JPS5827692A - Airflow controller for aeration vessel - Google Patents

Airflow controller for aeration vessel

Info

Publication number
JPS5827692A
JPS5827692A JP56124680A JP12468081A JPS5827692A JP S5827692 A JPS5827692 A JP S5827692A JP 56124680 A JP56124680 A JP 56124680A JP 12468081 A JP12468081 A JP 12468081A JP S5827692 A JPS5827692 A JP S5827692A
Authority
JP
Japan
Prior art keywords
aeration
air volume
pressure
airflow
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56124680A
Other languages
Japanese (ja)
Inventor
Shunsuke Endo
俊輔 遠藤
Koichi Ikeda
耕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56124680A priority Critical patent/JPS5827692A/en
Publication of JPS5827692A publication Critical patent/JPS5827692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To eliminate ineffective power consumption, by adding objective airflow values for aeration vessels to obtain a gross airflow value, and controlling a suction valve with a value, obtained by adding an in-pipe loss in response to the gross airflow value at the end of an air blow pipe in the aeration vessel, as a target value. CONSTITUTION:When required airflow amounts for aeration vessels 10 are large, a gross airflow Q obtained by adding an objective airflow value for each aertion vessel becomes large, an objective value of injection pressure calculated by corrector 13 becomes large, a pressure controller 14 carries out control operation to open a suction valve 4, and the injection pressure of a blower 1 increases so that the necessary airflow is performed to the aeration vessels 10. When the required airflow amount for the aeration vessels 10 are reduced, the target airflow value to be inputted to an aeration airflow controller 9 becomes small, so that the aertion airflow controller 9 suqueezes an aeration airflow control valve 8 to reduce an actual airflow amount to a level corresponding to the objective airflow amount.

Description

【発明の詳細な説明】 本発明は、下水や排水処理場における曝気槽の風量制御
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air volume control device for an aeration tank in a sewage or wastewater treatment plant.

下水や工場排水を処理する良め広く活性汚泥が用いられ
ており、曝気槽中の汚泥を活性化するには被処理水の流
入量の数倍の送風量が必要とされ、一般的に検数台の送
風機が設備される。さらに1各曝気槽に至る配管抵抗の
ばらつきや送風機のサージング防止のため送風圧一定制
御が採用されている。従来の風量制御装置のブロック図
を第1図に示す。図中11)は送風機で、送風機の容量
は、通常曝気槽への送風量(流入水の3〜7倍量)と予
備曝気槽への送風量(流入水の1倍量)とによって決め
られ、大容量を必要とするため複数台(数台)の送風機
が用いられる。(2)は吸気孔で、空気を清浄化するた
めのフィルタを具えている。(31は吸込風量計でオリ
フィスなどが用いられ吸込風量を測定する。<4Jは吸
込弁、(53は送風機の吐出側配管を集合した1本の配
管に設けられた吐出圧力針、(6)は圧力調節計で、吐
出圧力計(5)からの吐出圧力測定値と予め定められた
設定圧とをつき合せその偏差をゼロにするように吸込弁
(4)の開度を制御して吐出圧一定制御を行なう。吐出
圧力計(5)の後流位置で分岐された各送風管はそれぞ
れオリフィスなどの曝気風量針(7)および曝気風量調
節弁(8)を経て各曝気槽a1に一対一で接続されてい
る。1ilI気風量計(7)の出力はそれぞれ各曝気風
量調節計(9)へ入力され、流入水量などによって決定
される0榔風量とつき合わされ、その偏差がゼロになる
ように鵠へ送風される。
Activated sludge is widely used to treat sewage and industrial wastewater, and in order to activate the sludge in the aeration tank, an air flow rate several times the inflow of the water to be treated is required. Several blowers will be installed. Furthermore, constant air pressure control is adopted to prevent variations in piping resistance leading to each aeration tank and to prevent surging of the air blower. A block diagram of a conventional air volume control device is shown in FIG. 11) in the figure is a blower, and the capacity of the blower is normally determined by the amount of air blown to the aeration tank (3 to 7 times the amount of inflow water) and the amount of air blown to the preliminary aeration tank (1 time the amount of inflow water). , multiple (several) blowers are used because large capacity is required. (2) is an intake hole, which is equipped with a filter for purifying the air. (31 is a suction air flow meter that uses an orifice etc. to measure the suction air volume. <4J is a suction valve, (53 is a discharge pressure needle installed in one pipe that collects the discharge side pipes of the blower, (6) is a pressure regulator, which compares the discharge pressure measurement value from the discharge pressure gauge (5) with a predetermined set pressure and controls the opening degree of the suction valve (4) so as to reduce the deviation to zero. A constant pressure control is performed.Each blast pipe branched at the downstream position of the discharge pressure gauge (5) is connected to each aeration tank a1 via an aeration air volume needle (7) such as an orifice and an aeration air volume control valve (8). The output of the 1ilI airflow meter (7) is inputted to each aeration airflow rate controller (9), and is compared with the 0.000m airflow rate determined by the amount of inflow water, etc., so that the deviation is zero. The wind is blown towards the mouse.

1配の風量制御装置における曝気風量alS節弁(8)
による制御の特性をWJz図に示す。図中の曲線R8−
R,は調節弁(8)全開時の圧力−風量曲線であり、吐
出圧が一定値P。に設定されているとすれば、曲線Rお
−R0上の圧力P0の点A。における流量Q0が調節弁
(8)全開時の送風量、すなわち吐出圧がP。のときの
最大送風量である。このとき、曲線R8−Roの縦軸と
の交点すなわち風量がゼロのときの圧力pBと圧力P0
との差(Po  Pg)は風量Q0のときの配管の管路
損失でToシ、圧力PHは各曝気槽C1(i内の送風管
端末における末端圧である。
Aeration air volume alS control valve in single air volume control device (8)
The WJz diagram shows the characteristics of control by Curve R8- in the figure
R is a pressure-airflow curve when the control valve (8) is fully open, and the discharge pressure is a constant value P. , then point A of pressure P0 on the curve R-R0. The flow rate Q0 is the air flow rate when the control valve (8) is fully open, that is, the discharge pressure is P. This is the maximum air flow rate when At this time, the pressure pB and the pressure P0 at the intersection of the curve R8-Ro with the vertical axis, that is, when the air volume is zero,
The difference (Po Pg) is the pipe line loss of the piping when the air volume Q0 is Toshi, and the pressure PH is the terminal pressure at the end of the blast pipe in each aeration tank C1 (i).

いま、吐出圧をP、のまま変えずに風量がQs (Ql
<Qo)になるように調節弁(8)を絞つ九ときの圧力
−風量曲線が曲線R1−R,であシ、曲線R8−R1上
の圧力P、の点A、から横軸へおろした垂線AIQ+と
曲−R,−R,との交点をC1とすれば、C1点の圧力
P、とP。
Now, without changing the discharge pressure P, the air volume is Qs (Ql
The pressure-airflow curve when the control valve (8) is throttled down so that <Qo) is plotted on the horizontal axis from point A on curve R1-R, and pressure P on curve R8-R1. If the intersection of the perpendicular AIQ+ and the curves -R, -R is C1, then the pressures P and P at point C1.

との差(Ps  Ps ) Fi調節弁(8)を絞った
ことによる弁損失である。また、CPr  Pm ) 
#i風量Q1のときの配管の管路損失である。つま9、
この場合は、吐出圧を一定値P・に保ったままで、調節
弁(8)を絞つて風量Qlを得ているので、その時の管
路抵抗よりも大きい弁損失が生じてお9、無駄である。
(Ps Ps ) This is the valve loss caused by throttling the Fi control valve (8). Also, CPr Pm)
#i is the pipe line loss of the piping when the air volume is Q1. Toe 9,
In this case, the air volume Ql is obtained by throttling the control valve (8) while keeping the discharge pressure at a constant value P, so a valve loss greater than the pipe resistance at that time occurs9, which is wasteful. be.

風量Q1を得るために必要な吐出圧はP、であり、吐出
圧をPlにすれば調節弁(8)を絞らずに風量をQ、に
することができ、無駄な弁損失をゼロにすることができ
る。
The discharge pressure required to obtain the air volume Q1 is P, and if the discharge pressure is set to Pl, the air volume can be set to Q without throttling the control valve (8), reducing unnecessary valve loss to zero. be able to.

一方、送風機111の吸込弁(4)の制御特性は第3図
のようになる。図中、曲線B0は吸込弁(4)を絞らな
いときの圧力−風量曲線で、吸込弁(4Jを絞ると圧カ
ー風量−1Iil#i曲線(B1)へと変化する。曲線
R8−Roは第2図に示し友ものと同じもので、風量調
節弁(8)全開時の圧力−風量曲線である。吸込弁(4
1を絞ると運転点は曲!! Beと曲@ R,−Roと
の交点A0から曲線B1と蘭@R,−Roとの交点A、
へと推移し、その時の送風機(1)に要する動力は曲線
L0から曲線り。
On the other hand, the control characteristics of the suction valve (4) of the blower 111 are as shown in FIG. In the figure, the curve B0 is the pressure-air volume curve when the suction valve (4) is not throttled, and when the suction valve (4J) is throttled, it changes to the pressure car air volume-1Iil#i curve (B1).The curve R8-Ro is This is the pressure-air volume curve when the air volume control valve (8) is fully open, which is the same as the companion shown in Figure 2.
If you narrow down to 1, the driving point is a song! ! From the intersection A0 of Be and the song @R, -Ro to the intersection A of the curve B1 and Ran @R, -Ro,
The power required by the blower (1) at that time curves from the curve L0.

へと変り、動力が減少する。したがって、曝気槽への必
要送風量がQlのとき送風機吐出圧をPlに設定制御す
ることにより、送風機動力を風量Q、にお峠る曲線−と
曲1IILIとの差分だけ節減できることになる。
, and the power decreases. Therefore, by setting and controlling the blower discharge pressure to Pl when the required air flow rate to the aeration tank is Ql, the blower power can be reduced by the difference between the curve passing to the air flow rate Q and the song 1IILI.

以上の説明から明らかなように、第1図にボした従来の
風量制御装置は、曝気槽への送風量の多少に拘わらず送
風機の吐出圧を一定にするものであり、曝気槽への所要
送風量を制御するには曝気風量調節弁(8)の開度を変
えることによっている。
As is clear from the above explanation, the conventional air flow control device shown in Fig. 1 keeps the discharge pressure of the blower constant regardless of the amount of air blown to the aeration tank, and the The amount of air blown is controlled by changing the opening degree of the aeration air amount control valve (8).

所要送風量が大なるときに必要表吐出圧を得るために送
風機の所豊動力も大きくなり、所要送風量が小なるとき
にも前記の運転状態の11で曝気風量制御弁(8)を絞
ってその弁損失によって送itを小さくしているので無
駄な動力を費いやしていることになる。
When the required air flow rate increases, the required power of the blower also increases in order to obtain the required discharge pressure, and even when the required air flow rate decreases, the aeration air flow control valve (8) is throttled in the operating state 11. Since the feed rate is reduced due to the valve loss, power is wasted.

本発明は、従来の風量制御装置における動力の無駄を解
消すべくなされたもので、送風機の吐出圧を曝気槽への
必要な送風量を確保するのに必豊且つ充分な圧力にする
ため、それぞれの曝気槽の目標風量値を加算して曝気槽
への既遂風量値管求め、その風量に対応する管路損失を
曝気槽内の送風管端末で必要な末端圧に加算した値を吐
出圧の目標値として吸込弁を制御するように°して、曝
気風量調節弁における弁損失の低減と送mmの動力の低
減を実現した曝気槽風量制御装置を提供するものである
The present invention was made in order to eliminate the waste of power in conventional air volume control devices, and in order to make the discharge pressure of the fan necessary and sufficient to ensure the necessary amount of air blown to the aeration tank, The actual air volume value to the aeration tank is determined by adding the target air volume values for each aeration tank, and the discharge pressure is calculated by adding the pipe line loss corresponding to that air volume to the required end pressure at the end of the air pipe in the aeration tank. The purpose of the present invention is to provide an aeration tank air volume control device that achieves a reduction in valve loss in an aeration air volume control valve and a reduction in power for feeding mm by controlling a suction valve based on a target value of .

以下、本発明の実施例を図面を参照して説明する。本発
+jJKよる曝気槽風量制御装置の一実施例を第4図に
示す、第4図において、(1)は送風機、(2)は吸気
孔、(31は吸込流量計、(4)は吸込弁、(51If
i吐出圧力計、(7)は曝気風量針、(8)は曝気風量
調節弁、(9)は曝気風量調節計、αG#i曝気檜曝気
これらは第1図と同様に構成されている。aυは加算器
で、各曝気槽の0榔風量値を示す信号が入力され、それ
らを加算して得られた線速風量値Qを出力する。
Embodiments of the present invention will be described below with reference to the drawings. An embodiment of the aeration tank air volume control device according to the present invention + j Valve, (51If
i discharge pressure gauge, (7) aeration air volume needle, (8) aeration air volume control valve, (9) aeration air volume control meter, αG#i aeration cypress aeration These are constructed in the same manner as shown in FIG. aυ is an adder, into which a signal indicating the zero air volume value of each aeration tank is inputted, and outputs a linear velocity air volume value Q obtained by adding these signals.

a3は圧力設定器て、曝気槽(1(l内の送風管の端末
にかがる水頭に適宜の圧力を加算して得られた曝気槽内
の送風管端末における末端圧P]!が設定される。
A3 is the pressure setting device, and the aeration tank (1 (end pressure P at the end of the blower pipe in the aeration tank obtained by adding an appropriate pressure to the head of water at the end of the blower pipe in l)! be done.

03は補正装置で、圧力設定器αaからの設定圧pgお
よび加算5allからの線速風量値Qが入力され、線速
風量値9の概略2乗に比例する配管損失圧力を求め、こ
の値に設定圧力pBを加算して得られた吐出圧目標値P
1を出力する。すなわち、p、 −pl!+(af(Q
) 十b )−・−tt+ここに  P、:吐出圧目標
値 PE:設定圧力 a、b:定 数 af(Q) ”縫込風量の概略2乗に比例する配管損失
項 04)は圧力調節針で、補正装置α4からの吐出圧目標
値P1と吐出圧力計(5)の出力すなわち実吐田圧Pb
とを突き合せその偏差がゼロになるように吸込弁(4)
の開度を制御する。
03 is a correction device, into which the set pressure pg from the pressure setting device αa and the linear velocity air volume value Q from the addition 5all are input, and the piping loss pressure proportional to approximately the square of the linear velocity air volume value 9 is calculated. Discharge pressure target value P obtained by adding set pressure pB
Outputs 1. That is, p, −pl! +(af(Q
) 10b) -・-tt+Here P,: Discharge pressure target value PE: Set pressure a, b: Constant af (Q) ``The piping loss term 04), which is approximately proportional to the square of the sewing air volume, is the pressure adjustment With a needle, the discharge pressure target value P1 from the correction device α4 and the output of the discharge pressure gauge (5), that is, the actual discharge pressure Pb
and the suction valve (4) so that the deviation becomes zero.
Controls the opening degree.

上記のよ′うに構成された本発明による曝気槽風量制御
装置では、曝気槽αqの必要風量が大なるときには、そ
れぞれの曝気槽の目標風量値を加算した線速風量値Qが
大となシ、上記は1式により補正装置α濁によって演算
される吐出圧目標値P、Lが大となり、したがって圧力
調節計(141は吸込弁(4)を開く制御動作を行ない
、送風all)の吐出圧が増大して曝気槽Q(lに必要
な風量が送風される。曝気槽(11)の必要風量が減少
したときには、曝気風量調節計(9)へ入力される0橡
風量値が小になるため曝気風量調節計(9)は曝気風量
調節弁(8)を絞シ実送風量を1樟風量に一致するよう
に減少させる。また、加算器0υに入力される各曝気槽
の目積風量値が小になるため線速風量値Qが減少するた
め補正装置αJで演算されて出力される吐出圧目標値P
、が低下するので、圧力調節計α荀の制御信号にょシ吸
込弁(4)が絞られ送風機!1)の吐出圧が低下する。
In the aeration tank air volume control device according to the present invention configured as described above, when the required air volume of the aeration tank αq becomes large, the linear velocity air volume value Q, which is the sum of the target air volume values of the respective aeration tanks, becomes large. In the above case, the discharge pressure target values P and L calculated by the correction device α turbidity according to equation 1 become large, and therefore the discharge pressure of the pressure regulator (141 performs a control operation to open the suction valve (4) and blow all the air). increases, and the required air volume is blown to the aeration tank Q(l). When the required air volume of the aeration tank (11) decreases, the 0 2 air volume value input to the aeration air volume controller (9) becomes smaller. Therefore, the aeration air volume controller (9) throttles the aeration air volume control valve (8) and reduces the actual air volume to match the air volume of 1 camphor.In addition, the nominal air volume of each aeration tank is input to the adder 0υ. Since the value becomes smaller, the linear velocity air volume value Q decreases, so the discharge pressure target value P is calculated and output by the correction device αJ.
, decreases, so the control signal of the pressure regulator α is throttled down to the suction valve (4) and the blower is turned off. 1) The discharge pressure decreases.

同時に送風機filの動力も低減する。送風機(1]の
吐出圧が低下するので、曝気風量針(7)の出力が低下
し、曝気風量調節針(9)は風量目標値と一致させるた
め曝気風量調節弁(8)を開く制御動作を行ない、曝気
風量調節弁(8)の弁損失が低減された状態で低下した
必要風量の曝気風量を送風するように整定する。
At the same time, the power of the blower fil is also reduced. As the discharge pressure of the blower (1) decreases, the output of the aeration air volume needle (7) decreases, and the aeration air volume adjustment needle (9) performs a control action to open the aeration air volume control valve (8) to match the air volume target value. Then, the aeration air volume is set so that the required aeration air volume is blown while the valve loss of the aeration air volume control valve (8) is reduced.

以上詳述したように、本発明による曝気槽風量制御装置
によれば、曝気槽の必要風量の大小に応じて送風機の吐
出圧を必要風量を送風するのに必要且つ充分な圧力に制
御するようにしたので、送風機の吐出圧を送風量の大な
るときに必要な高い吐出圧を保つように吐出圧一定制御
を行なってい友従来の風量制御装置にくらべて、送風機
の動力が低減されるとともに、曝気槽の必要風量が小な
るときに曝気風量調節弁(8)で絞って送風蓋を必要風
量に一致させていた無駄が解消され、エネルギ効率のよ
い曝気槽送風装置を実現することができる。1
As detailed above, according to the aeration tank air volume control device according to the present invention, the discharge pressure of the blower is controlled to a pressure necessary and sufficient to blow the required air volume, depending on the size of the required air volume of the aeration tank. As a result, the discharge pressure of the blower is controlled to be constant so as to maintain the high discharge pressure required when the air flow is large.Compared to conventional air volume control devices, the power of the blower is reduced and This eliminates the waste of adjusting the air cover to match the required air volume by adjusting the aeration air volume control valve (8) when the required air volume of the aeration tank is small, and it is possible to realize an energy-efficient aeration tank blower device. . 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の曝気槽風量制御装置の構成を示すブロッ
ク図、第2図は曝気風量調節弁制御の特性を示すグラフ
、第3図は吸込弁制御の特性を示すグラフ、第4図は本
発明による罎気槽風it制御装置の一実施例の構成を示
すブロック図である。 l・・送風機     2・・吸気孔 3・吸込流量計   4・・吸込弁 5・・・吐出圧力計   7・・曝気風量計8・・曝気
風量調節弁  9・曝気風量調節計10・・・曝気槽 
   11・・・加算器12°゛・圧力設定器  13
・・・補正装置14・・圧力調節計 代理人 弁理士  井 上 −男 →風覆(29t   IJσ 第3図 第4図
Fig. 1 is a block diagram showing the configuration of a conventional aeration tank air volume control device, Fig. 2 is a graph showing the characteristics of the aeration air volume control valve control, Fig. 3 is a graph showing the characteristics of the suction valve control, and Fig. 4 is a graph showing the characteristics of the suction valve control. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the configuration of an embodiment of an air tank style IT control device according to the present invention. l...Blower 2...Intake hole 3...Suction flow meter 4...Suction valve 5...Discharge pressure gauge 7...Aeration air flow meter 8...Aeration air flow control valve 9.Aeration air flow control meter 10...Aeration tank
11...Adder 12°゛・Pressure setting device 13
...Correction device 14...Pressure regulator agent Patent attorney Inoue - Male → Wind cover (29t IJσ Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 吸込gsKそれぞれ吸込弁を有する複数台の送風機と、
これらの送風機の吐出側配管が集合された1本の配管に
挿入接続された吐出圧力計と、この吐出圧力針の俵流位
置で分枝されそれぞれ曝気風量計シよび曝気風量調節弁
を経て複数の曝気槽に一対一て接続された複数本の送風
管と、これらの送風管ごとに設けられそれぞれの曝気槽
への被処理水の流入量などく対応して決まる自律風量値
と前記曝気風量計からの風量測定値とをつき合せ偏差が
ゼt2になるように前記曝気風量調節弁の開度を制御す
る曝気風量調節計と、前記それぞれの曝気槽の9榔風量
値を加算して既遂風量値を求め出力する加算器と、前記
曝気槽内の送風管端末にかかる水頭に適宜の圧力を加算
して得られた送風管の末端圧が設定されこの設定圧を出
力する圧力設定器と、この圧力設定器からの設定圧およ
び前記加算機からの既遂風量値が入力され既遂風量値の
概略2乗に比例する配管損失圧力を算出しこの配管損失
圧力に前記設定圧を加算して得られた吐出圧目榔値を出
力する補正装置と、この補正装置からの吐出圧目榔値と
前記吐出圧力計からの圧力創定値とをつき合せ偏差がゼ
ロになるように前記吸込弁の開度管制御する圧力調節針
とを具備してなる曝気槽風量制御装置。
a plurality of air blowers each having a suction valve;
A discharge pressure gauge is inserted and connected to a single pipe where the discharge side pipes of these blowers are collected, and a plurality of pipes are branched at the bale flow position of this discharge pressure needle through an aeration air flow meter and an aeration air flow control valve. A plurality of blower pipes are connected one-to-one to the aeration tank, and an autonomous air volume value and the aeration air volume are provided for each of these pipes and are determined in accordance with the amount of water to be treated that flows into each aeration tank. This was accomplished by adding an aeration air volume controller that controls the opening degree of the aeration air volume control valve so that the deviation from the air volume measurement value from the meter is zt2, and the nine air volume values of each of the aeration tanks. an adder that calculates and outputs an air volume value; and a pressure setting device that sets the end pressure of the blast pipe obtained by adding an appropriate pressure to the water head applied to the blast pipe end in the aeration tank and outputs this set pressure. , the set pressure from this pressure setting device and the achieved air volume value from the adder are input, and the pipe loss pressure which is approximately proportional to the square of the achieved air volume value is calculated, and the set pressure is added to this pipe loss pressure to obtain the result. a correction device that outputs the discharge pressure target value that has been calculated, and compares the discharge pressure target value from the correction device with the pressure creation value from the discharge pressure gauge and opens the suction valve so that the deviation becomes zero. An aeration tank air volume control device that is equipped with a pressure adjustment needle that controls the flow rate of the aeration tank.
JP56124680A 1981-08-11 1981-08-11 Airflow controller for aeration vessel Pending JPS5827692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124680A JPS5827692A (en) 1981-08-11 1981-08-11 Airflow controller for aeration vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124680A JPS5827692A (en) 1981-08-11 1981-08-11 Airflow controller for aeration vessel

Publications (1)

Publication Number Publication Date
JPS5827692A true JPS5827692A (en) 1983-02-18

Family

ID=14891407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124680A Pending JPS5827692A (en) 1981-08-11 1981-08-11 Airflow controller for aeration vessel

Country Status (1)

Country Link
JP (1) JPS5827692A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157397A (en) * 1984-12-29 1986-07-17 Shinko Electric Co Ltd Apparatus for controlling concentration of dissolved oxygen
JPS61143697U (en) * 1985-02-28 1986-09-04
JP2017113677A (en) * 2015-12-22 2017-06-29 メタウォーター株式会社 Wastewater treatment system, air supply amount control device and air supply amount control method
WO2018179476A1 (en) * 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150851A (en) * 1978-05-18 1979-11-27 Toshiba Corp Exposing air amount control
JPS5547186A (en) * 1978-09-28 1980-04-03 Toshiba Corp Controller for quantity of aeration
JPS55104697A (en) * 1979-02-07 1980-08-11 Hitachi Ltd Aerator
JPS56111088A (en) * 1980-02-06 1981-09-02 Nobutsugu Kato Method for controlling dissolved oxygen of sewage treatment process
JPS56129088A (en) * 1980-03-13 1981-10-08 Ebara Corp Control of air blow in sewage disposal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150851A (en) * 1978-05-18 1979-11-27 Toshiba Corp Exposing air amount control
JPS5547186A (en) * 1978-09-28 1980-04-03 Toshiba Corp Controller for quantity of aeration
JPS55104697A (en) * 1979-02-07 1980-08-11 Hitachi Ltd Aerator
JPS56111088A (en) * 1980-02-06 1981-09-02 Nobutsugu Kato Method for controlling dissolved oxygen of sewage treatment process
JPS56129088A (en) * 1980-03-13 1981-10-08 Ebara Corp Control of air blow in sewage disposal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157397A (en) * 1984-12-29 1986-07-17 Shinko Electric Co Ltd Apparatus for controlling concentration of dissolved oxygen
JPS6317514B2 (en) * 1984-12-29 1988-04-14 Shinko Electric Co Ltd
JPS61143697U (en) * 1985-02-28 1986-09-04
JPH04958Y2 (en) * 1985-02-28 1992-01-13
JP2017113677A (en) * 2015-12-22 2017-06-29 メタウォーター株式会社 Wastewater treatment system, air supply amount control device and air supply amount control method
WO2018179476A1 (en) * 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume
JP2018167249A (en) * 2017-03-30 2018-11-01 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method
JP2021176638A (en) * 2017-03-30 2021-11-11 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method
US11597667B2 (en) 2017-03-30 2023-03-07 Metawater Co., Ltd. Wastewater treatment system, air supply amount control device, and air supply amount control method

Similar Documents

Publication Publication Date Title
US4552303A (en) Air-conditioning system
CN111905536B (en) Automatic control system for pH value of slurry passing through desulfurization absorption tower
JPS5827692A (en) Airflow controller for aeration vessel
JPS5841116B2 (en) Sewage treatment feed gas control method
JP3426447B2 (en) Automatic water supply
CN209005223U (en) A kind of liquid ammonia evaporation system
JPS55104697A (en) Aerator
JP2005152734A (en) Minute air bubble-supplying apparatus
JPS60102997A (en) Energy-conserving type controlling method for aerating air quantity
JP2582737B2 (en) How to prevent clogging of water humidification nozzle for air conditioning
US2783070A (en) Sand traps
JPH0230076Y2 (en)
JPH04958Y2 (en)
JPH0438474B2 (en)
JPS5935043B2 (en) Water volume smoothing system for water distribution facilities
JP3361859B2 (en) Blower control device
JPS5837240A (en) Flow control system of water distribution pond
JP3671585B2 (en) Real-time evaluation method for discrete control system
JPS5712890A (en) Controller of aeration amount in aeration vessel
JPS61171898A (en) Blower flow control equipment
SU1535461A1 (en) Device for controlling temperature in hanger-type hothouse
JPS58102905U (en) Boiler feed water pump recirculation flow control device
JPS5898191A (en) Controller for purification of water in activated sludge process
JPH0679273A (en) Ultra-pure water producing device
JPH06221509A (en) Control method of raw water supplying amount for deaerating device