JPH0579400B2 - - Google Patents

Info

Publication number
JPH0579400B2
JPH0579400B2 JP59250574A JP25057484A JPH0579400B2 JP H0579400 B2 JPH0579400 B2 JP H0579400B2 JP 59250574 A JP59250574 A JP 59250574A JP 25057484 A JP25057484 A JP 25057484A JP H0579400 B2 JPH0579400 B2 JP H0579400B2
Authority
JP
Japan
Prior art keywords
aeration
aeration zone
zone
aeration tank
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59250574A
Other languages
Japanese (ja)
Other versions
JPS61129092A (en
Inventor
Akira Suzuki
Hidetake Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP59250574A priority Critical patent/JPS61129092A/en
Publication of JPS61129092A publication Critical patent/JPS61129092A/en
Publication of JPH0579400B2 publication Critical patent/JPH0579400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は下水等の有機性廃水を活性汚泥法で処
理する際の曝気槽における送気量を制御する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device for controlling the amount of air supplied to an aeration tank when organic wastewater such as sewage is treated by an activated sludge method.

<従来の技術> 活性汚泥法により有機性廃水を処理する下水処
理場等において、最も大量の電力を消費するのは
曝気槽用送風機であり、処理場全体の約40%と言
われている。したがつて処理場全体の省エネルギ
ー化を考える時、送風機の使用電力量を削減する
ことが最も効果的であり、過剰の曝気を行うこと
なく必要な酸素量だけを供給する送気量制御は重
量である。その例として「省エネルギーエアレー
シヨンハンドブツク、科学技術開発センター発
行、1980年8月1日、81〜98頁」にも示されてい
るように送気量が流入水量に対して一定比率とな
るようにブロワーの吸い込み側に設けた開閉弁で
調節して制御する、いわゆる流入水量比例制御方
式、あるい曝気槽内に溶存酸素濃度計(以下DO
計と言う)を設け、溶存酸素濃度(以下DOと言
う)の目標値と実際のDO値との偏差値によつ
て、ブロワーの吸い込み側に設けた開閉弁を調節
するかまたはブロワーの回転数を調節することに
よつて曝気槽内のDOを一定に保つ、いわゆる
DO一定制御方式等がある。しかしながら流入水
量比例制御方式は、最も一般的な方式であるが、
水量変動にだけ着目しており、水質の変動に対し
てはまつたく機能しない。またDO一定制御方式
は、水量、水質の変動に対して送気量の調整を行
うが、通常の曝気槽は幅に比べ長さがかなり長い
ため、完全混合とならず、DO計の据付位置の違
いによつて曝気槽全体としてはかなりの変動を受
ける。すなわち、流入側にDO計を設置した場合
は曝気槽の後段は過曝気となるし、逆に流出側に
設置した場合は曝気槽の前段は曝気不足となり、
処理機能の低下を来す恐れがある。
<Conventional Technology> In sewage treatment plants and the like that treat organic wastewater using the activated sludge method, the aeration tank blower consumes the largest amount of electricity, which is said to account for approximately 40% of the total electricity consumption of the entire treatment plant. Therefore, when considering energy savings for the entire treatment plant, it is most effective to reduce the amount of electricity used by the blower. It is. As an example, as shown in "Energy Saving Aeration Handbook, Published by Science and Technology Development Center, August 1, 1980, pp. 81-98," A so-called inflow water flow proportional control method is used, which is controlled by an on-off valve installed on the suction side of the blower, or a dissolved oxygen concentration meter (hereinafter referred to as DO) is installed in the aeration tank.
Depending on the deviation value between the target value of dissolved oxygen concentration (hereinafter referred to as DO) and the actual DO value, the on-off valve installed on the suction side of the blower is adjusted or the rotation speed of the blower is adjusted. Keeping the DO in the aeration tank constant by adjusting the
There are DO constant control methods, etc. However, the inflow water proportional control method is the most common method;
It focuses only on changes in water quantity, and does not work well against changes in water quality. In addition, the constant DO control method adjusts the amount of air supplied in response to fluctuations in water volume and water quality, but because the length of a normal aeration tank is considerably longer than its width, complete mixing is not possible, and the DO meter is not installed at the correct position. The aeration tank as a whole is subject to considerable variation due to differences in In other words, if the DO meter is installed on the inflow side, the latter stage of the aeration tank will be over-aerated, and conversely, if it is installed on the outflow side, the first stage of the aeration tank will be under-aerated.
Processing function may deteriorate.

