JP4464851B2 - Operation control method for aeration apparatus - Google Patents
Operation control method for aeration apparatus Download PDFInfo
- Publication number
- JP4464851B2 JP4464851B2 JP2005070196A JP2005070196A JP4464851B2 JP 4464851 B2 JP4464851 B2 JP 4464851B2 JP 2005070196 A JP2005070196 A JP 2005070196A JP 2005070196 A JP2005070196 A JP 2005070196A JP 4464851 B2 JP4464851 B2 JP 4464851B2
- Authority
- JP
- Japan
- Prior art keywords
- dissolved oxygen
- aeration
- time
- value
- anaerobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005273 aeration Methods 0.000 title claims description 111
- 238000000034 method Methods 0.000 title claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 133
- 239000001301 oxygen Substances 0.000 claims description 133
- 229910052760 oxygen Inorganic materials 0.000 claims description 133
- 239000010865 sewage Substances 0.000 claims description 19
- 238000005070 sampling Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims 1
- 239000010802 sludge Substances 0.000 description 10
- 230000029058 respiratory gaseous exchange Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 208000033748 Device issues Diseases 0.000 description 1
- 238000005276 aerator Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、汚水処理施設における下水等の有機性汚水を曝気装置設備を用いて活性汚泥微生物の作用により硝化・脱窒処理させる、例えばオキシデーション法、嫌気好気法等の曝気装置の運転制御方法に関するものである。 The present invention allows organic sewage such as sewage in a sewage treatment facility to be nitrified and denitrified by the action of activated sludge microorganisms using the aeration equipment, for example, operation control of aeration equipment such as oxidation method, anaerobic aerobic method It is about the method.
間欠的に曝気することにより嫌気状態と好気状態を交互に行う汚水の活性汚泥処理方法において、曝気装置停止直後から溶存酸素(以下DOと称す)の降下を時系列的に採取しDOの降下の傾きを示す汚泥の呼吸速度を各曝気サイクル毎に計測し、計測された汚泥の呼吸速度に応じて曝気インターバル時間を自動設定し、曝気インターバル時間において硝化反応が進行するDO値を上回る好気時間と酸素の供給を停止している時間のうち脱窒反応が進行する槽内DOが0近傍の嫌気時間との好気嫌気時間比を計測した汚泥の呼吸速度に応じて自動設定し、曝気インターバル時間において好気嫌気時間比が設定値通りとなるよう曝気装置停止時間を前回のサイクルにおいて計測した汚泥の呼吸速度から予測することにより制御する方法は公知である(例えば、特許文献1参照)。しかしこの方法では、DOの降下傾きを示す汚泥の呼吸速度の計測値が前回と次回のサイクルで殆ど変動がないことを前提として前回のサイクルにおいて計測した汚泥の呼吸速度から予測されるため、変動が大きい例えば、夜中の少ない使用水が流入してくる早朝と、人間が活動を開始し多くの使用水が流入してくる朝8時頃から後とでは、流入汚水量より槽内ODの負荷が明らかに上昇しいる場合でも、前回計測の負荷量の低い夜中の曝気サイクルから得た傾向で朝の曝気サイクルが決定されるので、時間的なずれのため現状の流入汚水負荷量に対しての適正な硝化および脱窒処理が行われない。 In the activated sludge treatment method for sewage that alternately turns into anaerobic and aerobic conditions by intermittent aeration, the fall of dissolved oxygen (hereinafter referred to as DO) is collected in time series immediately after the aeration apparatus is stopped. The sludge respiration rate indicating the slope of the aeration is measured for each aeration cycle, the aeration interval time is automatically set according to the measured sludge respiration rate, and the aerobicity exceeds the DO value at which the nitrification reaction proceeds in the aeration interval time The aeration is automatically set according to the respiration rate of sludge, which measures the ratio of aerobic / anaerobic time to the anaerobic time near 0 when the denitrification reaction proceeds in the time and the supply of oxygen is stopped. A method of controlling the aeration apparatus stop time by predicting from the respiration rate of the sludge measured in the previous cycle so that the aerobic / anaerobic time ratio becomes the set value at the interval time is known. (E.g., see Patent Document 1). However, in this method, the measured value of the sludge respiration rate indicating the DO descent slope is predicted from the sludge respiration rate measured in the previous cycle on the assumption that there is almost no change in the previous and next cycles. For example, in the early morning when a small amount of used water flows in at night, and in the early morning when human activity starts and a large amount of used water flows in, the load of the OD in the tank is greater than the amount of sewage flowing in. Even if is clearly rising, the morning aeration cycle is determined based on the tendency obtained from the aeration cycle during the night when the load of the previous measurement was low. Proper nitrification and denitrification treatment is not performed.
