JPS61157397A - Apparatus for controlling concentration of dissolved oxygen - Google Patents

Apparatus for controlling concentration of dissolved oxygen

Info

Publication number
JPS61157397A
JPS61157397A JP59276583A JP27658384A JPS61157397A JP S61157397 A JPS61157397 A JP S61157397A JP 59276583 A JP59276583 A JP 59276583A JP 27658384 A JP27658384 A JP 27658384A JP S61157397 A JPS61157397 A JP S61157397A
Authority
JP
Japan
Prior art keywords
blower
air
point
operating
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59276583A
Other languages
Japanese (ja)
Other versions
JPS6317514B2 (en
Inventor
Shinichiro Endo
遠藤 真一郎
Takami Egawa
江川 隆己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP59276583A priority Critical patent/JPS61157397A/en
Publication of JPS61157397A publication Critical patent/JPS61157397A/en
Publication of JPS6317514B2 publication Critical patent/JPS6317514B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To reduce cost, by connecting an aeration tank to the emitting side of a blower through a regulation valve and mounting a pipeline characteristic measuring apparatus for calculating the resistance coefficient of the blow pipe to the aeration tank and the static water head pressure of the aeration tank. CONSTITUTION:The DO values of aeration tanks 1, 2 are detected by DO meters 3, 4 and supplied to system 1 and system 2 demand air amount calculation apparatuses 33, 34 to calculate the demand air amounts Q1, Q2 of the aeration tanks 1, 2. An operation region calculation apparatus 41 operates operation regions E1-E5 prior to control to store the same in an operation region table 42. A demand point calculation apparatus 43 calculates min. emitting pressure P satisfying the demand air amount Q1 from the demand air-amounts Q1, Q2 and temps. T1, T0 to determine a demand point (Q1+Q2, P). A blower selection apparatus 44 selects a blower satisfying a demand from the demand point and the operation regions E1-E5 stored in the operation region table 42.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は活性汚泥法による下水処理システムに使用し
て好適な溶存酸素濃度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dissolved oxygen concentration control device suitable for use in a sewage treatment system using an activated sludge method.

〔従来の技河〕[Traditional technique river]

下水処理システム等の汚水処理システムにおける処理水
質は、エアレーションタンク内の汚水の溶存酸素濃度(
以下、Doと略記)に依存するので、pOを最適値に保
つことが必要である。
The quality of treated water in sewage treatment systems such as sewage treatment systems is determined by the dissolved oxygen concentration (
(hereinafter abbreviated as Do), it is necessary to maintain pO at an optimal value.

第8図は、2系列のエアレーションタンク(以下、エア
タンと略記)l、2を有する従来装置の構成を示すもの
で、エアタン1.2内のDOは、DO計3,4によって
検出され、DO制御器5゜6へ電気信号として供給され
る。Do制御器5゜6は、DOを予め定められた値に保
つのに必要な風量を演算し、風量制御器7,8を介して
調節弁9、lOの開度を制御し、エアタン1.2へ必要
風量を供給する。この場合、上記風量は風量計11.1
2によって検出され、風量制御器7,8に供給される。
FIG. 8 shows the configuration of a conventional device having two series of aeration tanks (hereinafter abbreviated as air tanks) 1 and 2. DO in the air tank 1.2 is detected by DO meters 3 and 4, and the DO It is supplied as an electrical signal to the controller 5.6. The Do controller 5.6 calculates the air volume necessary to maintain DO at a predetermined value, controls the opening degrees of the control valves 9 and 1O via the air volume controllers 7 and 8, and controls the air tank 1. Supply the necessary air volume to 2. In this case, the above air volume is the air flow meter 11.1
2 and supplied to air volume controllers 7 and 8.

上記調節弁9.lOの入側にエアを供給するのはブロワ
15−1 (i =1 、2−n)であり、各ブロワ1
5−1の吸込側には風量計16−1と吸込弁17−1と
が備えられ、吸い込まれたエアは管路18によって−た
ん統合され、各n節介9゜10に分岐されるよう罠なっ
ている。そして、管路18に設けられた圧力計19によ
つ【ブロワ15の吐出圧Pが測定され、これが圧力設定
器20によって設定された値と一致するように、圧力制
御器21によってコントロールされる。すなわち、上記
圧力制御器21は、各吸込弁17−1の開度を制御する
風量制御器22−1をコントロールして、吐出圧Pを制
御する。また、このとき各吸込弁17−1に流れる風量
が風量計16−1によって検出され、その総和が加算器
23を介して台数制御器24に送られ、ブロワ15の運
転パターンが決定され、選択されたブロワの運転が行わ
れるようになっている。
The above control valve 9. Blower 15-1 (i = 1, 2-n) supplies air to the inlet side of lO, and each blower 1
The suction side of 5-1 is equipped with an airflow meter 16-1 and a suction valve 17-1, and the sucked air is unified by a pipe 18 and branched into each n joint 9°10. It's become a trap. Then, the pressure gauge 19 provided in the pipe line 18 measures the discharge pressure P of the blower 15, and the pressure controller 21 controls the discharge pressure P so that it matches the value set by the pressure setting device 20. . That is, the pressure controller 21 controls the discharge pressure P by controlling the air volume controller 22-1 that controls the opening degree of each suction valve 17-1. Also, at this time, the amount of air flowing into each suction valve 17-1 is detected by the airflow meter 16-1, and the total sum is sent to the number controller 24 via the adder 23, and the operation pattern of the blower 15 is determined and selected. The blower is now in operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した従来の装置においては、各調節弁9
.10での風量制御を容易にするために、ブロワ15の
吐出圧Pを高めに設定し【おき、前記調節弁9,10の
開度な絞ることによって、各エアタン1.2の要求風量
を実現している。従って、調節弁9.lOの開度を変え
るにけで、必要      ゞな風量制御を行うことが
できるものの、ブロワ15の吐出圧Pを予め高くとって
おかなければならず、ブロワ15の動力が大きくなって
しまうという問題がおった。
By the way, in the conventional device described above, each control valve 9
.. 10, the discharge pressure P of the blower 15 is set high, and the required air volume of each air tongue 1.2 is achieved by narrowing the opening of the control valves 9 and 10. are doing. Therefore, the control valve 9. Although the necessary air volume control can be performed by changing the opening degree of IO, the problem is that the discharge pressure P of the blower 15 must be set high in advance, and the power of the blower 15 becomes large. There was a thunderstorm.