このDO一定制御の問題を解決するために、散
気板または散気管の設置密度を流入側から流出側
に向かつて低くする、いわゆるテーパードエアレ
ーシヨン方式がある。しかしながらこのテーパー
ドエアレーシヨン方式は、設計時のテーパード比
率の決定の困難さ、また予備調査を十分に行つて
比率を決定したとしても、その後の水質の変化そ
のものに対して対応することは非常に困難であ
る。
In order to solve this problem of constant DO control, there is a so-called tapered aeration method in which the installation density of diffuser plates or diffuser pipes is lowered from the inflow side to the outflow side. However, with this tapered aeration method, it is difficult to determine the tapered ratio at the time of design, and even if the ratio is determined after sufficient preliminary research, it is extremely difficult to respond to subsequent changes in water quality itself. Have difficulty.

<発明が解決しようとする問題点> 本発明は曝気槽への流入水の水量、水質が変動
しても曝気槽の前段を曝気不足あるいは後段を過
曝気することなく、曝気槽全体にわたつて常に最
適の送気量を送給することができ、さらに送気量
を常に最適の状態に維持することにより消費エネ
ルギーを節約する、曝気槽の送気量制御装置を提
供することを目的とするものである。
<Problems to be Solved by the Invention> The present invention provides a solution that can be applied to the entire aeration tank without causing insufficient aeration in the front stage of the aeration tank or overaeration in the latter stage even if the amount and quality of water flowing into the aeration tank fluctuate. The purpose of the present invention is to provide an air supply amount control device for an aeration tank that can always supply the optimum amount of air and further save energy consumption by always maintaining the air supply amount in the optimum state. It is something.

<問題点を解決するための手段> 本発明は活性汚泥法における曝気槽を分割して
複数の曝気ゾーンを形成し、ブロワーから供給さ
れる気体を各曝気ゾーンに付設した調節弁を有す
る分配管を介して各曝気ゾーンに分配して送給す
る曝気槽であつて、曝気槽の任意の位置に溶存酸
素濃度計を設けるとともに曝気槽内の各曝気ゾー
ンのすべてにそれぞれ呼吸速度計を設け、溶存酸
素濃度計の計測値と、予め設定した溶存酸素濃度
計の目標値との偏差に基づいてブロワーの回転数
を調節するとともに、各呼吸速度計の計測値によ
つて対応する各曝気ゾーンの必要送気量をそれぞ
れ演算し、次いで当該各曝気ゾーンの必要送気量
よりその量を送給し得る各調節弁の開度を演算
し、その演算結果に基づいて各調節弁の開度をそ
れぞれ調節することにより各曝気ゾーンの送気量
を制御することを特徴とする曝気槽の送気量制御
装置に関するものである。
<Means for Solving the Problems> The present invention divides an aeration tank in an activated sludge method to form a plurality of aeration zones, and provides a distribution pipe with a control valve attached to each aeration zone to supply gas from a blower. An aeration tank which distributes and supplies water to each aeration zone via aeration tank, wherein a dissolved oxygen concentration meter is installed at any position in the aeration tank, and a respirometer is installed in each aeration zone in the aeration tank, The rotation speed of the blower is adjusted based on the deviation between the measured value of the dissolved oxygen concentration meter and the preset target value of the dissolved oxygen concentration meter, and the rotation speed of each corresponding aeration zone is adjusted based on the measured value of each respirometer. Calculate each required air supply amount, then calculate the opening degree of each control valve that can supply that amount based on the required air supply amount of each relevant aeration zone, and adjust the opening degree of each control valve based on the calculation result. The present invention relates to an air supply amount control device for an aeration tank, characterized in that the amount of air supplied to each aeration zone is controlled by adjusting the amount of air supplied to each aeration zone.