また、別の公知例として、曝気槽に設置した溶存酸素計により、曝気機を間欠運転させる水処理設備において、曝気開始後、嫌気と好気の境界溶存酸素値に達するまでの時間、嫌気と好気の境界溶存酸素値から溶存酸素が上昇して予め定めた上限溶存酸素値に達した時、曝気を停止し、その後再び嫌気と好気の境界溶存酸素値に至るまでの時間を計測しその計測時間を基に嫌気時間が算出され、該嫌気時間の経過後に曝気を再開するように1サイクルの運転を行なわせる(例えば、特許文献2参照)。しかし、この方法では、今回のサイクルでの曝気状況(時間)から流入汚水負荷量を判断し、曝気後の嫌気時間を割り出しているので時間的ずれは生じないが、上限溶存酸素値や好気・嫌気時間の比など任意設定するものが多く、定格汚泥負荷の場合は好気・嫌気時間の比は1:1で良いが、供用開始初期などの低負荷においては、硝化・脱窒反応を考慮するとこの比は“好気時間<嫌気時間”となるよう調整する必要があり、頻繁に設定変更をしなければならない。 In addition, as another known example, in a water treatment facility in which an aerator is intermittently operated by a dissolved oxygen meter installed in an aeration tank, after the start of aeration, the time until reaching the boundary dissolved oxygen value between anaerobic and aerobic, anaerobic and When dissolved oxygen rises from the aerobic boundary dissolved oxygen value and reaches the preset upper limit dissolved oxygen value, aeration is stopped, and then the time until the anaerobic / aerobic boundary dissolved oxygen value is measured again. The anaerobic time is calculated based on the measured time, and one cycle of operation is performed so that aeration is resumed after the anaerobic time has elapsed (see, for example, Patent Document 2). However, in this method, the inflow sewage load is determined from the aeration status (time) in this cycle and the anaerobic time after aeration is calculated, so there is no time lag, but the upper limit dissolved oxygen value and aerobic・ There are many optional settings such as the ratio of anaerobic time, and the ratio of aerobic / anaerobic time may be 1: 1 for the rated sludge load, but nitrification / denitrification reactions may be performed at low loads such as in the beginning of service. Considering this, this ratio needs to be adjusted so that “aerobic time <anaerobic time”, and the setting must be changed frequently.
解決しようとする課題は、間欠的に曝気される活性汚泥処理方法において、流入汚水量の変化による大きな負荷量の変動に対しても、上記特許文献1のような曝気サイクルの時間的なずれが生じず、また、上記特許文献2のように供用開始初期などの低負荷において頻繁な設定変更を必要とすることもなく、好気時間帯に必要以上の空気供給をすることなく十分な硝化反応が進行され、また、嫌気時間帯において適切な脱窒反応を促進することできる汚水処理施設における曝気設備の運転制御方法を提供することである。 The problem to be solved is that, in the activated sludge treatment method in which aeration is intermittently performed, a time lag of the aeration cycle as in the above-mentioned Patent Document 1 is caused even with a large load variation due to a change in the amount of inflow sewage. It does not occur, and it does not require frequent setting changes at a low load such as the initial stage of service as in the above-mentioned Patent Document 2, and sufficient nitrification reaction is performed without supplying more air than necessary during an aerobic time period. And a method for controlling the operation of an aeration facility in a sewage treatment facility capable of promoting an appropriate denitrification reaction in an anaerobic time zone.
本発明では、曝気槽内の汚水を連続的に攪拌し間欠的に曝気することにより時系列的に好気処理と嫌気処理を交互に行わせる曝気装置の運転制御方法において、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値および安定した硝化反応を確保するための溶存酸素目標値を基にして、好気処理の場合、曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出された前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、更に、溶存酸素指標値の到達から逸早く前記溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値が増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して曝気装置を運転制御し、溶存酸素目標値に到達すると所定の溶存酸素一定制御運転時間中は曝気槽内の溶存酸素値を溶存酸素目標値状態に維持するよう曝気装置を可変速運転制御し、また、次工程の嫌気処理の場合、前記溶存酸素一定制御運転時間が経過し前記算出の嫌気時間において曝気装置を停止させ溶存酸素値が降下し嫌気処理を継続させ、該嫌気時間が経過すると再び曝気装置が起動し次の好気時間における曝気を開始し好気処理を再開させ、適正に好気処理と嫌気処理を交互に繰返すよう間欠的に曝気装置の運転制御を行わせることを最も主要な特徴とする。 In the present invention, in the operation control method of the aeration apparatus in which the aerobic treatment and the anaerobic treatment are alternately performed in time series by continuously stirring and intermittently aeration of the sewage in the aeration tank, air supply by the aeration apparatus The dissolved oxygen change value in the tank is detected by a dissolved oxygen sensor attached to the tank, the detection signal is processed by the control device, and a signal is transmitted to the inverter that controls the rotation of the aeration device. Of the aerobic treatment based on the sampling time, which is the detection cycle of the dissolved oxygen value, the dissolved oxygen index value for calculating the inflow load of sewage, and the dissolved oxygen target value for ensuring a stable nitrification reaction In this case, the aeration apparatus is rotated at a constant speed until the dissolved oxygen index value is reached after the start of aeration, and the anaerobic treatment of the next process is performed based on the inflow load amount calculated from the arrival time to the dissolved oxygen index value. It takes to calculate the anaerobic time aeration stop, further, in order to reach quickly the dissolved oxygen target value from the arrival of the dissolved oxygen index value, determining whether the dissolved oxygen value of current is increased for each of the sampling time In the case of non-increase, a command to increase the frequency of the inverter is issued, and in the case where the determination is increased, a command to continue the frequency operation state at that time is issued to control the operation of the aeration apparatus, and the dissolved oxygen target value is set. When reaching the predetermined dissolved oxygen constant control operation time, the aeration apparatus is controlled at a variable speed so that the dissolved oxygen value in the aeration tank is maintained at the dissolved oxygen target value state. When the oxygen constant control operation time has elapsed and the aerobic device is stopped at the calculated anaerobic time, the dissolved oxygen value decreases and the anaerobic treatment is continued. To resume started aerobic treatment aeration in air time, properly and most important feature that causes the intermittent operation control of the aeration device to repeat alternately aerobic treatment and anaerobic treatment.