また、エアタンが1台の既存の装置に、もう1台のエア
タンを増設して第8図に示すような構成にするためには
、既存装置を大幅に改造しなければならないという問題
があった。すなわち、この場合は、管路18とエアタン
lとの間に調節弁9と風量計11とを増設しなければな
らず(エアタンが1台の場合は、管路18とエアタンl
とが直結されているため)、工費が嵩むという問題があ
った。
Additionally, in order to add another air tongue to an existing device with one air tongue to create the configuration shown in Figure 8, there was a problem in that the existing device had to be significantly modified. . That is, in this case, it is necessary to add the control valve 9 and the air flow meter 11 between the pipe line 18 and the air tank l (if there is only one air tank, the pipe line 18 and the air tank l need to be installed).
(because they are directly connected), there was a problem of high construction costs.

一方、冥施例図面第2図に示すように、管路18とエア
タンlとは直結したまま、管路18と増設されたエアタ
ン2との間に調節弁30と風量計31とをプr挿するよ
うにすれは、工事は簡単になるものの、風量制御が極め
′C難しくなるという問題があった。
On the other hand, as shown in FIG. 2 of the construction drawing, a control valve 30 and an air flow meter 31 are installed between the pipe 18 and the added air tank 2, while keeping the pipe 18 and the air tank 1 directly connected. Although the construction work is easier when the airflow is inserted, there is a problem in that it becomes extremely difficult to control the air volume.

すなわち、ブロワ15の吐出側とエアタン1との間に調
節弁がないため、エアタンlへの供給風量は、吐出圧P
に依存する上に、エアタン2への風量によっても変化し
てしまい、これらの風量が相互干渉を起こすこととなる
That is, since there is no control valve between the discharge side of the blower 15 and the air tongue 1, the amount of air supplied to the air tongue 1 is equal to the discharge pressure P.
In addition to depending on the amount of air, it also changes depending on the amount of air flowing into the air tongue 2, and these amounts of air may interfere with each other.

例えば、エアタンlへの風量を一定に保ったまま、エア
タン2への風量を増やすには、まず調節弁SOの開度な
大きくすることが考えられるが、これのみでは吐出圧P
が下がり、エアタンlへの風量が少なくなってしまう。
For example, in order to increase the air volume to the air tongue 2 while keeping the air volume to the air tongue l constant, it is possible to first increase the opening of the control valve SO, but this alone will not increase the discharge pressure P.
will drop, and the amount of air flowing into the air tongue will decrease.

このため、吸込弁17の開度な増してエアタンlへの風
量を制御すると、今度はエアタン2への風量が大きくな
ってしまう。
Therefore, if the amount of air flowing into the air tongue 1 is controlled by increasing the opening degree of the suction valve 17, the amount of air flowing into the air tongue 2 will increase.

このように、調節弁30と吸込弁17の開度は、どちら
もエアタンlと2の風量に影響するため、風量側Mは極
め【困難となる(ただし、従来のように調節弁9.lO
での余分な圧力損失がないため、吐出圧Pは小さくてす
み、ブロワ動力も小さくて済む)。
In this way, since the opening degrees of the control valve 30 and the suction valve 17 both affect the air volume of the air tanks 1 and 2, it becomes extremely difficult to adjust the air volume side M (however, unlike the conventional control valve 9.lO
Since there is no extra pressure loss at the pump, the discharge pressure P can be small and the blower power can also be small).

この発明は、第2図に示すシステム構成において、この
ような制御上の困難を克服しようとするものである。
The present invention attempts to overcome such control difficulties in the system configuration shown in FIG.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明は、(alブロ
ワの吐出側に直結されたエアレーションタンク(1)と
、 (υ前記ブロワの吐出側に調節弁(30)を介し【連結
されたエアレーションタンク(2)と、(c)fv1記
各xlv−シpンpyp(1)、(2)の送風管抵抗係
数と、^11記各エアレーションタンク(1)、(2)
の静水頭圧とを求める管路特性測定装置(55)と、 ldl剖紀各吸入弁開度を最大、最小にしたときのブロ
ワ特性曲線と、前記調節弁開度を最大、最小にしたとき
の抵抗曲線とから前記各ブロワの運転パターンに対応す
る運転領域を求める運転領域算出装置1i(41)と、 (el t4rJ 記%エアレーションタンク(1)、
(2)の要求風量を満足するための前記ブロワの風量お
よび吐出圧からなる要求点を求める要求点算出装置(4
3)と、 (f)前記要求点と前記運転領域とから前記ブロワの最
適運転パターンを求めるブロワ選択装置(44)と、 (gl前記要求点と前記最適運転パターンとから前記調
節弁と前記吸入弁との開度を求める運転点算出装置(4
5)と を具備することを特徴とする。
In order to solve the above problems, the present invention provides an aeration tank (1) directly connected to the discharge side of the al blower, and an aeration tank (1) connected to the discharge side of the blower via a control valve (30). Tank (2), (c) Air pipe resistance coefficient of each xlv-ship pyp (1), (2) described in fv1, and each aeration tank (1), (2) described in ^11
A pipe line characteristic measuring device (55) for determining the hydrostatic head pressure of ldl, a blower characteristic curve when each suction valve opening is maximized and minimum, and a blower characteristic curve when the control valve opening is maximized and minimum. an operating range calculating device 1i (41) that calculates an operating range corresponding to the operating pattern of each blower from the resistance curve of the above-mentioned resistance curve;
A required point calculating device (4
3); (f) a blower selection device (44) that determines an optimal operating pattern for the blower from the required point and the operating range; Operating point calculation device (4
5).