以下本発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第1図は本発明装置の実施態様の例を示すフロ
ー説明図であり、流入管1、流出管2を有する曝
気槽3を、例えば3つに分割して曝気ゾーン4
a,4b,4cを形成し、各曝気ゾーン4a,4
b,4cにはそれぞれ調節弁5を有する分配管6
を付設するとともに分配管6には多数の散気板
(又は散気管)7を付設する。それぞれの分配管
6は気体主管8を介してブロワー9に接続する。
一方曝気槽3の任意の位置にDO計10を設ける
とともに各曝気ゾーン4a,4b,4cのすべて
にそれぞれ呼吸速度計11を設ける。図中のコン
バータ12aはDO計10あるいは呼吸速度計1
1の計測値の信号、例えば4〜20mAの電流信号
を0〜10Vの電圧信号に出力変換するものであ
り、マイクロコンピユータ13はコンバータ12
aからの電圧信号を受け、例えば0〜4095のデジ
タル信号を変換して、コンバータ12b,インバ
ータ14を介してブロワー9の回転数制御の出力
値を演算したり、コンバータ12bを介して調節
弁5への開度制御の出力値を演算したりするもの
である。またコンバータ12bはマイクロコンピ
ユータ13からの信号、例えば0〜10Vの電圧信
号を4〜20mAの電流信号に出力変換するもので
あり、インバータ14はコンバータ12bからの
信号、4〜20mAお電流信号を例えば20〜50Hzの
周波数信号に出力変換し、その出力値をブロワー
9のモーター部に入力するものである。なお本発
明装置は各曝気ゾーンの活性汚泥の呼吸速度に見
合つた最適の送気量を各曝気ゾーンに送給するの
で、曝気槽内にあるすべての曝気ゾーンにおいて
DOはほぼ等しい値となり、したがつてDO計の
設置位置は曝気槽3の任意の位置でよい。
FIG. 1 is a flow explanatory diagram showing an example of an embodiment of the apparatus of the present invention, in which an aeration tank 3 having an inflow pipe 1 and an outflow pipe 2 is divided into, for example, three aeration zones 4.
a, 4b, 4c, and each aeration zone 4a, 4
b, 4c each have a distribution pipe 6 with a control valve 5.
A large number of air diffuser plates (or air diffuser pipes) 7 are attached to the distribution pipe 6. Each distribution pipe 6 is connected to a blower 9 via a gas main pipe 8.
On the other hand, a DO meter 10 is provided at an arbitrary position in the aeration tank 3, and a respiration rate meter 11 is provided in each of the aeration zones 4a, 4b, and 4c. The converter 12a in the figure is the DO meter 10 or the respiration rate meter 1.
The microcomputer 13 converts the measured value signal of 1, for example, a current signal of 4 to 20 mA, into a voltage signal of 0 to 10 V.
After receiving the voltage signal from a, for example, converting the digital signal from 0 to 4095, the output value for controlling the rotation speed of the blower 9 is calculated via the converter 12b and the inverter 14, and the output value for controlling the rotation speed of the blower 9 is calculated via the converter 12b. It is used to calculate the output value of the opening degree control. The converter 12b converts the signal from the microcomputer 13, for example, a voltage signal of 0 to 10V, into a current signal of 4 to 20mA, and the inverter 14 outputs the signal from the converter 12b, a current signal of 4 to 20mA, for example. The output is converted into a frequency signal of 20 to 50 Hz, and the output value is input to the motor section of the blower 9. The device of the present invention supplies each aeration zone with the optimum amount of air that matches the respiration rate of activated sludge in each aeration zone, so all aeration zones in the aeration tank
The DO values are approximately equal, so the DO meter can be installed at any position in the aeration tank 3.

<発明の作用> 本発明は各曝気ゾーンの単位容量当たりに必要
とされる真の酵素要求量を活性汚泥の呼吸速度に
より算出して、最適の送気量を各曝気ゾーンに送
給するというものであり、流入管1を介して曝気
槽3の曝気ゾーン4aに流入した下水等の有機性
廃水は、気体主管8、分配管6、散気板7を介し
てブロワー9から供給される最適の曝気条件下で
曝気槽3内の活性汚泥により処理されながら順次
曝気ゾーン4a,4b,4cへと流下し、流出管
2を介して流出し、沈殿槽(図示せず)において
活性汚泥と分離された後、処理水として系外に排
出される。前述した曝気槽3の最適の曝気条件は
以下のようにして形成される。
<Operation of the invention> The present invention calculates the true enzyme requirement per unit volume of each aeration zone based on the respiration rate of activated sludge, and supplies the optimum amount of air to each aeration zone. Organic wastewater such as sewage that has flowed into the aeration zone 4a of the aeration tank 3 through the inflow pipe 1 is supplied from the blower 9 through the main gas pipe 8, the distribution pipe 6, and the diffuser plate 7. Under the aeration conditions, the activated sludge in the aeration tank 3 flows down to the aeration zones 4a, 4b, and 4c in sequence while being processed by the activated sludge, flows out through the outflow pipe 2, and is separated from the activated sludge in a settling tank (not shown). After that, it is discharged outside the system as treated water. The optimal aeration conditions for the aeration tank 3 described above are established as follows.