本発明によれば、予め設定さたサンプリング時間毎に槽内設置の溶存酸素センサで溶存酸素値が細かく検出され現状サイクル中の立上り曝気状況から流入負荷量を算出認識させ、槽内の溶存酸素値を目標値一定に安定状態から曝気を停止するよう曝気装置の運転制御や曝気サイクルおよび嫌気時間までを迅速に自動調整処理がされるので、夜中の少ない使用水が流入してくる早朝と、人間が活動を開始し多くの使用水が流入してくる朝8時頃から後の流入汚水の負荷変動差が大きな場合においても、曝気サイクルの時間的なずれが生じることもなく、また、供用開始初期などの低負荷において頻繁な設定変更という煩わし調整作業をすることもなく、現状に即した最適な好気・嫌気状態で有効に処理が行われるという利点がある。 According to the present invention, the dissolved oxygen value is detected finely by the dissolved oxygen sensor installed in the tank every preset sampling time, and the inflow load amount is calculated and recognized from the rising aeration status in the current cycle, and the dissolved oxygen in the tank is Since the aerating device operation control and aeration cycle and anaerobic time are quickly and automatically adjusted to stop aeration from a stable state with the target value kept constant, early morning when less used water flows in at night, Even if the load fluctuation difference of the inflowing sewage after 8:00 am when human activities start and a lot of used water flows in, there is no time lag in the aeration cycle, and there is no service. There is an advantage that the processing is effectively performed in an optimal aerobic / anaerobic state in accordance with the current situation, without the troublesome adjustment work of frequent setting changes at a low load such as in the initial stage.
曝気槽内の汚水を連続的に攪拌し間欠的に曝気することにより時系列的に好気処理と嫌気処理を交互に行わせる曝気装置の運転制御方法において、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値および安定した硝化反応を確保するための溶存酸素目標値を基にして、好気処理の場合は曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出させた前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、更に、溶存酸素指標値の到達から逸早く前記溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値が増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して曝気装置を運転制御し、溶存酸素目標値に到達すると所定の溶存酸素一定制御運転時間中は曝気槽内の溶存酸素値を溶存酸素指標値状態に維持するよう曝気装置を可変速運転制御し、また、次工程の嫌気処理の場合、前記溶存酸素一定制御運転時間が経過し前記算出の嫌気時間において曝気装置を停止させ溶存酸素値が降下し嫌気処理を継続させ、該嫌気時間が経過すると再び曝気装置が起動し次の好気時間における曝気を開始し好気処理を再開させ、適正に好気処理と嫌気処理を交互に繰返すよう間欠的に曝気装置の運転制御を行わせる。また、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値を基にして、好気処理の場合、曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出された前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、さらに、予め設定された好気・嫌気時間の比率より前記嫌気時間に基づき求められた好気時間から前記到達時間を差し引くことで溶存酸素目標値制御運転時間が算出されて自動的に設定処理させ、溶存酸素指標値の到達時間経過後、該算出設定した溶存酸素目標値制御運転時間において、初期は逸早く溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値が増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して該曝気装置を運転制御し、溶存酸素目標値に到達後は曝気槽内の溶存酸素値を溶存酸素目標値状態に維持するよう該曝気装置を可変速運転制御させる。 In the operation control method of an aeration apparatus in which aerobic treatment and anaerobic treatment are alternately performed in time series by continuously stirring and intermittently aeration of sewage in the aeration tank, the inside of the tank supplied with air by the aeration apparatus The dissolved oxygen change value is detected by a dissolved oxygen sensor provided in the tank, the detection signal is processed by the control device, and a signal is transmitted to the inverter that controls the rotation of the aeration device. Start of aeration in the case of aerobic treatment based on the sampling time, which is the detection period of water, the dissolved oxygen index value for calculating the inflow load of sewage, and the dissolved oxygen target value for ensuring a stable nitrification reaction Until the dissolved oxygen index value is reached, the aeration apparatus is rotated at a constant speed, and the aeration stop in the anaerobic treatment of the next process is performed based on the inflow load amount calculated from the arrival time until the dissolved oxygen index value. Anaerobic time is calculated, and further, in order to reach quickly the dissolved oxygen target value from the arrival of the dissolved oxygen index value, it determines whether the dissolved oxygen value of current is increased for each of the sampling time, nonincreasing given case issues a command to increase the frequency of the inverter, the determination if the increased operation control aeration device issues a command to continue the frequency operating state at that time, upon reaching the dissolved oxygen target value During the constant dissolved oxygen control operation time, the aeration apparatus is controlled at a variable speed so that the dissolved oxygen value in the aeration tank is maintained in the dissolved oxygen index value state. In the case of anaerobic treatment in the next process, the dissolved oxygen constant control is performed. When the operating time has elapsed and the aerobic device is stopped at the calculated anaerobic time, the dissolved oxygen value decreases and the anaerobic treatment is continued.When the anaerobic time elapses, the aeration device starts again and the next aerobic time is reached. That aeration was started to resume aerobic process, thereby properly performed intermittently operation control of the aeration device to repeat alternately aerobic treatment and anaerobic treatment. In addition, the dissolved oxygen change value in the tank supplied with air by the aeration apparatus is detected by a dissolved oxygen sensor provided in the tank, the detection signal is processed by the control apparatus, and a signal is sent to the inverter that controls the rotation of the aeration apparatus. In the case of aerobic treatment, dissolved oxygen from the start of aeration based on the sampling time which is the detection cycle of the dissolved oxygen value set in advance and the dissolved oxygen index value for calculating the inflow load of sewage The aeration apparatus is rotated at a constant speed until the index value is reached , and the anaerobic time for aeration stop in the anaerobic treatment of the next process is calculated based on the inflow load amount calculated from the arrival time until the dissolved oxygen index value. , further, the dissolved oxygen value control operation time is calculated by the aerobic time obtained from the ratio of a preset aerobic-anaerobic time based on the anaerobic time subtracting the arrival time Dynamically set processing, after reaching the time course of dissolved oxygen index value, the dissolved oxygen value control operation time set out the calculated, since the initial to reach quickly dissolved oxygen target value, the current in each of the sampling time Dissolved It is determined whether or not the oxygen value is increasing. When the oxygen value is not increased, a command to increase the frequency of the inverter is issued. When the determination is increased, a command is issued to continue the frequency operation state at that time. The aeration apparatus is controlled to operate , and after reaching the dissolved oxygen target value, the aeration apparatus is controlled to operate at a variable speed so as to maintain the dissolved oxygen value in the aeration tank in the dissolved oxygen target value state.
図1ないし図4において、1は曝気槽、2は曝気槽1内に攪拌水流を発生させるため設けられた攪拌機、3は曝気槽1内へ空気を供給するための曝気装置であり、曝気装置3から導下されたエアー配管4を経由して曝気槽1内に設置された散気装置5により酸素が供給され、曝気槽1内に付設された溶存酸素センサ6により溶存酸素値を検知し、その検知信号は溶存酸素変換器7により溶存酸素値信号に変換され、該変換された溶存酸素値信号が、制御装置8により処理され前記曝気装置3を回転制御するインバータ9に信号が送信され、予め設定されているサンプリング時間t1と、汚水の流入負荷量を算出するための溶存酸素指標値D1および安定した硝化反応を確保するための溶存酸素目標値D2を基にして、曝気槽1内の溶存酸素値の変化を溶存酸素センサ6により前記サンプリング時間t1毎に好気時間t4中のみ検知してもよいが、嫌気時間t3中も継続して検知されることが望ましく、好気処理の場合は該サンプリング時間t1毎に溶存酸素センサにより検出した信号に基づいて先ず制御装置からインバータへの指令信号により曝気装置3が定速運転で駆動し曝気を開始させ、溶存酸素値が当該溶存酸素指標値D1に到達しているか否かを判定させ、非到達の場合は定速運転を継続し、到達したと判定されれば該到達までに要した到達時間t0と該到達時間t0中に供給された空気量を基に流入負荷量を算出し、該流入負荷量より次工程の嫌気処理における曝気停止の嫌気時間t3が算出されて自動的に設定される。
1 to 4, 1 is an aeration tank, 2 is an agitator provided to generate a stirring water flow in the
更に、溶存酸素指標値D1の到達から逸早く前記溶存酸素目標値D2に到達させるため既設定のサンプリング時間t1毎に現状の溶存酸素値が増加しているか否かを判定し、非増加の場合は前記制御装置8によりインバータ9に周波数を上げる指令信号を発信し曝気装置3が増速運転され現状の溶存酸素値が増加したと判定されればその時点での周波数運転状態を継続し、次に溶存酸素値が溶存酸素目標値D2に到達しているか否かが判定され、非到達の場合は再度上記前工程の現状の溶存酸素値を増加させる制御運転が行われ、到達したと判定されれば所定の溶存酸素一定制御運転時間t2が設定され該時間t2中は既設定のサンプリング時間t1毎に現状の溶存酸素値が溶存酸素目標値D2と同等か否かが判定され、溶存酸素目標値D2より低い場合は前記制御装置8によりインバータ9に周波数を上げる指令信号が発信され、逆に高い場合は周波数を下げる指令信号が発信され、また同等の場合はその時点での周波数運転状態が継続されてそれぞれの状況に応じた曝気装置3の可変速運転制御が溶存酸素一定制御運転時間t2継続された後、次工程の嫌気処理に移行される。
Further, in order to reach the dissolved oxygen target value D2 as soon as the dissolved oxygen index value D1 is reached, it is determined whether or not the current dissolved oxygen value is increasing at every preset sampling time t1, and if not, If the
次に、次工程の嫌気処理の場合、前記算出の嫌気時間t3において曝気装置3が停止され溶存酸素値が降下し嫌気状態が継続され、該嫌気時間t3が経過すると再び曝気装置3が起動し次の好気時間t4における曝気が開始されて好気状態が再開され、適正に好気処理と嫌気処理を交互に繰返す曝気サイクルCで間欠的に曝気装置3の運転制御を行わせる。
Next, in the anaerobic process of the next step, the
実施例1の運転制御方法を前提として、曝気開始から溶存酸素指標値D1までの到達に要した到達時間t0と該到達時間t0中に供給された空気量を基に算出された流入負荷量を基に算出される嫌気時間t3と予め設定された好気・嫌気時間の比率より求められた好気時間t4より到達時間t0を差し引くことで溶存酸素目標値制御運転時間t2cを算出しても良く、また、実験等の経験値による負荷処理係数を用いて算出により求められた現状の流入負荷量から直接的に溶存酸素目標値制御運転時間t2cを算出しても良く、当該算出された溶存酸素目標値制御運転時間t2cが自動的に設定処理され、溶存酸素指標値D1の到達時間t0経過後、該算出設定された溶存酸素目標値制御運転時間t2cにおいて初期は逸早く溶存酸素目標値D2に到達させるために溶存酸素値を増加するよう曝気装置3を運転制御し、溶存酸素目標値D2の到達後は曝気槽内の溶存酸素値を溶存酸素目標値D2状態に維持するよう曝気装置3を可変速運転制御させる。
Based on the operation control method of the first embodiment, the inflow load amount calculated based on the arrival time t0 required to reach the dissolved oxygen index value D1 from the start of aeration and the amount of air supplied during the arrival time t0 is calculated. and calculate the dissolved oxygen value control operating time t2 c by subtracting the arrival time t0 from aerobic time t4 determined from the ratio of a preset aerobic-anaerobic time anaerobic time t3, which is calculated based on well, also may be calculated directly dissolved oxygen value control operating time t2 c from the inflow load the current obtained by the calculation using the load processing coefficients empirical value of experiments, is the calculated automatically setting process dissolved oxygen value control operating time t2 c is, after reaching time t0 course of dissolved oxygen index values D1, initial in the calculated output set dissolved oxygen value control operating time t2 c is quickly dissolved oxygen target The
1 曝気槽
3 曝気装置
6 溶存酸素センサ
8 制御装置
9 インバータ
D1 溶存酸素指標値
D2 溶存酸素目標値
t0 溶存酸素指標値までの到達時間
t1 サンプリング時間
t2 溶存酸素一定制御運転時間
t2c 溶存酸素目標値制御運転時間
t3 嫌気時間
t4 好気時間
DESCRIPTION OF SYMBOLS 1
t2c dissolved oxygen target value control operation time t3 anaerobic time t4 aerobic time
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005070196A JP4464851B2 (en) | 2005-03-14 | 2005-03-14 | Operation control method for aeration apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005070196A JP4464851B2 (en) | 2005-03-14 | 2005-03-14 | Operation control method for aeration apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006247586A JP2006247586A (en) | 2006-09-21 |
JP4464851B2 true JP4464851B2 (en) | 2010-05-19 |
Family
ID=37088616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005070196A Active JP4464851B2 (en) | 2005-03-14 | 2005-03-14 | Operation control method for aeration apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4464851B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4022565B1 (en) | 2006-10-27 | 2007-12-19 | 株式会社オ−ラテック | Aeration equipment |
JP5276279B2 (en) * | 2007-04-16 | 2013-08-28 | 株式会社鶴見製作所 | Operation control method for aeration apparatus |
JP5127064B2 (en) * | 2009-02-26 | 2013-01-23 | 株式会社グンビル | Polymer wax peeling waste liquid treatment method |
CN104724835B (en) * | 2015-03-18 | 2016-08-24 | 中国科学院南京土壤研究所 | Method and the device thereof of various heavy pollution in synchronous removal agricultural area source sewage |
CN115504573A (en) * | 2022-09-23 | 2022-12-23 | 深圳市环境科学研究院 | Wastewater treatment system and wastewater treatment method |
-
2005
- 2005-03-14 JP JP2005070196A patent/JP4464851B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006247586A (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220306502A1 (en) | Systems and methods for automated control of mixing and aeration in treatment processes | |
KR101729932B1 (en) | Realtime water treatment control system using ORP and pH | |
JP5276279B2 (en) | Operation control method for aeration apparatus | |
AU2010224478B2 (en) | Method for controlling oxygen supply for treating wastewater, and facility for implementing same | |
JP4464851B2 (en) | Operation control method for aeration apparatus | |
US20150266759A1 (en) | Wastewater treatment apparatus with dual-level control | |
JP4230310B2 (en) | Waste water treatment apparatus and operation method thereof | |
JP2006075804A (en) | Apparatus for assisting operation of sewage disposal plant | |
JP2006272261A (en) | Sewage treatment method and sewage treatment apparatus | |
JP4620391B2 (en) | Sewage treatment equipment | |
JP6430324B2 (en) | Waste water treatment method and waste water treatment apparatus | |
KR20170130547A (en) | METHOD FOR CONTROLLING PROCESSING APPARATUS, PROCESSING APPARATUS AND PROCESSING PLANT | |
JP5205760B2 (en) | Aeration tank control method | |
JPH1190480A (en) | Operation control of aeration apparatus | |
JP2002336892A (en) | Control method in intermittent sewage treatment | |
JP3637819B2 (en) | Waste water nitrification method | |
KR20160093575A (en) | Process Controlling Method in Sequencing Batch Reactor | |
JP6677502B2 (en) | Wastewater treatment system, air supply control device and air supply control method | |
JP2023030660A (en) | Double layer type processing tank and sewage treatment system | |
JP2023030661A (en) | Double layer type processing tank and sewage processing system | |
JP2000167583A (en) | Sewage treatment control system | |
JP4837266B2 (en) | Operation method of oxidation ditch | |
JPH06142688A (en) | Control method for intermittent aeration in purifying method for sewage of intermittent aeration type | |
JPH01194986A (en) | Automatic control equipment for waste water treatment | |
JP2004283639A (en) | Method for controlling operation of aerating agitator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100219 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4464851 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140226 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |