Therefore, in order to make the processing performance similar to that of the system 1 in the system 2, it is desirable to correct the difference in the flow rate of the sewage (treated water) and the performance of the air diffuser and set the target air volume. Formula (14) shows a target air volume setting formula for series 2 based on the target air volume for series 1. *
Figure JPOXMLDOC01-appb-M000014
ここで、QB2_air(t)[m/min]:時刻tにおける系列1の好気槽(反応槽)4-1への目標風量に基づく、系列2の好気槽(反応槽)4-2への目標風量(風量演算値)、QB1_set(t)[m/min]:時刻tにおける系列1の好気槽(反応槽)4-1への目標風量設定値、Qin_i(t)[m/min]:時刻tにおける系列iの好気槽(反応槽)への被処理水である下水の流入流量(i=1もしくは2)、δ〔-〕:散気効率に係る係数、q〔-〕:係数である。
Figure JPOXMLDOC01-appb-M000014
Here, QB 2 — air (t) [m 3 / min]: Series 2 aerobic tank (reaction tank) 4-based on the target air volume to the series 1 aerobic tank (reaction tank) 4-1 at time t 4 Qb 1_set (t) [m 3 / min]: target air flow set value to the aerobic tank (reaction tank) 4-1 of series 1 at time t, Q in — i (t ) [M 3 / min]: Inflow flow rate of sewage to the aerobic tank (reaction tank) of series i at time t (i = 1 or 2), δ [−]: related to air diffusion efficiency Coefficient, q [−]: Coefficient.
 次に、風量制御部3aは、上述の式(13)における系列1の好気槽(反応槽)4-1内の溶存酸素濃度(DO濃度)に基づく系列2への補正後の目標風量、すなわち、図9のステップ48にて得られた系列2の好気槽(反応槽)4-2への目標風量(補正後)と、式(14)における系列1の好気槽(反応槽)4-1への目標風量に基づく系列2の好気槽(反応槽)4-2への目標風量(風量演算値)とを比較し、より大きい目標風量を選択し系列2への目標風量として設定する。 
 また、風量制御部3aは、系列1散気配管18-1に設置される風量弁8-1及び系列2散気配管18-2に設置される風量弁8-2の開度を、上述の式(4)、式(5)に基づき制御する。風量弁8-1の開度は、系列1への風量が風量制御部3aで設定した系列1への目標風量の設定値に近づくように制御する。また、風量弁8-2の開度は、系列2への風量が風量制御部3aで設定した系列2への目標風量の設定値に近づくように制御する。
Next, the air volume control unit 3a corrects the target air volume to the series 2 based on the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) 4-1 of the series 1 in the above equation (13), That is, the target air volume (after correction) to the series 2 aerobic tank (reaction tank) 4-2 obtained in step 48 of FIG. 9 and the series 1 aerobic tank (reaction tank) in equation (14). Compare the target air volume (air volume calculation value) to the aerobic tank (reaction tank) 4-2 in the series 2 based on the target air volume to the 4-1 and select a larger target air volume as the target air volume to the series 2 Set.
Further, the air volume control unit 3a determines the opening degree of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1 and the air volume valve 8-2 installed in the series 2 aeration pipe 18-2. It controls based on Formula (4) and Formula (5). The opening degree of the air volume valve 8-1 is controlled so that the air volume to the series 1 approaches the set value of the target air volume to the series 1 set by the air volume control unit 3a. Further, the opening degree of the air volume valve 8-2 is controlled so that the air volume to the series 2 approaches the set value of the target air volume to the series 2 set by the air volume control unit 3a.
 このように、本実施例では、水質計(例えば、アンモニア計)を用いた風量制御を実施している系列の好気槽(反応槽)内の溶存酸素濃度(DO濃度)に基づく方法と、水質計が設置される好気槽(反応槽)への目標風量に基づく方法の2通りの方法により、それぞれ、水質計が設置されない他の系列への目標風量を求め、当該求めた他の系列への目標風量のうち処理性能の観点からより安全側の目標風量を選択することで、処理水の水質を良好に保つことができる。 Thus, in this example, the method based on the dissolved oxygen concentration (DO concentration) in the aerobic tank (reaction tank) of the series that performs air volume control using a water quality meter (for example, an ammonia meter), The target air volume is calculated for the other series where the water quality meter is not installed by the two methods based on the target air volume for the aerobic tank (reaction tank) where the water quality meter is installed. By selecting a safer target air volume from the viewpoint of processing performance among the target air volumes, the quality of the treated water can be kept good.
 以下に、風量制御部3aを構成する、第1目標風量演算部31a、第2目標風量演算部31b、及び風量弁開度演算部33による処理の詳細について説明する。 
(第1目標風量演算部) 
 第1目標風量演算部31aは、実施例2と同様に、図8に示すステップS11~ステップS15を実行し、系列1の好気槽(反応槽)4-1への目標風量を算出する。
(第2目標風量演算部) 
 図11は、風量制御部3aを構成する第2目標風量演算部31bの処理フロー図である。 
 図11に示すように、第2目標風量演算部31bは、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、時刻tにおける系列1の好気槽(反応槽)4-1への目標風量設定値QB1_set(t)を読み出す(ステップS61)。 
 続いて、系列1流入配管14-1に設置される流量計11-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量Qin_1(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1へ流入する下水(被処理水)の流入流量Qin_1(t)の計測値を、内部バス38を介して第2目標風量演算部31bへ転送する。これにより、第2目標風量演算部31bは、時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値を取得する(ステップS62)。
Below, the detail of the process by the 1st target air volume calculating part 31a, the 2nd target air volume calculating part 31b, and the air volume valve opening degree calculating part 33 which comprises the air volume control part 3a is demonstrated.
(First target air volume calculation unit)
Similarly to the second embodiment, the first target air volume calculation unit 31a executes steps S11 to S15 shown in FIG. 8 and calculates the target air volume to the aerobic tank (reaction tank) 4-1 of the series 1.
(Second target air volume calculation unit)
FIG. 11 is a process flow diagram of the second target air volume calculation unit 31b constituting the air volume control unit 3a.
As shown in FIG. 11, the second target air volume calculation unit 31 b accesses the storage unit 35 via the internal bus 38 and is stored in the storage unit 35, the series 1 aerobic tank (reaction tank) at time t. The target air volume setting value QB 1 — set (t) to 4-1 is read (step S61).
Subsequently, the sewage (treated water) flowing into the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the flow meter 11-1 installed in the series 1 inflow pipe 14-1. The measured value of the inflow flow rate Q in — 1 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) flowing into the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken, Is transferred to the second target air volume calculation unit 31b. Thereby, the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_1 (t) of the sewage (treated water) to the series 1 in the time t (step S62).
 ステップS63では、系列2流入配管14-2に設置される流量計11-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量Qin_2(t)の計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2へ流入する下水(被処理水)の流入流量Qin_2(t)の計測値を、内部バス38を介して第2目標風量演算部31bへ転送する。これにより、第2目標風量演算部31bは、時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値を取得する。 In step S63, sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the flow meter 11-2 installed in the series 2 inflow pipe 14-2. The measured value of the inflow flow rate Q in — 2 (t) is taken into the measured value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 uses the measured value of the inflow flow rate Q in — 2 (t) of the sewage (treated water) flowing into the series 2 aerobic tank (reaction tank) 4-2 at the time t taken in the internal bus Is transferred to the second target air volume calculation unit 31b. Thereby, the 2nd target air volume calculating part 31b acquires the measured value of the inflow flow rate Qin_2 (t) of the sewage (treated water) to the series 2 in the time t.
 ステップS64では、第2目標風量演算部31bは、ステップS61にて取得された時刻tにおける系列1の好気槽(反応槽)4-1への目標風量設定値QB1_set(t)、ステップS62にて取得された時刻tにおける系列1への下水(被処理水)の流入流量Qin_1(t)の計測値、及び、ステップS63にて取得された時刻tにおける系列2への下水(被処理水)の流入流量Qin_2(t)の計測値に基づき、系列2の好気槽(反応槽)4-2への目標風量QB2_air(t)を算出する。ここで、系列2の好気槽(反応槽)4-2への目標風量QB2_air(t)は、上述の式(14)を第2目標風量演算部31bが実行することにより算出される。 
 ステップS65では、第2目標風量演算部31bは、算出した系列2の好気槽(反応槽)4-2への目標風量(風量演算値)QB2_air(t)を、内部バス38を介して記憶部35の所定の記憶領域に格納する。なお、ステップS65に代えて、算出した系列2の好気槽(反応槽)4-2への目標風量(風量演算値)QB2_air(t)を、内部バス38を介して後述する風量弁開度演算部33へ転送する構成としても良い。また、ステップS62及びステップS63並列に実行するよう構成しても良い。
In step S64, the second target air volume calculation unit 31b sets the target air volume setting value QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t acquired in step S61, step S62. The measured value of the inflow flow rate Q in — 1 (t) of the sewage (treated water) to the series 1 at time t acquired at time t and the sewage (treated) to the series 2 at time t obtained in step S63 Based on the measured value of the inflow flow rate Q in — 2 (t) of water, the target air volume QB 2 — air (t) to the series 2 aerobic tank (reaction tank) 4-2 is calculated. Here, the target air volume QB 2_air (t) to the series 2 aerobic tank (reaction tank) 4-2 is calculated by the second target air volume calculating unit 31b executing the above-described equation (14).
In step S65, the second target air volume calculation unit 31b sends the calculated target air volume (air volume calculation value) QB 2_air (t) to the aerobic tank (reaction tank) 4-2 of the series 2 via the internal bus 38. The data is stored in a predetermined storage area of the storage unit 35. In place of step S65, the calculated target air volume (air volume calculation value) QB 2 — air (t) to the aerobic tank (reaction tank) 4-2 of the series 2 is opened via the internal bus 38 to be described later. It is good also as a structure transferred to the degree calculating part 33. FIG. Moreover, you may comprise so that it may perform in step S62 and step S63 in parallel.
 また、第2目標風量演算部31bは、実施例2と同様に、図9に示したステップS41~ステップS49を実行し、算出された系列2の好気槽(反応槽)4-2への補正後の目標風量を、内部バス38を介して記憶部35の所定の記憶領域へ格納する。
(風量弁開度演算部) 
 図12は、風量制御部3aを構成する風量弁開度演算部33の処理フロー図である。 
 図12に示すように、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、時刻tにおける系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)を読み出す(ステップS71)。ここで、記憶部35に格納される、時刻tにおける系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)は、上述の第1目標風量演算部31aにより算出された目標風量(図8)である。 
 ステップS72では、系列1散気配管18-1に設置される風量計13-1により計測された、時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)、すなわち、系列1散気配管18-1内を通流する時刻tにおける風量計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)を、内部バス38を介して風量開度演算部33へ転送する。これにより風量開度演算部33は、時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)を取得する。
Similarly to the second embodiment, the second target air volume calculation unit 31b executes Steps S41 to S49 shown in FIG. 9 and supplies the calculated series 2 to the aerobic tank (reaction tank) 4-2. The corrected target air volume is stored in a predetermined storage area of the storage unit 35 via the internal bus 38.
(Airflow valve opening calculator)
FIG. 12 is a process flow diagram of the air flow valve opening calculation unit 33 constituting the air flow control unit 3a.
As shown in FIG. 12, the air flow valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, the series 1 aerobic tank (reaction tank) at time t. The target air volume QB 1_set (t) to 4-1 is read (step S71). Here, the target air volume QB 1_set (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t stored in the storage unit 35 is calculated by the first target air volume calculating unit 31a. The target air volume (FIG. 8).
In step S72, the air volume measurement value QB 1 (indicated in the series 1 aerobic tank (reaction tank) 4-1 at time t, measured by the air volume meter 13-1 installed in the series 1 air diffusion pipe 18-1. t), that is, the air volume measurement value at the time t flowing through the series 1 aeration pipe 18-1 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measured value acquisition unit 34 sends the air volume measurement value QB 1 (t) to the aerobic tank (reaction tank) 4-1 of the series 1 at the time t taken into the air volume opening degree calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t.
 ステップS73では、風量弁開度演算部33は、ステップS72にて得られた時刻tにおける系列1の好気槽(反応槽)4-1への風量計測値QB(t)と、ステップS71にて取得された系列1の好気槽(反応槽)4-1への目標風量QB1_set(t)との差分e(t)を算出する。ここで、差分e(t)は上述の式(5)を風量弁開度演算部33が実行することにより算出される。 
 ステップS74では、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2への補正後の目標風量QB2_set(t)を読み出す。ここで、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2への補正後の目標風量QB2_set(t)は、上述の第2目標風量演算部31bにより算出された補正後の目標風量(図9)である。 
 ステップS75では、風量弁開度演算部33は、内部バス38を介して記憶部35へアクセスし、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2への目標風量(風量演算値)QB2_air(t)を読み出す。ここで、記憶部35に格納される、時刻tにおける系列2の好気槽(反応槽)4-2への目標風量(風量演算値)QB2_air(t)は、上述の第2目標風量演算部31bはより算出された目標風量(風量演算値)(図11)である。 
 ステップS76では、風量弁開度演算部33は、ステップS74にて読み出された時刻tにおける系列2の好気槽(反応槽)4-2への補正後の目標風量QB2_set(t)と、ステップS75にて読み出された時刻tにおける系列2の好気槽(反応槽)4-2への目標風量(風量演算値)QB2_air(t)とを比較する。比較の結果、補正後の目標風量QB2_set(t)及び目標風量(風量演算値)QB2_air(t)のうち、より大きな風量となるいずれか一方を選択する。
In step S73, the air volume valve opening calculator 33 calculates the air volume measurement value QB 1 (t) to the series 1 aerobic tank (reaction tank) 4-1 at time t obtained in step S72, and step S71. The difference e 1 (t) from the target air volume QB 1 — set (t) to the aerobic tank (reaction tank) 4-1 of the series 1 obtained in step ( 1 ) is calculated. Here, the difference e 1 (t) is calculated by the above-described equation (5) being executed by the air flow valve opening degree calculation unit 33.
In step S74, the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, the series 2 aerobic tank (reaction tank) 4-2 at time t. The target air volume QB 2_set (t) after correction to is read. Here, the corrected target air volume QB 2_set (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t stored in the storage unit 35 is the above-described second target air volume calculating unit 31b. Is the corrected target air volume (FIG. 9).
In step S75, the air volume valve opening calculation unit 33 accesses the storage unit 35 via the internal bus 38, and is stored in the storage unit 35, the series 2 aerobic tank (reaction tank) 4-2 at time t. The target air volume (air volume calculation value) QB 2 — air (t) is read. Here, the target air volume (air volume calculation value) QB 2_air (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t stored in the storage unit 35 is the second target air volume calculation described above. The part 31b is the calculated target air volume (air volume calculation value) (FIG. 11).
In step S76, the air volume valve opening calculator 33 calculates the corrected target air volume QB 2_set (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t read in step S74. Then, the target air volume (air volume calculation value) QB 2 — air (t) to the aerobic tank (reaction tank) 4-2 in the series 2 at time t read in step S75 is compared. As a result of the comparison, one of the corrected target air volume QB 2 — set (t) and target air volume (air volume calculation value) QB 2 — air (t) that has a larger air volume is selected.
 ステップS77では、系列2散気配管18-2に設置される風量計13-2により計測された、時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)、すなわち、系列2散気配管18-2内を通流する時刻tにおける風量計測値は、入力I/F36及び内部バス38を介して計測値取得部34に取り込まれる。計測値取得部34は、取り込んだ時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)を、内部バス38を介して風量開度演算部33へ転送する。これにより風量開度演算部33は、時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)を取得する。 In step S77, the air flow measurement value QB 2 (to the series 2 aerobic tank (reaction tank) 4-2 at time t, measured by the air flow meter 13-2 installed in the series 2 aeration pipe 18-2 ( t), that is, the air volume measurement value at the time t flowing through the series 2 aeration pipe 18-2 is taken into the measurement value acquisition unit 34 via the input I / F 36 and the internal bus 38. The measurement value acquisition unit 34 sends the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at the time t taken to the air volume opening calculation unit 33 via the internal bus 38. Forward. As a result, the air volume opening calculation unit 33 acquires the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t.
 ステップS78では、風量弁開度演算部33は、ステップS77にて取得された時刻tにおける系列2の好気槽(反応槽)4-2への風量計測値QB(t)と、ステップS76にて選択された系列2への補正後の目標風量QB2_set(t)又は系列2への目標風量(風量演算値)QB2_air(t)との差分e’(t)を算出する。ここで、差分e’(t)は上述の式(5)において、QB(t)をQB(t)に、QB1_set(t)をQB2_set(t)又はQB2_air(t)に置き換え、風量弁開度演算部33が実行することにより算出される。 In step S78, the air volume valve opening calculator 33 calculates the air volume measurement value QB 2 (t) to the series 2 aerobic tank (reaction tank) 4-2 at time t acquired in step S77, and step S76. The difference e 1 ′ (t) between the target air volume QB 2 — set (t) after correction to the series 2 selected in step 1 or the target air volume (air volume calculation value) QB 2 — air (t) to the series 2 is calculated. Here, the difference e 1 ′ (t) is equal to QB 1 (t) in QB 2 (t) and QB 1_set (t) in QB 2_set (t) or QB 2_air (t) in the above equation (5). It is calculated by the replacement and the air volume valve opening calculation unit 33 executing.
 ステップS79では、風量弁開度演算部33は、系列1散気配管18-1に設置される風量弁8-1の時刻tにおける開度計測値VO(t)、及び系列2散気配管18―2に設置される風量弁8-2の時刻tにおける開度計測値VO(t)を、入力I/F36、計測値取得部34、及び内部バス38を介して取り込む。 
 ステップS80では、ステップS79にて取り込まれた系列1の風量弁8-1の開度計測値VO(t)、系列2の風量弁8-2の開度計測値VO(t)、ステップS73にて得られた差分e(t)、及びステップS78にて得られた差分e’(t)に基づき、風量弁開度演算部33は、系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度を算出する。ここで、系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度は、上述の式(4)において、e(t)をe’(t)に置き換え、風量弁開度演算部33が実行することにより算出される。 
 ステップS81では、風量弁開度演算部33は、ステップS80にて算出した系列1の風量弁8-1の開度及び系列2の風量弁8-2の開度を、それぞれ指令値として、内部バス38及び出力I/F37を介して系列1の風量弁8-1及び系列2の風量弁8-2へ出力する。
In step S79, the air volume valve opening calculator 33 calculates the opening degree measured value VO 1 (t) at the time t of the air volume valve 8-1 installed in the series 1 aeration pipe 18-1, and the series 2 aeration pipe. The opening measurement value VO 2 (t) at the time t of the air flow valve 8-2 installed in 18-2 is taken in via the input I / F 36, the measurement value acquisition unit 34, and the internal bus 38.
In step S80, the opening degree measurement value VO 1 of Kazeryouben 8-1 series 1 taken at step S79 (t), opening the measurement value VO 2 of Kazeryouben 8-2 series 2 (t), step Based on the difference e 1 (t) obtained in S73 and the difference e 1 ′ (t) obtained in step S78, the air flow valve opening calculation unit 33 opens the air flow valve 8-1 in the series 1. And the opening degree of the air volume valve 8-2 of the series 2 are calculated. Here, the opening degree of the series 1 air volume valve 8-1 and the opening degree of the series 2 air volume valve 8-2 are changed by replacing e 2 (t) with e 1 ′ (t) in the above equation (4). It is calculated by the air volume valve opening calculation unit 33 executing.
In step S81, the air volume valve opening calculator 33 uses the opening of the series 1 air volume valve 8-1 and the opening of the series 2 air volume valve 8-2 calculated in step S80 as command values, respectively. The air is output to the series 1 air volume valve 8-1 and the series 2 air volume valve 8-2 via the bus 38 and the output I / F 37.
 上述の通り、風量制御部3aを構成する、第1目標風量演算部31a、第2目標風量演算部31b及び風量弁開度演算部33が動作することにより、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列1の溶存酸素濃度(DO濃度)の計測値に基づく方法と、水質計が設置される系列1の好気槽(反応槽)への目標風量に基づく方法の2通りの方法により、それぞれ、水質計が設置されない他の系列2への目標風量を求め、当該求めた他の系列2への目標風量のうち処理性能の観点からより安全側の目標風量を選択することで、処理水の水質を良好に保つことができる。 As described above, a water quality meter (for example, an ammonia meter) is operated by operating the first target air volume calculating unit 31a, the second target air volume calculating unit 31b, and the air volume valve opening degree calculating unit 33 that constitute the air volume control unit 3a. A method based on the measured value of the dissolved oxygen concentration (DO concentration) of the series 1 executing the air volume control used, and a method based on the target air volume to the aerobic tank (reaction tank) of the series 1 where the water quality meter is installed Using the two methods, the target air volume for the other series 2 where the water quality meter is not installed is obtained, and among the obtained target air volumes for the other series 2, the target air volume on the safer side is determined from the viewpoint of processing performance. By selecting, the quality of treated water can be kept good.
 なお、本実施例では式(14)において、下水(被処理水)好気槽(反応槽)への流入流量及び散気効率が、系列毎に相違する点を考慮し、系列2への目標風量を設定したが、必ずしもこれに限られるものではない。例えば、系列1の好気槽(反応槽)4-1及び系列2の好気槽(反応槽)4-2内に微生物濃度計としての曝気混合液浮遊物濃度計(MLSS計)を設置し、MLSS濃度の違いを考慮した設定式により、系列2への目標風量を設定しても良い。 
 なお、本実施例では、散気効率に係る係数を固定値としたが、風量と溶存酸素濃度(DO濃度)の関係などを用いて演算した値を用いても良い。
In the present embodiment, in Formula (14), in consideration of the difference in the inflow flow rate and aeration efficiency into the sewage (treated water) aerobic tank (reaction tank) for each series, the target for the series 2 Although the air volume is set, it is not necessarily limited to this. For example, an aeration liquid suspension concentration meter (MLSS meter) as a microbial concentration meter is installed in the series 1 aerobic tank (reaction tank) 4-1 and the series 2 aerobic tank (reaction tank) 4-2. The target air volume for series 2 may be set by a setting formula that takes into account the difference in MLSS concentration.
In this embodiment, the coefficient related to the air diffusion efficiency is a fixed value, but a value calculated using the relationship between the air volume and the dissolved oxygen concentration (DO concentration) may be used.
 本実施例によれば、水質計が設置される代表系列におけるDO濃度に基づき他の複数系列における曝気風量の設定を、各系列への被処理水の流入流量に基づき補正することで、各系列における被処理水に対する処理量又は曝気風量を最適に制御可能とし得る水処理システムを実現することが可能となる。 
 更に、具体的には、水質計(例えば、アンモニア計)を用いた風量制御を実行している系列の溶存酸素濃度(DO濃度)の計測値に基づく方法と、水質計が設置される系列の好気槽(反応槽)への目標風量に基づく方法の2通りの方法により、それぞれ、水質計が設置されない他の系列への目標風量を求め、当該求めた他の系列への目標風量のうち処理性能の観点からより安全側の目標風量を選択することで、処理水の水質を良好に保つことが可能となる。
According to the present embodiment, each series is corrected by correcting the setting of the aeration air volume in other series based on the DO concentration in the representative series where the water quality meter is installed based on the inflow flow rate of the water to be treated to each series. Therefore, it is possible to realize a water treatment system that can optimally control the amount of a water to be treated or the amount of aeration air.
Furthermore, specifically, a method based on a measured value of dissolved oxygen concentration (DO concentration) in a series in which air volume control using a water quality meter (for example, an ammonia meter) is executed, and a series in which the water quality meter is installed Using the two methods based on the target airflow to the aerobic tank (reaction tank), obtain the target airflow to the other series where the water quality meter is not installed, and out of the calculated target airflow to the other series By selecting a safer target air volume from the viewpoint of processing performance, it is possible to maintain good quality of the treated water.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
1・・・水処理システム
2・・・水処理装置
3,3a・・・風量制御部
4-1,4-2・・・好気槽(反応槽)
5-1,5-2・・・最終沈殿池
6-1,6-2・・・散気部
7・・・ブロワ
8-1,8-2・・・風量弁
9-1,9-2・・・返送ポンプ
10・・・アンモニア計
11-1,11-2・・・流量計
12-1,12-2・・・溶存酸素濃度計(DO計)
13-1,13-2・・・風量計
14・・・流入配管
14-1・・・系列1流入配管
14-2・・・系列2流入配管
15-1・・・系列1流出配管
15-2・・・系列2流出配管
16-1,16-2・・・活性汚泥
17-1・・・系列1返送汚泥配管
17-2・・・系列2返送汚泥配管
18-1・・・系列1散気配管
18-2・・・系列2散気配管
31・・・目標風量演算部
31a・・・第1目標風量演算部(系列1)
31b・・・第2目標風量演算部(系列2)
32・・・DO濃度目標値演算部
33・・・風量弁開度演算部
34・・・計測値取得部
35・・・記憶部
36・・・入力I/F
37・・・出力I/F
38・・・内部バス
DESCRIPTION OF SYMBOLS 1 ... Water treatment system 2 ... Water treatment apparatus 3, 3a ... Air volume control part 4-1, 4-2 ... Aerobic tank (reaction tank)
5-1, 5-2 ... Final sedimentation tanks 6-1, 6-2 ... Air diffuser 7 ... Blowers 8-1, 8-2 ... Air flow valves 9-1, 9-2 ... Return pump 10 ... Ammonia meters 11-1, 11-2 ... Flow meters 12-1, 12-2 ... Dissolved oxygen concentration meter (DO meter)
13-1, 13-2 ... Air flow meter 14 ... Inflow piping 14-1 ... Series 1 inflow piping 14-2 ... Series 2 inflow piping 15-1 ... Series 1 outflow piping 15- 2 ... Series 2 outflow piping 16-1, 16-2 ... Activated sludge 17-1 ... Series 1 return sludge piping 17-2 ... Series 2 return sludge piping 18-1 ... Series 1 Aeration pipe 18-2... Series 2 aeration pipe 31... Target air volume calculation unit 31a... First target air volume calculation unit (series 1)
31b ... second target air volume calculation unit (series 2)
32 ... DO concentration target value calculation unit 33 ... Air flow valve opening calculation unit 34 ... Measurement value acquisition unit 35 ... Storage unit 36 ... Input I / F
37 ... Output I / F
38 ... Internal bus

Claims (11)

  1.  少なくとも好気槽を含む反応槽と前記好気槽に設けられた散気部を有する複数の系列を備え、前記複数の系列全てに設置され前記好気槽の溶存酸素濃度を計測する溶存酸素濃度計と、各系列の前記反応槽へ流入する被処理水の流量を計測する流量計又は前記被処理水の流量を推定する流量推定部と、一の系列の前記好気槽に設置される水質計と、各系列の前記散気部へ空気を供給するブロワと、を有する水処理装置と、
     前記ブロワより各系列の散気部へ供給される空気の風量を制御する風量制御部と、を備え、
     前記風量制御部は、
     前記水質計の計測値に基づき前記水質計が設置される一の系列への風量を制御すると共に、
     前記一の系列及び前記他の系列のうち少なくとも一つの系列の溶存酸素濃度計測値と、前記一の系列の水質計が設置される一の系列の被処理水の流入流量及び前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき、前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする水処理システム。
    A plurality of systems having at least a reaction tank including an aerobic tank and a diffuser provided in the aerobic tank; and a dissolved oxygen concentration for measuring a dissolved oxygen concentration of the aerobic tank installed in all of the plurality of systems A flow meter for measuring the flow rate of water to be treated flowing into the reaction tanks of each series or a flow rate estimation unit for estimating the flow rate of the treated water, and the water quality installed in the aerobic tank of one series A water treatment device having a meter and a blower for supplying air to the air diffuser of each series;
    An air volume control unit for controlling the air volume of air supplied from the blower to each series of air diffusers,
    The air volume control unit
    While controlling the air volume to one series where the water quality meter is installed based on the measurement value of the water quality meter,
    Of the one series and the other series, at least one of the dissolved oxygen concentration measurement values, the inflow flow rate of the water to be treated of one series where the water quality meter of the one series is installed, and the other series A water treatment system characterized by controlling an air volume to at least one of the other series based on an inflow rate of water to be treated of at least one series.
  2.  請求項1に記載の水処理システムにおいて、
     前記風量制御部は、
     前記水質計の計測値に基づき前記一の系列への目標風量を求める目標風量演算部と、
     前記一の系列の溶存酸素濃度計測値及び被処理水の流入流量と、前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき、前記他の系列のうち少なくとも一つの系列の溶存酸素濃度目標値を求める溶存酸素濃度目標値演算部と、を備え、
     前記他の系列のうち少なくとも一つの系列の前記溶存酸素濃度目標値と前記溶存酸素濃度計測値に基づき、前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 1,
    The air volume control unit
    A target air volume calculating unit for obtaining a target air volume to the one series based on the measurement value of the water quality meter;
    Based on the measured dissolved oxygen concentration value of the one series and the inflow rate of the treated water, and the inflow rate of the treated water of at least one series of the other series, at least one series of the other series A dissolved oxygen concentration target value calculation unit for obtaining a dissolved oxygen concentration target value;
    A water treatment characterized by controlling the air volume to at least one of the other series based on the dissolved oxygen concentration target value and the dissolved oxygen concentration measurement value of at least one of the other series system.
  3.  請求項1に記載の水処理システムにおいて、
     前記風量制御部は、
     前記水質計の計測値に基づき前記一の系列への目標風量を求める第1目標風量演算部と、
     前記一の系列及び前記他の系列のうち少なくとも一つの系列の溶存酸素濃度計測値が同様となる前記他の系列のうち少なくとも一つの系列への目標風量を求め、当該求めた前記他の系列のうち少なくとも一つの系列への目標風量と、前記一の系列及び前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき、前記他の系列のうち少なくとも一つの系列への前記目標風量を補正する第2目標風量演算部と、を備え、
     前記第2目標風量演算部による補正後の目標風量に基づき前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 1,
    The air volume control unit
    A first target air volume calculating unit for obtaining a target air volume for the one series based on the measurement value of the water quality meter;
    Finding the target air volume to at least one of the other series in which the dissolved oxygen concentration measurement value of at least one of the one series and the other series is the same, and obtaining the other series Based on the target air volume to at least one of the series and the inflow flow rate of the treated water of at least one of the one series and the other series, the target to at least one of the other series A second target air volume calculation unit for correcting the air volume,
    The water treatment system characterized by controlling the air volume to at least one of the other systems based on the target air volume corrected by the second target air volume computing unit.
  4.  請求項1に記載の水処理システムにおいて、
     前記風量制御部は、
     前記水質計の計測値に基づき前記一の系列への目標風量を求める第1目標風量演算部と、
     前記一の系列の溶存酸素濃度計測値及び被処理水の流入流量と、前記他の系列のうち少なくとも一つの系列の溶存酸素濃度目標値を求め、当該求めた前記他の系列のうち少なくとも一つの系列の前記溶存酸素濃度目標値と前記溶存酸素濃度計測値に基づき、前記他の系列のうち少なくとも一つの系列への目標風量を求めると共に、
     前記第1目標風量演算部による前記一の系列への目標風量と、前記一の系列及び前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき前記他の系列のうち少なくとも一つの系列への目標風量演算値を求める第2目標風量演算部と、を備え、
     前記他の系列のうち少なくとも一つの系列への目標風量及び前記目標風量演算値のうち何れか一方に基づき前記他の系列のうち少なくとも一つの系列の風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 1,
    The air volume control unit
    A first target air volume calculating unit for obtaining a target air volume for the one series based on the measurement value of the water quality meter;
    The dissolved oxygen concentration measurement value of the one series and the inflow flow rate of the water to be treated and the dissolved oxygen concentration target value of at least one series of the other series are obtained, and at least one of the obtained other series is obtained. Based on the dissolved oxygen concentration target value of the series and the dissolved oxygen concentration measurement value, and obtaining a target air volume to at least one of the other series,
    At least one of the other series based on the target air volume to the one series by the first target air volume calculating unit and the inflow flow rate of the water to be treated of at least one of the one series and the other series. A second target air volume calculation unit for obtaining a target air volume calculation value for one series,
    A water treatment system that controls the air volume of at least one of the other series based on one of the target air volume to at least one of the other series and the target air volume calculation value. .
  5.  請求項1に記載の水処理システムにおいて、
     前記風量制御部は、
     前記水質計の計測値に基づき前記一の系列への目標風量を求める第1目標風量演算部と、
     前記一の系列及び前記他の系列のうち少なくとも一つの系列の溶存酸素濃度計測値が同様となる前記他の系列のうち少なくとも一つの系列への目標風量を求め、当該求めた前記他の系列のうち少なくとも一つの系列への目標風量と、前記一の系列及び前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき、前記他の系列のうち少なくとも一つの系列への補正後の目標風量を求めると共に、
     前記第1目標風量演算部による前記一の系列への目標風量と、前記一の系列及び前記他の系列のうち少なくとも一つの系列の被処理水の流入流量に基づき前記他の系列への目標風量演算値を求める第2目標風量演算部と、を備え、
     前記補正後の目標風量及び前記目標風量演算値のうち何れか一方に基づき前記他の系列のうち少なくとも一つの系列の風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 1,
    The air volume control unit
    A first target air volume calculating unit for obtaining a target air volume for the one series based on the measurement value of the water quality meter;
    Finding the target air volume to at least one of the other series in which the dissolved oxygen concentration measurement value of at least one of the one series and the other series is the same, and obtaining the other series After correction to at least one of the other series based on the target air volume to at least one of the series and the inflow flow rate of the treated water of at least one of the one series and the other series While calculating the target air volume of
    The target air volume to the other series based on the target air volume to the one series by the first target air volume calculating unit and the inflow flow rate of the treated water of at least one of the one series and the other series A second target air volume calculating unit for calculating a calculated value,
    A water treatment system, wherein the air volume of at least one of the other series is controlled based on one of the corrected target air volume and the target air volume calculation value.
  6.  請求項2に記載の水処理システムにおいて、
     前記水処理装置は、前記一の系列の散気部と前記ブロワとを接続する散気配管に設置される風量計を備え、
     前記風量制御部は、
     前記目標風量演算部による前記一の系列への目標風量と前記風量計による風量計測値との差分と、前記溶存酸素濃度目標値演算部による前記他の系列のうち少なくとも一つの系列の溶存酸素濃度目標値と前記溶存酸素濃度計測値との差分とに基づき、前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 2,
    The water treatment device includes an air flow meter installed in an air diffuser pipe connecting the air diffuser of the one series and the blower,
    The air volume control unit
    The difference between the target air volume to the one series by the target air volume calculator and the air volume measurement value by the anemometer, and the dissolved oxygen concentration of at least one of the other series by the dissolved oxygen concentration target value calculator A water treatment system that controls an air volume to at least one of the other series based on a difference between a target value and a measured value of the dissolved oxygen concentration.
  7.  請求項3に記載の水処理システムにおいて、
     前記水処理装置は、前記一の系列の散気部と前記ブロワとを接続する第1散気配管に設置される第1風量計と、前記他の系列のうち少なくとも一つの系列の散気部と前記ブロワとを接続する第2散気配管に設置される第2風量計と、を備え、
     前記風量制御部は、
     前記第1目標風量演算部による前記一の系列への目標風量と前記第1風量計による風量計測値との差分と、前記第2目標風量演算部による前記他の系列のうち少なくとも一つの系列への補正後の目標風量と前記第2風量計による風量計測値との差分とに基づき、前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 3,
    The water treatment apparatus includes: a first air flow meter installed in a first aeration pipe connecting the one series of air diffusers and the blower; and at least one series of air diffusers of the other series And a second air flow meter installed in a second aeration pipe connecting the blower,
    The air volume control unit
    To at least one of the difference between the target air volume to the one series by the first target air volume calculation unit and the air volume measurement value by the first air flow meter and the other series by the second target air volume calculation unit A water treatment system that controls the air volume to at least one of the other series based on the difference between the corrected target air quantity and the air quantity measurement value obtained by the second anemometer.
  8.  請求項4に記載の水処理システムにおいて、
     前記水処理装置は、前記一の系列の散気部と前記ブロワとを接続する第1散気配管に設置される第1風量計と、前記他の系列のうち少なくとも一つの系列の散気部と前記ブロワとを接続する第2散気配管に設置される第2風量計と、を備え、
     前記風量制御部は、
     前記第1目標風量演算部による前記一の系列への目標風量と前記第1風量計による風量計測値との差分と、前記第2目標風量演算部による前記他の系列のうち少なくとも一つの系列への目標風量又は前記目標風量演算値と前記第2風量計による風量計測値との差分とに基づき、前記他の系列のうち少なくとも一つの系列への風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 4,
    The water treatment apparatus includes: a first air flow meter installed in a first aeration pipe connecting the one series of air diffusers and the blower; and at least one series of air diffusers of the other series And a second air flow meter installed in a second aeration pipe connecting the blower,
    The air volume control unit
    To at least one of the difference between the target air volume to the one series by the first target air volume calculation unit and the air volume measurement value by the first air flow meter and the other series by the second target air volume calculation unit A water treatment system that controls the air volume to at least one of the other series based on the target air volume or the difference between the target air volume calculation value and the air volume measurement value obtained by the second anemometer .
  9.  請求項5に記載の水処理システムにおいて、
     前記水処理装置は、前記一の系列の散気部と前記ブロワとを接続する第1散気配管に設置される第1風量計と、前記他の系列のうち少なくとも一つの系列の散気部と前記ブロワとを接続する第2散気配管に設置される第2風量計と、を備え、
     前記風量制御部は、
     前記第1目標風量演算部による前記一の系列への目標風量と前記第1風量計による風量計測値との差分と、前記第2目標風量演算部による前記補正後の目標風量又は前記目標風量演算値と前記第2風量計による風量計測値との差分とに基づき、前記他の系列のうち少なくとも一つ系列への風量を制御することを特徴とする水処理システム。
    The water treatment system according to claim 5,
    The water treatment apparatus includes: a first air flow meter installed in a first aeration pipe connecting the one series of air diffusers and the blower; and at least one series of air diffusers of the other series And a second air flow meter installed in a second aeration pipe connecting the blower,
    The air volume control unit
    The difference between the target air volume to the one series by the first target air volume calculator and the air volume measurement value by the first air volume meter, the corrected target air volume by the second target air volume calculator, or the target air volume calculation A water treatment system for controlling an air volume to at least one of the other series based on a difference between a value and an air quantity measured by the second anemometer.
  10.  請求項6乃至請求項9のうち、いずれか一項に記載の水処理システムにおいて、
     前記水質計は、アンモニア性窒素濃度、硝酸性窒素濃度、全窒素濃度、リン酸性リン濃度、全リン濃度、生物化学的酸素要求量、化学的酸素要求量、及び全有機炭素のうちいずれか一つを計測する計測器であることを特徴とする水処理システム。
    In the water treatment system according to any one of claims 6 to 9,
    The water quality meter is any one of ammonia nitrogen concentration, nitrate nitrogen concentration, total nitrogen concentration, phosphoric acid phosphorus concentration, total phosphorus concentration, biochemical oxygen demand, chemical oxygen demand, and total organic carbon. Water treatment system characterized by being a measuring instrument that measures water.
  11.  請求項6乃至請求項9のうち、いずれか一項に記載の水処理システムにおいて、
     全ての系列の前記反応槽に設置され、前記反応槽内の活性汚泥浮遊物質濃度を計測する活性汚泥浮遊物質濃度計を備え、
     前記風量制御部は、
     前記水質計の計測値に基づき前記水質計が設置される一の系列への風量を制御すると共に、
     前記水質計の計測値と、全ての系列の溶存酸素濃度計測値及び活性汚泥浮遊物濃度計測値と、前記一の系列の被処理水の流入流量と、前記他の系列の被処理水の流入流量とに基づき前記他の系列への風量を制御することを特徴とする水処理システム。
    In the water treatment system according to any one of claims 6 to 9,
    Installed in the reaction tanks of all series, equipped with an activated sludge suspended solids concentration meter that measures the activated sludge suspended solids concentration in the reaction tank,
    The air volume control unit
    While controlling the air volume to one series where the water quality meter is installed based on the measurement value of the water quality meter,
    Measurement values of the water quality meter, all series of dissolved oxygen concentration measurement values and activated sludge suspended matter concentration measurement values, the inflow flow rate of the treated water of the one series, and the inflow of treated water of the other series A water treatment system that controls an air volume to the other series based on a flow rate.
PCT/JP2016/072712 2015-09-28 2016-08-03 Water treatment system WO2017056696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680053125.8A CN108025935B (en) 2015-09-28 2016-08-03 Water treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015189125A JP6499952B2 (en) 2015-09-28 2015-09-28 Water treatment system
JP2015-189125 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017056696A1 true WO2017056696A1 (en) 2017-04-06

Family

ID=58423144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072712 WO2017056696A1 (en) 2015-09-28 2016-08-03 Water treatment system

Country Status (3)

Country Link
JP (1) JP6499952B2 (en)
CN (1) CN108025935B (en)
WO (1) WO2017056696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148042A1 (en) 2022-02-07 2023-08-10 Nchain Licensing Ag Blockchain based privacy enhanced outsourced data storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199525A1 (en) * 2022-04-15 2023-10-19 三菱電機株式会社 Water treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183991A (en) * 1982-04-22 1983-10-27 Toshiba Corp Controller for aeration tank
JPS60102997A (en) * 1983-11-09 1985-06-07 Hitachi Ltd Energy-conserving type controlling method for aerating air quantity
JPS60220191A (en) * 1984-04-17 1985-11-02 Toshiba Corp Air amount control apparatus of aeration tank
JPS61192392A (en) * 1985-02-22 1986-08-26 Shinko Electric Co Ltd Calculation of aeration air amount
JP2005199115A (en) * 2004-01-13 2005-07-28 Toshiba Corp Aeration air quantity controller for sewage treatment plant
JP2006281159A (en) * 2005-04-04 2006-10-19 Hitachi Ltd Water treatment method of water treatment plant and water treatment plant
JP2015051389A (en) * 2013-09-06 2015-03-19 株式会社日立製作所 Water treatment controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663674B (en) * 2013-12-18 2015-05-20 清华大学 Control method of real-time control device for blast aeration process of sewage treatment plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183991A (en) * 1982-04-22 1983-10-27 Toshiba Corp Controller for aeration tank
JPS60102997A (en) * 1983-11-09 1985-06-07 Hitachi Ltd Energy-conserving type controlling method for aerating air quantity
JPS60220191A (en) * 1984-04-17 1985-11-02 Toshiba Corp Air amount control apparatus of aeration tank
JPS61192392A (en) * 1985-02-22 1986-08-26 Shinko Electric Co Ltd Calculation of aeration air amount
JP2005199115A (en) * 2004-01-13 2005-07-28 Toshiba Corp Aeration air quantity controller for sewage treatment plant
JP2006281159A (en) * 2005-04-04 2006-10-19 Hitachi Ltd Water treatment method of water treatment plant and water treatment plant
JP2015051389A (en) * 2013-09-06 2015-03-19 株式会社日立製作所 Water treatment controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148042A1 (en) 2022-02-07 2023-08-10 Nchain Licensing Ag Blockchain based privacy enhanced outsourced data storage

Also Published As

Publication number Publication date
CN108025935B (en) 2021-07-13
JP6499952B2 (en) 2019-04-10
CN108025935A (en) 2018-05-11
JP2017064568A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
JP5608027B2 (en) Water treatment system and aeration air volume control method thereof
JP2012187587A (en) Denitrification process and system
Palatsi et al. Enhancement of biological nutrient removal process with advanced process control tools in full-scale wastewater treatment plant
JP4509579B2 (en) Aeration air volume control device of sewage treatment plant
JP6532397B2 (en) Operation support device and operation support method of sewage treatment plant
JP6619242B2 (en) Water treatment system
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
JP2011147858A (en) Apparatus and method for treating sewage
WO2017056696A1 (en) Water treatment system
KR102041326B1 (en) Oxygen control system for activated sludge process using harmony search algorithm
JP2019150795A (en) Aeration amount control method and facility for aerobic tank in sewage treatment facility
JP4008694B2 (en) Sewage treatment plant water quality controller
JP6655975B2 (en) Aeration control device and aeration control method
JP2006075804A (en) Apparatus for assisting operation of sewage disposal plant
JP2012170883A (en) Activated sludge treating apparatus and treating method
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP7194628B2 (en) Wastewater treatment equipment and wastewater treatment method
JP6474208B2 (en) Aeration air volume calculation device and water treatment system
JP6726954B2 (en) Sewage treatment control device
KR20210000141A (en) Integrated control system for sewage treatment plant
JP6375257B2 (en) Water treatment equipment
JP2016007576A (en) Water treatment plant
JP2015016410A (en) Wastewater treatment method and apparatus, and control method, control device, and program
JP4620391B2 (en) Sewage treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850873

Country of ref document: EP

Kind code of ref document: A1