まずDO計10により曝気槽3内のDOを計測
し、その計測値の電流信号をコンバータ12aに
より電圧信号に出力変換してマイクロコンピユー
タ13に入力し、その入力値をデジタル信号に変
換して、そのデジタル信号によつて予め設定した
DOの目標値(通常1〜2mg/)との偏差をPI
演算(比例積分演算)またはPID演算(比例積分
微分演算)しブロワー9の回転数を算出する。次
いでその算出値のデジタル信号を電圧信号に変換
してコンバータ12bに入力し、ここで電圧信号
を電流信号に出力変換し、さらにその出力をイン
バータ14に送り電流信号を周波数信号に変換し
てブロワー9のモーター部に送り、ブロワー9の
回転数を制御する。なおブロワー9として吐出側
の圧力が変化しても送気量がほぼ一定のもの、た
とえば容積型(ルーツ型等)を使用すれば、ブロ
ワー9の回転数を制御することにより、ブロワー
9の吐出量を効果的に制御することができる。ま
た各曝気ゾーン4a,4b,4cに設置した各呼
吸速度計11を用いて一定時間毎(通常、0.5〜
6時間毎)の呼吸速度を測定し、その計測値の電
流信号をコンバータ12aにより電圧信号に出力
変換してマイクロコンピユータ13に入力し、そ
の入力値をデジタル信号に変換し、そのデジタル
信号によつて、対応する各曝気ゾーン4a,4
b,4cの必要送気量を演算する。次いでその必
要送気量からその量を送給し得る各調節弁5の開
度の出力値を演算し、その出力演算結果を電圧信
号に変換してコンバータ12bに入力し、ここで
電圧信号を電流信号に変換して各調節弁5に出力
し、各調節弁5の開度を調節する。以上の操作を
示したのが、第2図のフローチヤート説明図であ
る。
First, the DO in the aeration tank 3 is measured by the DO meter 10, and the current signal of the measured value is converted into a voltage signal by the converter 12a and inputted to the microcomputer 13, and the input value is converted to a digital signal. preset by that digital signal.
PI is the deviation from the target value of DO (usually 1 to 2 mg/)
The rotation speed of the blower 9 is calculated by calculation (proportional integral calculation) or PID calculation (proportional integral differential calculation). Next, the digital signal of the calculated value is converted into a voltage signal and inputted to the converter 12b, where the voltage signal is output converted to a current signal, and the output is further sent to the inverter 14, where the current signal is converted to a frequency signal and the blower 9 and controls the rotation speed of the blower 9. Note that if you use a blower 9 that maintains an almost constant amount of air even if the pressure on the discharge side changes, such as a displacement type (roots type, etc.), the discharge of the blower 9 can be controlled by controlling the rotation speed of the blower 9. The amount can be effectively controlled. In addition, each respiration rate meter 11 installed in each aeration zone 4a, 4b, and 4c is used to measure the rate at regular intervals (usually 0.5 to 0.5
The current signal of the measured value is converted into a voltage signal by the converter 12a and inputted to the microcomputer 13, which converts the input value into a digital signal. Then, each corresponding aeration zone 4a, 4
Calculate the required air supply amount for b and 4c. Next, the output value of the opening degree of each control valve 5 that can supply the required amount of air is calculated from the required air supply amount, and the output calculation result is converted into a voltage signal and inputted to the converter 12b, where the voltage signal is It converts into a current signal and outputs it to each control valve 5 to adjust the opening degree of each control valve 5. The above operation is shown in the flowchart explanatory diagram of FIG. 2.

また前述した各調節弁5の開度の演算は以下の
手順に従つて行う。ここでiは各曝気ゾーンを示
し、以下の各手順における式中においてi=1は
曝気ゾーン4a,i=2は曝気ゾーン4b,i=
3は曝気ゾーン4cを示す。
Further, calculation of the opening degree of each control valve 5 described above is performed according to the following procedure. Here, i indicates each aeration zone, and in the formulas in each procedure below, i=1 is aeration zone 4a, i=2 is aeration zone 4b, i=
3 indicates the aeration zone 4c.

〔手順1〕 呼吸速度ri(mg/・hr)の入力 各曝気ゾーンの呼吸速度r1,r2,r3とする。[Step 1] Input the respiration rate r i (mg/・hr) Set the respiration rate r 1 , r 2 , r 3 for each aeration zone.

〔手順2〕 各曝気ゾーンの必要総括酸素移動容
量係数KLai(1/hr)の算出 KLa1=r1/(Cs−Cp) KLa2=r2/(Cs−Cp) KLa3=r3/(Cs−Cp) Cs:曝気ゾーンの水温における飽和DO(mg/) Cp:DO目標値(mg/) 上式により各曝気ゾーンのKLaiを算出する。
[Step 2] Calculate the required overall oxygen transfer capacity coefficient K Lai (1/hr) for each aeration zone K La1 = r 1 / (C s − C p ) K La2 = r 2 / (C s − C p ) K La3 = r 3 / (C s - C p ) C s : Saturated DO at the water temperature in the aeration zone (mg/) C p : DO target value (mg/) Calculate K Lai for each aeration zone using the above formula.

〔手順3〕 各曝気ゾーンの必要送気量Qi(N
m2/min)の算出 散気板1個当たりの必要送気量とKLaiとの関係
は、一次関数であるので下式によつて表される。
[Step 3] Required air supply amount Q i (N
m 2 /min) Since the relationship between the required air supply amount per diffuser plate and K Lai is a linear function, it is expressed by the following formula.

Q1/N1=A・KLa1+B Q2/N2=A・KLa2+B Q3/N3=A・KLa3+B A,B:散気板設置水深および設置密度、廃水
性状、水温等によつて定まる定数 Ni:各曝気ゾーンの散気板設置個数 上式に手順2で求めた各曝気ゾーンのKLaiを代
入して各曝気ゾーンのQi/NiおよびQiを求める。
Q 1 /N 1 =A・K La1 +B Q 2 /N 2 =A・K La2 +B Q 3 /N 3 =A・K La3 +B A, B: Diffusion plate installation water depth and installation density, wastewater properties, water temperature Constant determined by N i : Number of diffuser plates installed in each aeration zone Substitute K Lai of each aeration zone obtained in step 2 into the above formula to find Q i /N i and Q i of each aeration zone. .

〔手順4〕 散気板圧力損失ΔPdi(mmAq)の算出 散気板1個当たりの送気量と圧力損失の関係
は、概略第3図のようになるが、これらの値を予
め実験により求めて表を作成しておき、その表よ
り各曝気ゾーンのQi/Niに対応するΔPdi、すなわ
ち各曝気ゾーンのΔPd1,ΔPd2,ΔPd3を求める。
[Step 4] Calculating the air diffuser plate pressure loss ΔP di (mmAq) The relationship between the amount of air supplied per air diffuser plate and the pressure loss is roughly shown in Figure 3, but these values were calculated in advance through experiments. ΔP di corresponding to Q i /N i of each aeration zone, that is, ΔP d1 , ΔP d2 , ΔP d3 of each aeration zone, are determined from the table.

〔手順5〕 各曝気ゾーンへの気体配管の圧力損
失ΔPA(mmAq)の算出 通常はΔPdiに比べ非常に小さい値であるので無
視する。
[Step 5] Calculate the pressure loss ΔP A (mmAq) in the gas piping to each aeration zone. Normally, this value is much smaller than ΔP di , so ignore it.

〔手順6〕 各調節弁に与えるべき圧力損失ΔPvi
(mmAq)の算出 各曝気ゾーンとも水位、散気板の設置水深が同
一高さであるとし、配管の圧力損失を無視すると
すれば、次式が成り立つ。
[Step 6] Pressure loss ΔP vi to be given to each control valve
Calculation of (mmAq) Assuming that the water level and the installation depth of the diffuser plate are the same in each aeration zone, and the pressure loss of the piping is ignored, the following formula holds true.

ΔPv1+ΔPd1=ΔPv2+ΔPv2 =ΔPv3+ΔPv3 ここで、Q1,Q2,Q3の値を比較し、最大送気
量の曝気ゾーンの調節弁の開度を100%とする。
例えばQ1が最大とすると、曝気ゾーン4aの調
節弁5の開度は100%であるのでΔPv1はほぼ0と
なる。よつて上式は、 ΔPv1=0 ΔPv2=ΔPd1−ΔPd2 ΔPv3=ΔPd1−ΔPd3 となり、手順4で求めたΔPdiを代入して各曝気ゾ
ーンのΔPviを算出する。
ΔP v1 + ΔP d1 = ΔP v2 + ΔP v2 = ΔP v3 + ΔP v3 Here, the values of Q 1 , Q 2 , and Q 3 are compared, and the opening degree of the control valve in the aeration zone with the maximum air supply amount is set as 100%.
For example, if Q 1 is the maximum, the opening degree of the control valve 5 in the aeration zone 4a is 100%, so ΔP v1 becomes approximately 0. Therefore, the above equation becomes ΔP v1 = 0 ΔP v2 = ΔP d1 − ΔP d2 ΔP v3 = ΔP d1 − ΔP d3 , and by substituting ΔP di obtained in step 4, ΔP vi of each aeration zone is calculated.