〔作用〕[Effect]

上記構成によれば、管路18とエアタンlとは直結され
たままなので、従来装置を改造することなくエアタン2
の増設が可能となる。また、以下の手順によって、吐出
圧Pを最小圧に保ちながら、各エアタン1.2へ必要風
量を供給することかできる。以下、このための処理につ
いて説明する。
According to the above configuration, since the pipe line 18 and the air tank 1 remain directly connected, the air tank 2 can be used without modifying the conventional device.
can be expanded. Further, by the following procedure, the required air volume can be supplied to each air tongue 1.2 while maintaining the discharge pressure P at the minimum pressure. The processing for this will be explained below.

(1)管路特性の測定。(1) Measurement of pipe characteristics.

第1図、第2図のエアタンt、2への供給風量(吐出圧
Pにおける体積風量)をQt−、Qz−(m”/h)、
吐出圧をP(mAq)とすれは、以下の式が成立する。
The air volume supplied to the air tongues t and 2 in Figs. 1 and 2 (volume air volume at discharge pressure P) are Qt-, Qz- (m"/h),
When the discharge pressure is P (mAq), the following equation holds true.

p=r、Qta+H,・・・・・・・・・・・・・・・
 (1)2=(′・+r)Q″・+8・””” t21
       +。
p=r, Qta+H, ・・・・・・・・・・・・・・・
(1) 2=(′・+r)Q″・+8・”””t21
+.

■、;エアタンlのe水尉圧(關A(1)”ljエアタ
/2の静水側圧(關aq)ここで、抵抗係数rは調節弁
30の開度に依存する量で、p4節節介0全開のときy
=Q、全閉のときr=国となる。従って、調節弁30を
全開にしたとき式(2)は、 p=r、 Q、1a + Hl”・””・(2a )と
なる。
■、; Hydrostatic side pressure of air tank l (A(1)" lj Air tank/2 hydrostatic side pressure (aq)) Here, the resistance coefficient r is a quantity that depends on the opening degree of the control valve 30, and p4 clause When fully open
= Q, when fully closed, r = country. Therefore, when the control valve 30 is fully opened, the equation (2) becomes p=r, Q, 1a + Hl"."".(2a).

一方、上記吐出風量Q1− 、Qyaと、これらに対応
する吸込風量Qr、Q、t(大気圧PI!Lにおける体
積風量;Nぜ/h)とはボイル・シャ/I/ルの式によ
つ【次のように関係づけられる。
On the other hand, the above-mentioned discharge air volumes Q1-, Qya and the corresponding suction air volumes Qr, Q, t (volume air volume at atmospheric pressure PI!L; Nze/h) are calculated according to the Boyle-Share equation. [They are related as follows.

ただし、Pl ;大気圧(朋A(L) τ6 ;℃を°Kに変換する定数 τ1 ;吸込温度(’C) To ;吐出温度(℃) ここで、大気圧P、と定数T0とは一定数であるから、
温jlT1  p To 、吐出圧P、吸込風量Q(=
Qt +Q、t ) −Q宜、を測定すれば、上記各式
から管路特性ハラメータrl  t Hl  * re
  t Hlを求めることができる。
However, Pl: Atmospheric pressure (A(L)) τ6: Constant for converting ℃ to °K τ1: Suction temperature ('C) To: Discharge temperature (℃) Here, atmospheric pressure P and constant T0 are constant. Since it is a number,
Temperature jlT1 p To , discharge pressure P, suction air volume Q (=
Qt + Q, t ) -Q
t Hl can be determined.

実施例図面第5図は、上記測定法を示す図で、調節弁3
0を全開とし、プiワ15の運転パターンおよび吸込弁
17の開度を適宜変化させて(つまり、吐出圧Pと吸込
風量qを変えて)、吸込風tctが安定した時点で、吸
込温度T1、吸込風量q、吐出圧P、吐出温度To、吐
出風量Qxaを測定する。そし【、これらを(4)式に
代入して吸込風量Qtを求めれば、吸込風量q、はQt
=Q−Qtによって求まり、(3)式によって吐出風量
Q+aを求めることができる。
Embodiment drawing FIG. 5 is a diagram showing the above measurement method, and shows the control valve 3.
0 is fully open, and the operating pattern of the air pump 15 and the opening degree of the suction valve 17 are changed appropriately (that is, by changing the discharge pressure P and the suction air volume q), and when the suction air tct becomes stable, the suction temperature is T1, suction air volume q, discharge pressure P, discharge temperature To, and discharge air volume Qxa are measured. Then, by substituting these into equation (4) to find the suction air volume Qt, the suction air volume q, becomes Qt
=Q-Qt, and the discharge air volume Q+a can be determined by equation (3).

従って、上記測定を数点〜数十点行い、式(11および
(2)に値P @ Q(a + Qzaを代入して最小
2乗法を適用すれば、管路特性パラメータrl+HIt
r2.Hyを算定することができる。この作業を行うの
が管路特性測定装置35であり、データを収集するデー
タ収集部35aと、上記計算を実行する管路特性計算部
55t+とからなる。
Therefore, if the above measurements are made at several points to several tens of points, and the value P @ Q (a + Qza is applied to equations (11 and (2)) and the least squares method is applied, the pipe characteristic parameter rl + HIt
r2. Hy can be calculated. The pipe characteristic measuring device 35 performs this work, and is composed of a data collection section 35a that collects data and a pipe characteristic calculation section 55t+ that performs the above calculation.

(2)運転領域の決定 次に、運転ブロワの組合わ虻を変えて運転パターンを変
化させ、各運転パターンにおいて、吸込弁17と調節弁
30との開度な変化させることによって実現することの
できる、Q、−P平面上の領域(運転領域)を求める。
(2) Determining the operating range Next, the operating pattern is changed by changing the combination of operating blowers, and in each operating pattern, the openings of the suction valve 17 and the control valve 30 are changed. Find the area (operating area) on the Q,-P plane where the calculation is possible.

(alまず、吸込弁17の開度η(%)を変化させたと
きのブロワ特性について考察する。
First, the blower characteristics when changing the opening degree η (%) of the suction valve 17 will be considered.

あるブロワ(例えばブロワ15−1)を運転し、吸込弁
17を全開(η=100%)として第3図の吐出弁51
,52、調節弁30の開度な様々に変化さぜたときの吐
出圧Pと吸込風tctとを測定すると、第4図に示すブ
ロワ基本特性曲線Mが得られる。この曲線Mの式は、 P=aQ、  +1)にL+(!   ・・・・・・・
・・・・・・・・ (5)ただしa、b、cはブロワ特
性定数 と表わされる。
A certain blower (for example, blower 15-1) is operated, the suction valve 17 is fully opened (η=100%), and the discharge valve 51 in FIG.
, 52. By measuring the discharge pressure P and suction air TCT when the opening degree of the control valve 30 is varied, a basic blower characteristic curve M shown in FIG. 4 is obtained. The formula for this curve M is: P=aQ, +1) and L+(!...
(5) However, a, b, and c are expressed as blower characteristic constants.

次に、吸込弁17の開度I7(チ)を変えて抵抗を与え
ると、この抵抗による圧力損失ΔP(朋A(1)は、 ! ΔP=k (η)・q  ・・・・・・・・・・・・ 
(6)ただしk(η);弁開度ηチのときの抵抗係数(
** Aq / (m”/ h ) )となり、これが
第4図に示す圧力損失曲線Nに相当する。そし【、吸込
弁17の開度がq%の場合のブロワ特性曲線M1を以下
のようにし【求めることができる。(この方法の詳細は
、例えば、村上光清他著の流体機械(森北出版株式会仕
;1980年)のP185〜186に記載されている)
、。
Next, when resistance is applied by changing the opening degree I7 (ch) of the suction valve 17, the pressure loss ΔP (tomo A (1)) due to this resistance is: ! ΔP=k (η)・q...・・・・・・
(6) However, k(η); resistance coefficient when valve opening degree η is (
**Aq/(m”/h)), which corresponds to the pressure loss curve N shown in Fig. 4.Then, the blower characteristic curve M1 when the opening degree of the suction valve 17 is q% is as follows. (Details of this method are described, for example, in Fluid Machinery (published by Morikita Publishing Co., Ltd., 1980) by Mitsukiyo Murakami et al., pages 185-186)
,.

■曲線M上の点sl(座標Q、  IF  )からq軸
に垂線を下し、これらの交点なEi2(Q  、O)と
する。
(2) Draw a perpendicular line from point sl (coordinates Q, IF) on curve M to the q-axis, and set the intersection point Ei2 (Q, O).

0点S2と点(0、−Poo )を通る直線Itを引き
、エカ損失ft11M1l、)交点ヶ。3 (Qx  
、−aア)     1とする。なお、上記の点(0,
−P、。)は絶対圧力零の点である。
Draw a straight line It passing through the 0 point S2 and the point (0, -Poo), and find the intersection point ft11M1l,). 3 (Qx
, -aa) Set to 1. Note that the above point (0,
-P. ) is the point of absolute zero pressure.

0点S1と点(0、−Poo )を通る直線l冨 と、
点日3を通る垂線との交点を84(Qx  tax )
とする。
A straight line l that passes through the 0 point S1 and the point (0, -Poo),
The intersection with the perpendicular line passing through point 3 is 84 (Qx tax)
shall be.

■曲線M上で点81を移動させ、上と同様の操作によっ
て点B4を求めれば、これがブロワ特性曲線M、となる
(2) If point 81 is moved on curve M and point B4 is obtained by the same operation as above, this becomes blower characteristic curve M.

上記の操作を式で懺現すれば、まず直線It。If we express the above operation in a formula, we first get the straight line It.

式が、 式から、 となる。また、直線!、の式が となることから、点S4のpffllH’tは、・・・
・・・・・・・・・・・・ Qlとなる。こうして吸込
弁17の開度ηに対応するブロワ特性−iIi1M、が
求められ、最大開度ηmaKと最小開度1mに対応する
ブロワ特性曲線Ml。
The expression becomes , from the expression. Also, a straight line! Since the formula of , becomes, pffllH't at point S4 is...
・・・・・・・・・・・・ Ql. In this way, the blower characteristic -iIi1M corresponding to the opening degree η of the suction valve 17 is determined, and the blower characteristic curve Ml corresponding to the maximum opening degree ηmaK and the minimum opening degree 1m.

M2を、第5図のようにQ−F平面上に18i(と、こ
れらの曲線Ml、M2の間の領域が、吸込弁17の開度
制御によつ【実現できる点(ct、sP)を示すことに
なる。
M2 is 18i on the Q-F plane as shown in FIG. will be shown.

(’b)次K、調節弁30の開度な変化させたときの抵
抗曲線につい【考察する。
('b) Next, consider the resistance curve when the opening degree of the control valve 30 is changed.