〔手順7〕 調節弁開度Di(%)の決定 まず各曝気ゾーンに気体を分配する分配管6内
の各々の流速ui(m/sec)を計算する。
[Procedure 7] Determination of control valve opening degree Di (%) First, calculate each flow velocity u i (m/sec) in the distribution pipe 6 that distributes gas to each aeration zone.

u2=Q2/60s2 u3=Q3/60s3 si:各曝気ゾーンの分配管6の断面積 また一般に調節弁の圧力損失は、 ΔPvi=ei・(ui 2/2g)・ρ ei:圧力損失係数(−) g:重力加速度(m/sec2) ρ:空気の密度(Kg/m2) で表されるので、曝気ゾーン4b,4cのΔPvi
は、 ΔPv2=e2・(u2 2/2g)・ρ ΔPv3=e3・(u3 2/2g)・ρ となり、上式よりe2,e3を求め、実験により予め
作成しておいた圧力損失係数eiと調節弁開度Di
関係(一般には概略第4図のようになる。)を示
す表から調節弁開度Diを求める。
u 2 = Q 2 /60s 2 u 3 = Q 3 /60s 3 s i : Cross-sectional area of the distribution pipe 6 of each aeration zone In general, the pressure loss of the control valve is ΔP vi = e i・(u i 2 /2g )・ρ e i : Pressure loss coefficient (-) g : Gravitational acceleration (m/sec 2 ) ρ : Density of air (Kg/m 2 ) Therefore, ΔP vi of aeration zones 4b and 4c
is ΔP v2 = e 2・(u 2 2 /2g)・ρ ΔP v3 = e 3・(u 3 2 /2g)・ρ, and e 2 and e 3 are calculated from the above formula and prepared in advance by experiment. The control valve opening degree D i is determined from a table showing the relationship between the pressure loss coefficient e i and the control valve opening degree D i (generally shown in FIG. 4).

以上のようにして求めた調節弁5の開度を、例
えば0〜10Vの電圧信号に変換してコンバータ1
2bに送り、ここで例えば4〜20mAの電流信号
に出力変換して各調節弁5に送り、各調節弁5の
開度を調節して各曝気ゾーンに最適の送気を行
う。
The opening degree of the control valve 5 obtained in the above manner is converted into a voltage signal of, for example, 0 to 10V, and the converter 1
2b, where the output is converted into a current signal of, for example, 4 to 20 mA, and sent to each control valve 5, and the opening degree of each control valve 5 is adjusted to provide optimal air supply to each aeration zone.

次に各調節弁5の開度演算を行つた例を示す。 Next, an example of calculating the opening degree of each control valve 5 will be shown.

〔計算例〕[Calculation example]

曝気ゾーン水温:20℃,DO目標値:1mg/
、散気板設置個数:N1=N2=N3=60個、散気
板設置水深:5mの場合 〔手順1〕 呼吸速度riの入力 呼吸速度計の計測値より r1=30mg/・hr r2=25mg/・hr r3=15mg/・hr 〔手順2〕 各曝気ゾーンの必要総括酸素移動容
量 係数KLaiの算出 水温20℃における曝気ゾーンの飽和DOは8.8
mg/であるので KLa1=30/(8.8−1) =3.8(1/hr) KLa2=25/(8.8−1) =3.2(1/hr) KLa3=15/(8.8−1) =1.9(1/hr) 〔手順3〕 各曝気ゾーンの必要送気量Qiの算出
定数はAを24,Bを10とすると Qi/Ni=24KLai+10 したがつて Q1/N1≒101N/min Q2/N2≒87N/min Q3/N3≒56N/min また Q1=6.1Nm2/min Q2=5.2Nm2/min Q3=3.4Nm2/min 〔手順4〕 散気板圧力損失ΔPdiの算出 第3図より、 ΔPd1=470mmAq ΔPd2=390mmAq ΔPd3=270mmAq 〔手順5〕 各曝気ゾーンへの気体配管の圧力損
失ΔPAの算出 ΔPdiに比べ非常に小さい値であるので無視す
る。
Aeration zone water temperature: 20℃, DO target value: 1mg/
, Number of diffuser plates installed: N 1 = N 2 = N 3 = 60, Diffuser plate installed water depth: 5 m [Step 1] Input of respiration rate r i From the measured value of the respiration rate meter r 1 = 30 mg/・hr r 2 = 25mg/・hr r 3 = 15mg/・hr [Step 2] Calculation of the required overall oxygen transfer capacity coefficient K Lai for each aeration zone The saturated DO of the aeration zone at a water temperature of 20℃ is 8.8
mg/, so K La1 = 30/(8.8-1) = 3.8 (1/hr) K La2 = 25/(8.8-1) = 3.2 (1/hr) K La3 = 15/(8.8-1) = 1.9 (1/hr) [Step 3] The constant for calculating the required air supply amount Q i for each aeration zone is, where A is 24 and B is 10, Q i /N i =24K Lai +10 Therefore, Q 1 /N 1 ≒101N/min Q 2 /N 2 ≒87N/min Q 3 /N 3 ≒56N/min Also, Q 1 = 6.1Nm 2 /min Q 2 = 5.2Nm 2 /min Q 3 = 3.4Nm 2 /min [Step 4 ] Calculation of diffuser plate pressure loss ΔP di From Figure 3, ΔP d1 = 470mmAq ΔP d2 = 390mmAq ΔP d3 = 270mmAq [Step 5] Calculation of pressure loss ΔP A of gas piping to each aeration zone Very large compared to ΔP di Since it is a small value, it is ignored.

〔手順6〕 各調節弁に与えるべき圧力損失ΔPvi
の算出 ΔPv1=0 ΔPv2=ΔPd1−ΔPd2=80mmAq ΔPv3=ΔPd1−ΔPd3=200mmAq 〔手順7〕 調節弁開度Di%の決定 分配管6の内径を100mmとすると、 si=7.85×10-3m2 よつて u2=Q2/60s2=11m/sec u3=Q3/60s3=7.2m/sec また e2=ΔPv2・2g/(u2 2・ρ)≒9 e3=ΔPv2・2g/(u3 2・ρ)≒50 なお、ρはブロワーによる昇温、水深5mを加
味して1.5Kg/m2とする。
[Step 6] Pressure loss ΔP vi to be given to each control valve
Calculation ΔP v1 = 0 ΔP v2 = ΔP d1 −ΔP d2 = 80 mmAq ΔP v3 = ΔP d1 − ΔP d3 = 200 mmAq [Step 7] Determination of control valve opening D i % Assuming that the inner diameter of distribution pipe 6 is 100 mm, s i = 7.85×10 -3 m 2 u 2 = Q 2 /60s 2 = 11m/sec u 3 = Q 3 /60s 3 = 7.2m/sec Also e 2 = ΔP v2・2g/(u 2 2・ρ)≒9 e 3 =ΔP v2・2g/(u 3 2・ρ)≒50 Note that ρ is 1.5Kg/m 2 taking into account the temperature increase by the blower and the water depth of 5m.

したがつて、第4図より D1=100% D2=58% D3=40% となり、調節弁5の開度が求まる。Therefore, from FIG. 4, D 1 =100% D 2 =58% D 3 =40%, and the opening degree of the control valve 5 can be determined.

<発明の効果> 以上説明したように本発明装置によれば、曝気
槽内にある、分割された全ての曝気ゾーンの活性
汚泥の呼吸速度、すなわち有機物分解速度に見合
つた最適の送気量を各曝気ゾーンごとに常に供給
することができるので、流入水の水量、水質が変
動しても速やかに最適の送気量にすることができ
るとともに、曝気槽の前段の曝気不足あるいは後
段の過曝気を未然に防止することができ、また送
気量を常に最適の状態に維持することにより消費
エネルギーを節約することができるものである。
<Effects of the Invention> As explained above, according to the device of the present invention, the optimum air supply amount commensurate with the respiration rate of activated sludge in all the divided aeration zones in the aeration tank, that is, the organic matter decomposition rate. Since it is possible to constantly supply air to each aeration zone, even if the amount and quality of inflow water fluctuates, the optimal amount of air can be quickly achieved. It is possible to prevent this from happening, and it is also possible to save energy consumption by always maintaining the amount of air supplied in an optimal state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はいずれも本発明装置に関する
ものであり、第1図は制御フロー説明図、第2図
はフローチヤート説明図、第3図は散気板1個当
たりの送気量と圧力損失の関係を示す説明図、第
4図は調節弁の圧力損失係数と開度との関係を示
す説明図である。 1……流入管、2……流出管、3……曝気槽、
4……曝気ゾーン、5……調節弁、6……分配
管、7……散気板、8……気体主管、9……ブロ
ワー、10……溶存酸素濃度計(DO計)、11
……呼吸速度計、12……コンバータ、13……
マイクロコンピユータ、14……インバータ。
Figures 1 to 4 all relate to the device of the present invention, with Figure 1 being an explanatory diagram of the control flow, Figure 2 being an explanatory flowchart, and Figure 3 being the amount of air supplied per diffuser plate. FIG. 4 is an explanatory diagram showing the relationship between the pressure loss coefficient and the opening degree of the control valve. 1...Inflow pipe, 2...Outflow pipe, 3...Aeration tank,
4...Aeration zone, 5...Control valve, 6...Distribution pipe, 7...Diffuser plate, 8...Gas main pipe, 9...Blower, 10...Dissolved oxygen concentration meter (DO meter), 11
... Respirometer, 12... Converter, 13...
Microcomputer, 14...inverter.