今、エアタン1.2の有効水深は等しくしであるので、
(1) 、 (2)式の静水頭圧H1とH!とはほぼ一
致する。これを■と置くと、送風系全体の抵抗曲線は、 P”R(Qja + Qga )  + H・””・・
・・・”’  Qυただし、R;送風系全体の抵抗係数 (xAq/(m”/h)) となる。この式と(1)、(2)式とから抵抗係数Rを
計(V五十V石]1)”’ となる、従って、調節弁30を全開にして抵抗係数r−
+ooとすれば、1=r1 、Q、、==Qとなって(
12式は(11式に一致し、このときの抵抗曲線I、l
は、第5図のようになる。一方、調節弁30を全開にし
て抵抗係数r→0とすれば、 となる、従って、このときの抵抗曲線は、となり、第5
図に示す曲線L2がこれに対応する。
Now, since the effective water depths of Air Tan 1.2 are equal,
Hydrostatic head pressure H1 and H! of equations (1) and (2). It almost matches. If we put this as ■, the resistance curve of the entire ventilation system is P”R (Qja + Qga) + H・””...
...”' Qυ However, R is the resistance coefficient of the entire ventilation system (xAq/(m”/h)). From this equation and equations (1) and (2), the resistance coefficient R can be calculated as follows:
If +oo, then 1=r1,Q,,==Q, and (
Equation 12 (corresponds to Equation 11, and the resistance curves I, l
is as shown in Figure 5. On the other hand, if the control valve 30 is fully opened and the resistance coefficient r→0, then the resistance curve at this time is as follows, and the fifth
The curve L2 shown in the figure corresponds to this.

こうして、Q−P平面上には、(1)式と04式とに対
重6する抵抗曲線Ll 、 L2が描かれ、これらは各
−々、調節弁30を全閉、全開にしたときに対応する。
In this way, on the Q-P plane, resistance curves Ll and L2 are drawn that have a weight of 6 to equation (1) and equation 04, and these curves are respectively expressed when the control valve 30 is fully closed and fully opened. handle.

そして、曲線bl l L2の間の領域が、調節弁50
の開度を変えることによって実現できる領域を示してい
る。
The area between the curves bl l L2 is the control valve 50
It shows the range that can be achieved by changing the opening degree of

従って、上記(alで求めたブロワ特性1巌MIIM2
と、(b)で求めた抵抗曲線Ll 、 I+2とによつ
【囲まれる領域Eが、吸込弁17と調節弁50との開度
制御によって実現できる運転領域となり、この運転領域
σノ各点(運転点)に対して、吸込弁17の開度ηと調
節弁30の抵抗係数rとが一意的に定まる。
Therefore, the blower characteristics 1 MIIM2 determined by the above (al)
The area E surrounded by the resistance curves Ll and I+2 obtained in (b) is the operating area that can be realized by controlling the openings of the suction valve 17 and the control valve 50, and each point of this operating area σ (operating point), the opening degree η of the suction valve 17 and the resistance coefficient r of the control valve 30 are uniquely determined.

次に、ブロワ並列運転のときは、運転ブロワの特性曲線
を合成し、第6図に示す様な運転領域!!ii〜z5が
得られる。そして、これらの運転領域と、領域内の各運
転点と、各運転点に対応する吸込弁17の開度ηと調節
弁30の抵抗係数rとは予め計算され、メモリに記憶さ
れる。
Next, when the blowers are operated in parallel, the characteristic curves of the operating blowers are synthesized, and the operating region as shown in Figure 6 is obtained! ! ii to z5 are obtained. These operating ranges, each operating point within the range, the opening degree η of the suction valve 17 and the resistance coefficient r of the control valve 30 corresponding to each operating point are calculated in advance and stored in the memory.

(3)要求点の算出。(3) Calculation of required points.

次に、エアタン1.2に送風すべき風量(要求風量)Q
t  、Qt(大気圧における体積風量)が与えられた
ときに、これに対応するQ−P平面上の点(qrtpr
)(以下、この点を要求点と呼ぶ)を求める。
Next, the air volume that should be blown to the air tongue 1.2 (required air volume) Q
When t and Qt (volume air volume at atmospheric pressure) are given, the corresponding point on the Q-P plane (qrtpr
) (hereinafter, this point will be referred to as the required point).

まず、要求風量がqiのとき、これに対応する    
   t1吐出風量:Q、+aは(3)式から求まり、
これを(1)式に代入すると、 を得る。ここで、 は吐出温度Toと吸込温度T1によって定まる値で、P
、は大気圧(定数)であるから、Q!19式を変形して
、吐出圧203次式を得ることができる。
First, when the required air volume is qi, the corresponding
t1 discharge air volume: Q, +a can be found from equation (3),
Substituting this into equation (1), we get: Here, is a value determined by the discharge temperature To and the suction temperature T1, and P
, is the atmospheric pressure (constant), so Q! By modifying Equation 19, a 203rd order equation for discharge pressure can be obtained.

すなわち、 P +(2F、−H,)P +Pa(Pa−2H,)P
Pa (Hl +rHK Q、1  ) =0   ”
・・・・・・・(17)そして、鰭式を解くことによっ
て点(ctt+:p)を求めることができ、この吐出圧
Pが上記風量Q+、l;Lt を送風するのに必要なブ
ロワ吐出圧でおる。また、風量Qtは吸込風量Qと風量
Q1 とから、式GL!=Q、Ql によって求めるこ
とができる。なお、上記の点(Q、III’)は、(1
)式を満足するから、第5図、第6図の抵抗曲線bl上
の点である。
That is, P + (2F, -H,)P +Pa (Pa-2H,)P
Pa (Hl + rHK Q, 1) = 0”
(17) Then, by solving the fin equation, the point (ctt+:p) can be found, and this discharge pressure P is the blower required to blow the above air volume Q+,l;Lt. Discharge pressure. Also, the air volume Qt can be calculated using the formula GL! from the suction air volume Q and the air volume Q1. = Q, Ql. Note that the above point (Q, III') is (1
), it is a point on the resistance curve bl in FIGS. 5 and 6.

(4)ブロワの選択と運転点の矢尻。(4) Arrowhead of blower selection and operating point.

次に、上記要求点と運転領域とを比較することによって
、ブロワの選択と運転点の決定とを行う。
Next, the blower is selected and the operating point is determined by comparing the required point and the operating range.

(al l!要求点運転領域内にある場合。(al l! If it is within the required point operation area.

例えば、第5図に示すように、要求点A(蛎+ Qt 
 * ? )が運転領域り内にあるときには、この点A
が運転点となり、これに対応し【、調節弁50の抵抗係
数rと吸込弁17の開度ηとが決定される。
For example, as shown in FIG.
*? ) is within the operating range, this point A
is the operating point, and correspondingly, the resistance coefficient r of the control valve 50 and the opening degree η of the suction valve 17 are determined.

(bl要求点が曲線I、lとI12の間で、かつ運転領
域にない場合。
(When the bl request point is between curves I, 1 and I12 and not in the operating region.

例えば、第7図に示すように、要求点A (Q、r++
’Qrz I p& )が運転領域]!!lとに2との
間に位装置する場合は、点Aを通り、かつI式を満足す
る曲線りと各領域]!!1 、 I!i2 、 ll1
3の境界線(点Aに近い方)との交点をAI、A2.A
Sとし、要求点Aと各点AI、A2.A3との風量の差
が一番小さい運転領域を選択する。今の場合、運転領域
E2が選ばれ、点A2が運転点となり、これに対応する
、調節弁30の抵抗係数rと吸込弁17の開度ηとが決
定される。
For example, as shown in FIG. 7, the required point A (Q, r++
'Qrz I p & ) is the driving area]! ! If the device is placed between l and 2, the curve passing through point A and satisfying formula I and each area]! ! 1. I! i2, ll1
The intersection with the boundary line of 3 (closer to point A) is AI, A2. A
S, the required point A, each point AI, A2 . Select the operating range with the smallest difference in air volume from A3. In this case, the operating region E2 is selected, the point A2 becomes the operating point, and the corresponding resistance coefficient r of the control valve 30 and opening degree η of the suction valve 17 are determined.

(chi求点が曲41jL2よりも下にある場合。(If the chi sought point is below song 41jL2.

例えは、第7図に示すように、要求点B (Qrm+ 
Qr4 、 pB )が曲#I、2の下にある場合は、
エアタンlへの風量Qrmから決まる吐出圧FBでは、
調節弁60を全開してもエアタン2への風量Q、r4を
実現することができない。
For example, as shown in FIG. 7, the required point B (Qrm+
Qr4, pB) is below songs #I, 2,
At the discharge pressure FB determined from the air volume Qrm to the air tongue l,
Even if the control valve 60 is fully opened, the air volume Q and r4 to the air tongue 2 cannot be achieved.

このようなときには、調節弁50を全開として(すなわ
ち曲wL2上で)、上記風量Qr<を供給できる吐出圧
Pを(2a)および(4)式から求め、これをPiaと
する。そし【、吐出圧Picaのときの運転点B、を決
定し、これに対応する、調節弁30の抵抗係数rと吸込
弁17の開鹿ηとを決定する。
In such a case, the control valve 50 is fully opened (that is, on the song wL2), and the discharge pressure P that can supply the air volume Qr< is determined from equations (2a) and (4), and this is set as Pia. Then, the operating point B when the discharge pressure is Pica is determined, and the corresponding resistance coefficient r of the control valve 30 and opening angle η of the suction valve 17 are determined.

こうして、上記(al〜telのいずれの場合も、要求
風量を満足する最小の吐出圧で運転が実行されることに
なる。
In this way, in any of the above cases (al to tel), operation is performed at the minimum discharge pressure that satisfies the required air volume.

〔実施例〕〔Example〕

第1図は、上述した作用を実現するための一実施例の構
成を示すブロック図である。この図において、エアタ/
l、2のDo値は、Do計3.4によつ【検出され、こ
れが要求風量算出装置33゜34に供給されて、各エア
タン1.2の要求風量Q、i 、q!が求められる。ま
た、35は管路特性パラメータrl  t Hl  s
 rf  + Hlを求める管路特性測定装置、56.
57は各々吸込温度T!、吐出温度T0を測定する温度
計である。これらの各値は、送風量配分制御装置40へ
供給され、〔作用〕の欄で述べた各演算が行われる。
FIG. 1 is a block diagram showing the configuration of an embodiment for realizing the above-described effects. In this figure, Airta/
The Do value of each air tongue 1.2 is detected by the Do total 3.4, and this is supplied to the required air volume calculating device 33, 34, which calculates the required air volume Q, i, q! of each air tongue 1.2. is required. In addition, 35 is a pipe characteristic parameter rl t Hl s
Pipeline characteristic measuring device for determining rf + Hl, 56.
57 is the suction temperature T! , a thermometer that measures the discharge temperature T0. Each of these values is supplied to the air volume distribution control device 40, and each calculation described in the [Operation] column is performed.

まず、運転領域算出装置41は、制御に先き立って、〔
作用〕の(2)に述べたtlL!iEによって運動領域
11jl〜IC5を演算し、これを運転領域テーブル4
2に記憶する。また、要求点算出装置43は、要求風量
Qz−Q鵞と温度T1+TOとから、要求風量Q、を満
たす最小吐出圧Pを算出し、要求点(Q+ + Qt 
 + ? )を決定する。ブロワ選択装置44は要求点
(Q+ + Qt  t P )と、運転領域テープ/
L/42に格納されている各運転領域Ml〜E5から、
要求を最も満足するブロワを選択する5      t
First, prior to control, the operating region calculation device 41 performs [
tlL! mentioned in (2) of [Effect]! The motion ranges 11jl to IC5 are calculated using iE, and these are stored in the drive range table 4.
Store in 2. Further, the required point calculating device 43 calculates the minimum discharge pressure P that satisfies the required air volume Q from the required air volume Qz-Q and the temperature T1+TO, and calculates the minimum discharge pressure P that satisfies the required air volume Q, and calculates the required point (Q+ + Qt
+? ) to determine. The blower selection device 44 selects the required point (Q+ + Qt t P ) and the operating area tape/
From each operating range Ml to E5 stored in L/42,
Select the blower that best meets your requirements5t
.

台数制御装置24はブロワ選択装置[44から運転すべ
きブロワを知らされ、ブロワ17の運転を制御する。運
転点算出装置45は要求点と運転すべきブロワから最適
な運転点を決定し、吸込風量とエアタン2の風量を算出
して、それぞれ吸込弁開 4゜御装置38と刺部弁制御
装置39に指令を送る。
The number control device 24 is informed of the blower to be operated by the blower selection device [44], and controls the operation of the blower 17. The operating point calculation device 45 determines the optimal operating point from the required point and the blower to be operated, calculates the suction air volume and the air volume of the air tongue 2, and controls the suction valve opening 4° control device 38 and the splinter valve control device 39, respectively. send commands to.

このような構成において、上記〔作用〕の欄で述べた動
作を行うことKよって、R小の吐出圧で必要な凰鉦をエ
アタン1.2に送ることか可能となる。
In such a configuration, by carrying out the operation described in the above [Operation] section, it becomes possible to send the necessary fire to the air tongue 1.2 with a small discharge pressure R.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、増設すべきエアタン
を、調節弁を介して既存の管路に連結し、予め定められ
たブロワの運転領域から、最小の吐出圧で必要風量を満
足することのできる運転点を抽出し、この運転点に基づ
いて上記調節弁およびブロワ吸込弁の開度と、運転すべ
きブロワとを決定し工運転するようにしたので、以下の
効果を奏することができる。
As explained above, the present invention connects the air tongue to be added to the existing pipe line via the control valve, and satisfies the required air volume with the minimum discharge pressure from the predetermined operating range of the blower. By extracting the operating point where the operation is possible, and determining the opening degrees of the control valve and blower suction valve and the blower to be operated based on this operating point, the following effects can be achieved. .

(1)エアタンを増設する場合、既存の送風系を変える
工事が不要なので、工事費が安価ですむ。
(1) When adding an air tongue, there is no need to change the existing ventilation system, so construction costs are low.

(2)最小の吐出圧で必要風量を送ることができるので
、ブロワ動力か少なくて済み、省エネルギな実現できる
(2) Since the required air volume can be sent with the minimum discharge pressure, less blower power is required, resulting in energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は同実施例の送風系の構成を示すブロック図、第3
図は管路特性パラメータの測定方法を説明するためのブ
ロック図、第4図はブロワ基本特性曲線Mからブロワ特
性−11Maを求める方法を示すグラフ、第5図は運転
領域Eの求め方を示すグラフ、第6図はブロワ並列運転
時の運転領域11−1!15を示すグ27、第7図は要
求点A。 Bから運転点AI、B、を求める方法を説明するための
グラフ、第8図は従来の溶存酸素繊度制御装置の構成を
示すブロック図である。 1.2・・・エアタン(エアレーショ/タンク)、15
・・・ブロワ、17・・・吸込弁、50・・・調節弁、
55・・・管路特性測定装置、41・・・運転点算出装
置、43・・・要求点算出装置、44・・・ブロワ選択
装置、45・・・運転点算出装置。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of the ventilation system of the same embodiment, and FIG.
The figure is a block diagram for explaining the method for measuring pipe characteristic parameters, Figure 4 is a graph showing the method for determining the blower characteristic -11Ma from the blower basic characteristic curve M, and Figure 5 is the method for determining the operating region E. The graph in FIG. 6 shows the operating range 11-1!15 during blower parallel operation, and the graph in FIG. 7 shows the required point A. FIG. 8 is a graph for explaining the method of determining operating points AI and B from B, and FIG. 8 is a block diagram showing the configuration of a conventional dissolved oxygen fineness control device. 1.2...Air tongue (aeration/tank), 15
... blower, 17 ... suction valve, 50 ... control valve,
55... Pipeline characteristic measuring device, 41... Operating point calculating device, 43... Request point calculating device, 44... Blower selection device, 45... Operating point calculating device.

Claims (1)

【特許請求の範囲】 複数のブロワの運転パターンと、前記各ブロワ吸込み側
に設けられた吸込弁の開度とを制御することにより、エ
アレーションタンクへの供給風量をコントロールするよ
うにした溶存酸素濃度制御装置において、 (a)前記ブロワの吐出側に直結されたエアレーション
タンクと、 (b)前記ブロワの吐出側に調節弁を介して連結された
エアレーションタンクと、 (c)前記各エアレーションタンクへの送風管抵抗係数
と、前記各エアレーションタンクの静水頭圧とを求める
管路特性測定装置と、 (d)前記各吸入弁開度を最大、最小にしたときのブロ
ワ特性曲線と、前記調節弁開度を最大、最小にしたとき
の抵抗曲線とから前記各ブロワの運転パターンに対応す
る運転領域を求める運転領域算出装置と、 (e)前記各エアレーションタンクの要求風量を満足す
るための前記ブロワの風量および吐出圧からなる要求点
を求める要求点算出装置と、 (f)前記要求点と前記運転領域とから前記ブロワの最
適運転パターンを求めるブロワ選択装置と、(g)前記
要求点と前記最適運転パターンとから前記調節弁と前記
吸入弁との開度を求める運転点算出装置と を具備することを特徴とする溶存酸素濃度制御装置。
[Scope of Claims] Dissolved oxygen concentration in which the amount of air supplied to an aeration tank is controlled by controlling the operating pattern of a plurality of blowers and the opening degree of a suction valve provided on the suction side of each of the blowers. In the control device, (a) an aeration tank directly connected to the discharge side of the blower, (b) an aeration tank connected to the discharge side of the blower via a control valve, and (c) an aeration tank connected to each of the aeration tanks. (d) a pipe characteristic measuring device for determining the blast pipe resistance coefficient and the hydrostatic head pressure of each of the aeration tanks; (e) an operating range calculation device that calculates an operating range corresponding to the operating pattern of each of the blowers from a resistance curve when the air flow rate is maximized and minimized; (f) a blower selection device that calculates an optimal operating pattern of the blower from the required point and the operating range; A dissolved oxygen concentration control device comprising: an operating point calculation device that calculates the opening degrees of the control valve and the suction valve from an operating pattern.
JP59276583A 1984-12-29 1984-12-29 Apparatus for controlling concentration of dissolved oxygen Granted JPS61157397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59276583A JPS61157397A (en) 1984-12-29 1984-12-29 Apparatus for controlling concentration of dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59276583A JPS61157397A (en) 1984-12-29 1984-12-29 Apparatus for controlling concentration of dissolved oxygen

Publications (2)

Publication Number Publication Date
JPS61157397A true JPS61157397A (en) 1986-07-17
JPS6317514B2 JPS6317514B2 (en) 1988-04-14

Family

ID=17571480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59276583A Granted JPS61157397A (en) 1984-12-29 1984-12-29 Apparatus for controlling concentration of dissolved oxygen

Country Status (1)

Country Link
JP (1) JPS61157397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107122A (en) * 1988-10-14 1990-04-19 Kubota Ltd Thresher of whole culm-introducing type
WO2018179476A1 (en) * 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150851A (en) * 1978-05-18 1979-11-27 Toshiba Corp Exposing air amount control
JPS55104697A (en) * 1979-02-07 1980-08-11 Hitachi Ltd Aerator
JPS56129088A (en) * 1980-03-13 1981-10-08 Ebara Corp Control of air blow in sewage disposal
JPS5827692A (en) * 1981-08-11 1983-02-18 Toshiba Corp Airflow controller for aeration vessel
JPS5864191A (en) * 1981-10-14 1983-04-16 Shinko Electric Co Ltd Method for controlling airflow
JPS58146493A (en) * 1982-02-25 1983-09-01 Toshiba Corp Control method of operation of blower
JPS58174299U (en) * 1982-05-18 1983-11-21 神鋼電機株式会社 Air flow control device
JPS58216787A (en) * 1982-06-11 1983-12-16 Ebara Corp Method for controlling inflow rate of gas for aeration in sewage treatment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150851A (en) * 1978-05-18 1979-11-27 Toshiba Corp Exposing air amount control
JPS55104697A (en) * 1979-02-07 1980-08-11 Hitachi Ltd Aerator
JPS56129088A (en) * 1980-03-13 1981-10-08 Ebara Corp Control of air blow in sewage disposal
JPS5827692A (en) * 1981-08-11 1983-02-18 Toshiba Corp Airflow controller for aeration vessel
JPS5864191A (en) * 1981-10-14 1983-04-16 Shinko Electric Co Ltd Method for controlling airflow
JPS58146493A (en) * 1982-02-25 1983-09-01 Toshiba Corp Control method of operation of blower
JPS58174299U (en) * 1982-05-18 1983-11-21 神鋼電機株式会社 Air flow control device
JPS58216787A (en) * 1982-06-11 1983-12-16 Ebara Corp Method for controlling inflow rate of gas for aeration in sewage treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107122A (en) * 1988-10-14 1990-04-19 Kubota Ltd Thresher of whole culm-introducing type
WO2018179476A1 (en) * 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume
JP2018167249A (en) * 2017-03-30 2018-11-01 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method
JP2021176638A (en) * 2017-03-30 2021-11-11 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method
US11597667B2 (en) 2017-03-30 2023-03-07 Metawater Co., Ltd. Wastewater treatment system, air supply amount control device, and air supply amount control method

Also Published As

Publication number Publication date
JPS6317514B2 (en) 1988-04-14

Similar Documents

Publication Publication Date Title
JP5097852B1 (en) Air conditioning method and air conditioning apparatus
TWI295340B (en) Operation method of energy-saving fluid transporting machineries in parallel array with constant pressure
RU2376451C1 (en) Complex automation system of hydrat formation ihybitor distribution and dosage
CN101925784B (en) Indoor unit and air conditioning apparatus including the same
CN106091797B (en) Large capacity circulating cooling water tower mends water discharge method and system
CN103809437A (en) Constant-air-volume control method for motor
CN102863074A (en) Intelligent control method of blast aeration system of municipal sewage plant
CN107490319A (en) Cooling tower half adjusts the annual determination method for becoming angle and optimizing operating scheme of blower fan
CN109899936A (en) A kind of Constant air volume system controlling room temperature and its control method
US10584874B2 (en) Common venting system for water heaters and method of controlling the same
CN205481502U (en) Refrigerated water unsteady flow volume energy -saving control system based on coefficient of resistance is optimized
JPS61157397A (en) Apparatus for controlling concentration of dissolved oxygen
CN108386953A (en) A kind of control system and adjusting method generating constant humiture gas
JPH08312908A (en) Dryness controller for steam
US8925481B2 (en) Systems and methods for measuring, monitoring and controlling ozone concentration
CN207881803U (en) Water meter performance detection parallel system
JPS5841116B2 (en) Sewage treatment feed gas control method
CN101122297A (en) Energy-saving type constant pressure fluid conveying machine parallel arrangement
Koggersbøl et al. An output multiplicity in binary distillation: Experimental verification
JPH025157B2 (en)
CN209569868U (en) Feed regulator and system
JPS58113596A (en) Flow control device for pump
JPS6329118B2 (en)
CN214278770U (en) Humidity control structure of temperature and humidity verification box
JPH09325821A (en) Automatic flow rate control method for thermostatic liquid circularly supply device