Claims (1)

【特許請求の範囲】[Claims] 1 曝気槽を分割して複数の曝気ゾーンを形成
し、ブロワーからの気体を調節弁を有する分配管
を介して各曝気ゾーンに分配して送給する曝気槽
であつて、曝気槽の任意の位置に溶存酸素濃度計
を設けるとともに曝気槽内の各曝気ゾーンのすべ
てに呼吸速度計を設け、溶存酸素濃度計の計測値
と、予め設定した溶存酸素濃度の目標値との偏差
に基づいてブロワーの回転数を調節するととも
に、各呼吸速度計の計測値によつて対応する各曝
気ゾーンの必要送気量をそれぞれ演算し、次いで
当該各曝気ゾーンの必要送気量を送給し得る各調
節弁の開度を演算し、その演算結果に基づいて各
調節弁の開度をそれぞれ調節することにより各曝
気ゾーンの送気量を制御することを特徴とする曝
気槽の送気量制御装置。
1 An aeration tank in which the aeration tank is divided to form multiple aeration zones, and gas from a blower is distributed and sent to each aeration zone via a distribution pipe with a control valve, and any part of the aeration tank is A dissolved oxygen concentration meter is installed at each aeration zone, and a respiration rate meter is installed in each aeration zone in the aeration tank. At the same time as adjusting the rotation speed of each respirometer, the required amount of air to be delivered to each corresponding aeration zone is calculated based on the measured value of each respirometer, and then each adjustment that can deliver the required amount of air to each aeration zone is performed. An air supply amount control device for an aeration tank, characterized in that the amount of air supplied to each aeration zone is controlled by calculating the opening degree of a valve and adjusting the opening degree of each control valve based on the calculation result.
JP59250574A 1984-11-29 1984-11-29 Apparatus for controlling air feed amount of aeration tank Granted JPS61129092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250574A JPS61129092A (en) 1984-11-29 1984-11-29 Apparatus for controlling air feed amount of aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250574A JPS61129092A (en) 1984-11-29 1984-11-29 Apparatus for controlling air feed amount of aeration tank

Publications (2)

Publication Number Publication Date
JPS61129092A JPS61129092A (en) 1986-06-17
JPH0579400B2 true JPH0579400B2 (en) 1993-11-02

Family

ID=17209912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250574A Granted JPS61129092A (en) 1984-11-29 1984-11-29 Apparatus for controlling air feed amount of aeration tank

Country Status (1)

Country Link
JP (1) JPS61129092A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665399B2 (en) * 1986-09-09 1994-08-24 株式会社西原環境衛生研究所 Method and apparatus for treating activated sludge by intermittent aeration method
JPH0275393A (en) * 1988-09-13 1990-03-15 Tokyo Metropolis Method for controlling air feed amount of aeration tank
JP4671888B2 (en) * 2006-02-28 2011-04-20 関西ピー・ジー・エス株式会社 Sewage treatment equipment
JP5018424B2 (en) * 2007-11-21 2012-09-05 パナソニック株式会社 Wastewater treatment equipment
JP2018167249A (en) 2017-03-30 2018-11-01 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811098A (en) * 1981-07-15 1983-01-21 Toshiba Corp Controller for flow rate of aeration air in sewage treating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811098A (en) * 1981-07-15 1983-01-21 Toshiba Corp Controller for flow rate of aeration air in sewage treating plant

Also Published As

Publication number Publication date
JPS61129092A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
US7413654B2 (en) Wastewater treatment control
CN107986428B (en) Sewage treatment accurate aeration method
CN109592804B (en) Sewage treatment near-optimal precise aeration method
US11597667B2 (en) Wastewater treatment system, air supply amount control device, and air supply amount control method
JPH0579400B2 (en)
JP2005199115A (en) Aeration air quantity controller for sewage treatment plant
CN113072180B (en) Operation control method of sewage biochemical treatment system
Thunberg et al. Energy optimization of the aeration process at Käppala wastewater treatment plant
CN106219739A (en) Multiple spot variable aeration amount intelligent integral complete set of equipments and control method thereof
JP2016159277A (en) Aeration air quantity controller and aeration air quantity control system
JPH01242198A (en) Controlling device for stepped nitration denitrification process
JP3707526B2 (en) Waste water nitrification method and apparatus
JP3384951B2 (en) Biological water treatment method and equipment
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JPH0757353B2 (en) Wastewater treatment equipment
CN113354069A (en) MBR process accurate aeration control system and method
JP6621866B2 (en) Operation support device and operation support method for sewage treatment plant using activated sludge method
JPH10286585A (en) Aeration air volume controlling apparatus
KR20190089662A (en) Valve controller for multi-aeration
JP7424997B2 (en) water treatment equipment
JPH10235387A (en) Uniform flow liquid level control device for raw water tank
JPS58216785A (en) Controlling device of aeration rate
JPH09290298A (en) Method of adjusting feed methanol quantity and aerated quantity in nitrifying/denitrifying device
JP2004000986A (en) Method for controlling biological water treatment apparatus
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes