JP4464851B2 - Operation control method for aeration apparatus - Google Patents

Operation control method for aeration apparatus Download PDF

Info

Publication number
JP4464851B2
JP4464851B2 JP2005070196A JP2005070196A JP4464851B2 JP 4464851 B2 JP4464851 B2 JP 4464851B2 JP 2005070196 A JP2005070196 A JP 2005070196A JP 2005070196 A JP2005070196 A JP 2005070196A JP 4464851 B2 JP4464851 B2 JP 4464851B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
aeration
time
value
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005070196A
Other languages
Japanese (ja)
Other versions
JP2006247586A (en
Inventor
哲 曽我部
俊 吉田
薫 加藤
敬之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Tsurumi Manufacturing Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Tsurumi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Tsurumi Manufacturing Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2005070196A priority Critical patent/JP4464851B2/en
Publication of JP2006247586A publication Critical patent/JP2006247586A/en
Application granted granted Critical
Publication of JP4464851B2 publication Critical patent/JP4464851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、汚水処理施設における下水等の有機性汚水を曝気装置設備を用いて活性汚泥微生物の作用により硝化・脱窒処理させる、例えばオキシデーション法、嫌気好気法等の曝気装置の運転制御方法に関するものである。   The present invention allows organic sewage such as sewage in a sewage treatment facility to be nitrified and denitrified by the action of activated sludge microorganisms using the aeration equipment, for example, operation control of aeration equipment such as oxidation method, anaerobic aerobic method It is about the method.

間欠的に曝気することにより嫌気状態と好気状態を交互に行う汚水の活性汚泥処理方法において、曝気装置停止直後から溶存酸素(以下DOと称す)の降下を時系列的に採取しDOの降下の傾きを示す汚泥の呼吸速度を各曝気サイクル毎に計測し、計測された汚泥の呼吸速度に応じて曝気インターバル時間を自動設定し、曝気インターバル時間において硝化反応が進行するDO値を上回る好気時間と酸素の供給を停止している時間のうち脱窒反応が進行する槽内DOが0近傍の嫌気時間との好気嫌気時間比を計測した汚泥の呼吸速度に応じて自動設定し、曝気インターバル時間において好気嫌気時間比が設定値通りとなるよう曝気装置停止時間を前回のサイクルにおいて計測した汚泥の呼吸速度から予測することにより制御する方法は公知である(例えば、特許文献1参照)。しかしこの方法では、DOの降下傾きを示す汚泥の呼吸速度の計測値が前回と次回のサイクルで殆ど変動がないことを前提として前回のサイクルにおいて計測した汚泥の呼吸速度から予測されるため、変動が大きい例えば、夜中の少ない使用水が流入してくる早朝と、人間が活動を開始し多くの使用水が流入してくる朝8時頃から後とでは、流入汚水量より槽内ODの負荷が明らかに上昇しいる場合でも、前回計測の負荷量の低い夜中の曝気サイクルから得た傾向で朝の曝気サイクルが決定されるので、時間的なずれのため現状の流入汚水負荷量に対しての適正な硝化および脱窒処理が行われない。   In the activated sludge treatment method for sewage that alternately turns into anaerobic and aerobic conditions by intermittent aeration, the fall of dissolved oxygen (hereinafter referred to as DO) is collected in time series immediately after the aeration apparatus is stopped. The sludge respiration rate indicating the slope of the aeration is measured for each aeration cycle, the aeration interval time is automatically set according to the measured sludge respiration rate, and the aerobicity exceeds the DO value at which the nitrification reaction proceeds in the aeration interval time The aeration is automatically set according to the respiration rate of sludge, which measures the ratio of aerobic / anaerobic time to the anaerobic time near 0 when the denitrification reaction proceeds in the time and the supply of oxygen is stopped. A method of controlling the aeration apparatus stop time by predicting from the respiration rate of the sludge measured in the previous cycle so that the aerobic / anaerobic time ratio becomes the set value at the interval time is known. (E.g., see Patent Document 1). However, in this method, the measured value of the sludge respiration rate indicating the DO descent slope is predicted from the sludge respiration rate measured in the previous cycle on the assumption that there is almost no change in the previous and next cycles. For example, in the early morning when a small amount of used water flows in at night, and in the early morning when human activity starts and a large amount of used water flows in, the load of the OD in the tank is greater than the amount of sewage flowing in. Even if is clearly rising, the morning aeration cycle is determined based on the tendency obtained from the aeration cycle during the night when the load of the previous measurement was low. Proper nitrification and denitrification treatment is not performed.

また、別の公知例として、曝気槽に設置した溶存酸素計により、曝気機を間欠運転させる水処理設備において、曝気開始後、嫌気と好気の境界溶存酸素値に達するまでの時間、嫌気と好気の境界溶存酸素値から溶存酸素が上昇して予め定めた上限溶存酸素値に達した時、曝気を停止し、その後再び嫌気と好気の境界溶存酸素値に至るまでの時間を計測しその計測時間を基に嫌気時間が算出され、該嫌気時間の経過後に曝気を再開するように1サイクルの運転を行なわせる(例えば、特許文献2参照)。しかし、この方法では、今回のサイクルでの曝気状況(時間)から流入汚水負荷量を判断し、曝気後の嫌気時間を割り出しているので時間的ずれは生じないが、上限溶存酸素値や好気・嫌気時間の比など任意設定するものが多く、定格汚泥負荷の場合は好気・嫌気時間の比は1:1で良いが、供用開始初期などの低負荷においては、硝化・脱窒反応を考慮するとこの比は“好気時間<嫌気時間”となるよう調整する必要があり、頻繁に設定変更をしなければならない。   In addition, as another known example, in a water treatment facility in which an aerator is intermittently operated by a dissolved oxygen meter installed in an aeration tank, after the start of aeration, the time until reaching the boundary dissolved oxygen value between anaerobic and aerobic, anaerobic and When dissolved oxygen rises from the aerobic boundary dissolved oxygen value and reaches the preset upper limit dissolved oxygen value, aeration is stopped, and then the time until the anaerobic / aerobic boundary dissolved oxygen value is measured again. The anaerobic time is calculated based on the measured time, and one cycle of operation is performed so that aeration is resumed after the anaerobic time has elapsed (see, for example, Patent Document 2). However, in this method, the inflow sewage load is determined from the aeration status (time) in this cycle and the anaerobic time after aeration is calculated, so there is no time lag, but the upper limit dissolved oxygen value and aerobic・ There are many optional settings such as the ratio of anaerobic time, and the ratio of aerobic / anaerobic time may be 1: 1 for the rated sludge load, but nitrification / denitrification reactions may be performed at low loads such as in the beginning of service. Considering this, this ratio needs to be adjusted so that “aerobic time <anaerobic time”, and the setting must be changed frequently.

特開平11−128976号公報 (要約、0022、第3図)Japanese Patent Laid-Open No. 11-128976 (Abstract, 0022, FIG. 3) 特開平7−136682号公報 (要約、第2図)JP-A-7-136682 (Summary, Fig. 2)

解決しようとする課題は、間欠的に曝気される活性汚泥処理方法において、流入汚水量の変化による大きな負荷量の変動に対しても、上記特許文献1のような曝気サイクルの時間的なずれが生じず、また、上記特許文献2のように供用開始初期などの低負荷において頻繁な設定変更を必要とすることもなく、好気時間帯に必要以上の空気供給をすることなく十分な硝化反応が進行され、また、嫌気時間帯において適切な脱窒反応を促進することできる汚水処理施設における曝気設備の運転制御方法を提供することである。   The problem to be solved is that, in the activated sludge treatment method in which aeration is intermittently performed, a time lag of the aeration cycle as in the above-mentioned Patent Document 1 is caused even with a large load variation due to a change in the amount of inflow sewage. It does not occur, and it does not require frequent setting changes at a low load such as the initial stage of service as in the above-mentioned Patent Document 2, and sufficient nitrification reaction is performed without supplying more air than necessary during an aerobic time period. And a method for controlling the operation of an aeration facility in a sewage treatment facility capable of promoting an appropriate denitrification reaction in an anaerobic time zone.

本発明では、曝気槽内の汚水を連続的に攪拌し間欠的に曝気することにより時系列的に好気処理と嫌気処理を交互に行わせる曝気装置の運転制御方法において、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値および安定した硝化反応を確保するための溶存酸素目標値を基にして、好気処理の場合、曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出された前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、更に、溶存酸素指標値の到達から逸早く前記溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して曝気装置を運転制御し、溶存酸素目標値に到達すると所定の溶存酸素一定制御運転時間中は曝気槽内の溶存酸素値を溶存酸素目標値状態に維持するよう曝気装置を可変速運転制御し、また、次工程の嫌気処理の場合、前記溶存酸素一定制御運転時間が経過し前記算出の嫌気時間において曝気装置を停止させ溶存酸素値が降下し嫌気処理を継続させ、該嫌気時間が経過すると再び曝気装置が起動し次の好気時間における曝気を開始し好気処理を再開させ、適正に好気処理と嫌気処理を交互に繰返すよう間欠的に曝気装置の運転制御を行わせることを最も主要な特徴とする。 In the present invention, in the operation control method of the aeration apparatus in which the aerobic treatment and the anaerobic treatment are alternately performed in time series by continuously stirring and intermittently aeration of the sewage in the aeration tank, air supply by the aeration apparatus The dissolved oxygen change value in the tank is detected by a dissolved oxygen sensor attached to the tank, the detection signal is processed by the control device, and a signal is transmitted to the inverter that controls the rotation of the aeration device. Of the aerobic treatment based on the sampling time, which is the detection cycle of the dissolved oxygen value, the dissolved oxygen index value for calculating the inflow load of sewage, and the dissolved oxygen target value for ensuring a stable nitrification reaction In this case, the aeration apparatus is rotated at a constant speed until the dissolved oxygen index value is reached after the start of aeration, and the anaerobic treatment of the next process is performed based on the inflow load amount calculated from the arrival time to the dissolved oxygen index value. It takes to calculate the anaerobic time aeration stop, further, in order to reach quickly the dissolved oxygen target value from the arrival of the dissolved oxygen index value, determining whether the dissolved oxygen value of current is increased for each of the sampling time In the case of non-increase, a command to increase the frequency of the inverter is issued, and in the case where the determination is increased, a command to continue the frequency operation state at that time is issued to control the operation of the aeration apparatus, and the dissolved oxygen target value is set. When reaching the predetermined dissolved oxygen constant control operation time, the aeration apparatus is controlled at a variable speed so that the dissolved oxygen value in the aeration tank is maintained at the dissolved oxygen target value state. When the oxygen constant control operation time has elapsed and the aerobic device is stopped at the calculated anaerobic time, the dissolved oxygen value decreases and the anaerobic treatment is continued. To resume started aerobic treatment aeration in air time, properly and most important feature that causes the intermittent operation control of the aeration device to repeat alternately aerobic treatment and anaerobic treatment.

本発明によれば、予め設定さたサンプリング時間毎に槽内設置の溶存酸素センサで溶存酸素値が細かく検出され現状サイクル中の立上り曝気状況から流入負荷量を算出認識させ、槽内の溶存酸素値を目標値一定に安定状態から曝気を停止するよう曝気装置の運転制御や曝気サイクルおよび嫌気時間までを迅速に自動調整処理がされるので、夜中の少ない使用水が流入してくる早朝と、人間が活動を開始し多くの使用水が流入してくる朝8時頃から後の流入汚水の負荷変動差が大きな場合においても、曝気サイクルの時間的なずれが生じることもなく、また、供用開始初期などの低負荷において頻繁な設定変更という煩わし調整作業をすることもなく、現状に即した最適な好気・嫌気状態で有効に処理が行われるという利点がある。   According to the present invention, the dissolved oxygen value is detected finely by the dissolved oxygen sensor installed in the tank every preset sampling time, and the inflow load amount is calculated and recognized from the rising aeration status in the current cycle, and the dissolved oxygen in the tank is Since the aerating device operation control and aeration cycle and anaerobic time are quickly and automatically adjusted to stop aeration from a stable state with the target value kept constant, early morning when less used water flows in at night, Even if the load fluctuation difference of the inflowing sewage after 8:00 am when human activities start and a lot of used water flows in, there is no time lag in the aeration cycle, and there is no service. There is an advantage that the processing is effectively performed in an optimal aerobic / anaerobic state in accordance with the current situation, without the troublesome adjustment work of frequent setting changes at a low load such as in the initial stage.

曝気槽内の汚水を連続的に攪拌し間欠的に曝気することにより時系列的に好気処理と嫌気処理を交互に行わせる曝気装置の運転制御方法において、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値および安定した硝化反応を確保するための溶存酸素目標値を基にして、好気処理の場合は曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出させた前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、更に、溶存酸素指標値の到達から逸早く前記溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して曝気装置を運転制御し、溶存酸素目標値に到達すると所定の溶存酸素一定制御運転時間中は曝気槽内の溶存酸素値を溶存酸素指標値状態に維持するよう曝気装置を可変速運転制御し、また、次工程の嫌気処理の場合、前記溶存酸素一定制御運転時間が経過し前記算出の嫌気時間において曝気装置を停止させ溶存酸素値が降下し嫌気処理を継続させ、該嫌気時間が経過すると再び曝気装置が起動し次の好気時間における曝気を開始し好気処理を再開させ、適正に好気処理と嫌気処理を交互に繰返すよう間欠的に曝気装置の運転制御を行わせる。また、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値を基にして、好気処理の場合、曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出された前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、さらに、予め設定された好気・嫌気時間の比率より前記嫌気時間に基づき求められた好気時間から前記到達時間を差し引くことで溶存酸素目標値制御運転時間が算出され自動的に設定処理させ、溶存酸素指標値の到達時間経過後、該算出設定した溶存酸素目標値制御運転時間において初期は逸早く溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して該曝気装置を運転制御し、溶存酸素目標値に到達後は曝気槽内の溶存酸素値を溶存酸素目標値状態に維持するよう該曝気装置を可変速運転制御させる。 In the operation control method of an aeration apparatus in which aerobic treatment and anaerobic treatment are alternately performed in time series by continuously stirring and intermittently aeration of sewage in the aeration tank, the inside of the tank supplied with air by the aeration apparatus The dissolved oxygen change value is detected by a dissolved oxygen sensor provided in the tank, the detection signal is processed by the control device, and a signal is transmitted to the inverter that controls the rotation of the aeration device. Start of aeration in the case of aerobic treatment based on the sampling time, which is the detection period of water, the dissolved oxygen index value for calculating the inflow load of sewage, and the dissolved oxygen target value for ensuring a stable nitrification reaction Until the dissolved oxygen index value is reached, the aeration apparatus is rotated at a constant speed, and the aeration stop in the anaerobic treatment of the next process is performed based on the inflow load amount calculated from the arrival time until the dissolved oxygen index value. Anaerobic time is calculated, and further, in order to reach quickly the dissolved oxygen target value from the arrival of the dissolved oxygen index value, it determines whether the dissolved oxygen value of current is increased for each of the sampling time, nonincreasing given case issues a command to increase the frequency of the inverter, the determination if the increased operation control aeration device issues a command to continue the frequency operating state at that time, upon reaching the dissolved oxygen target value During the constant dissolved oxygen control operation time, the aeration apparatus is controlled at a variable speed so that the dissolved oxygen value in the aeration tank is maintained in the dissolved oxygen index value state. In the case of anaerobic treatment in the next process, the dissolved oxygen constant control is performed. When the operating time has elapsed and the aerobic device is stopped at the calculated anaerobic time, the dissolved oxygen value decreases and the anaerobic treatment is continued.When the anaerobic time elapses, the aeration device starts again and the next aerobic time is reached. That aeration was started to resume aerobic process, thereby properly performed intermittently operation control of the aeration device to repeat alternately aerobic treatment and anaerobic treatment. In addition, the dissolved oxygen change value in the tank supplied with air by the aeration apparatus is detected by a dissolved oxygen sensor provided in the tank, the detection signal is processed by the control apparatus, and a signal is sent to the inverter that controls the rotation of the aeration apparatus. In the case of aerobic treatment, dissolved oxygen from the start of aeration based on the sampling time which is the detection cycle of the dissolved oxygen value set in advance and the dissolved oxygen index value for calculating the inflow load of sewage The aeration apparatus is rotated at a constant speed until the index value is reached , and the anaerobic time for aeration stop in the anaerobic treatment of the next process is calculated based on the inflow load amount calculated from the arrival time until the dissolved oxygen index value. , further, the dissolved oxygen value control operation time is calculated by the aerobic time obtained from the ratio of a preset aerobic-anaerobic time based on the anaerobic time subtracting the arrival time Dynamically set processing, after reaching the time course of dissolved oxygen index value, the dissolved oxygen value control operation time set out the calculated, since the initial to reach quickly dissolved oxygen target value, the current in each of the sampling time Dissolved It is determined whether or not the oxygen value is increasing. When the oxygen value is not increased, a command to increase the frequency of the inverter is issued. When the determination is increased, a command is issued to continue the frequency operation state at that time. The aeration apparatus is controlled to operate , and after reaching the dissolved oxygen target value, the aeration apparatus is controlled to operate at a variable speed so as to maintain the dissolved oxygen value in the aeration tank in the dissolved oxygen target value state.

図1ないし図4において、1は曝気槽、2は曝気槽1内に攪拌水流を発生させるため設けられた攪拌機、3は曝気槽1内へ空気を供給するための曝気装置であり、曝気装置3から導下されたエアー配管4を経由して曝気槽1内に設置された散気装置5により酸素が供給され、曝気槽1内に付設された溶存酸素センサ6により溶存酸素値を検知し、その検知信号は溶存酸素変換器7により溶存酸素値信号に変換され、該変換された溶存酸素値信号が、制御装置8により処理され前記曝気装置3を回転制御するインバータ9に信号が送信され、予め設定されているサンプリング時間t1と、汚水の流入負荷量を算出するための溶存酸素指標値D1および安定した硝化反応を確保するための溶存酸素目標値D2を基にして、曝気槽1内の溶存酸素値の変化を溶存酸素センサ6により前記サンプリング時間t1毎に好気時間t4中のみ検知してもよいが、嫌気時間t3中も継続して検知されることが望ましく、好気処理の場合は該サンプリング時間t1毎に溶存酸素センサにより検出した信号に基づいて先ず制御装置からインバータへの指令信号により曝気装置3が定速運転で駆動し曝気を開始させ、溶存酸素値が当該溶存酸素指標値D1に到達しているか否かを判定させ、非到達の場合は定速運転を継続し、到達したと判定されれば該到達までに要した到達時間t0と該到達時間t0中に供給された空気量を基に流入負荷量を算出し、該流入負荷量より次工程の嫌気処理における曝気停止の嫌気時間t3が算出されて自動的に設定される。   1 to 4, 1 is an aeration tank, 2 is an agitator provided to generate a stirring water flow in the aeration tank 1, and 3 is an aeration apparatus for supplying air into the aeration tank 1. 3 is supplied with oxygen by an air diffuser 5 installed in the aeration tank 1 via an air pipe 4 led from 3, and a dissolved oxygen sensor 6 provided in the aeration tank 1 detects the dissolved oxygen value. The detected signal is converted into a dissolved oxygen value signal by the dissolved oxygen converter 7, and the converted dissolved oxygen value signal is processed by the control device 8, and a signal is transmitted to the inverter 9 that controls the rotation of the aeration device 3. Based on the preset sampling time t1, the dissolved oxygen index value D1 for calculating the inflow load of sewage and the dissolved oxygen target value D2 for ensuring a stable nitrification reaction, In the dissolved oxygen level May be detected by the dissolved oxygen sensor 6 only during the aerobic time t4 at each sampling time t1, but it is preferable that the oxygen is continuously detected during the anaerobic time t3. First, based on the signal detected by the dissolved oxygen sensor, the aeration device 3 is driven at a constant speed operation by a command signal from the control device to the inverter to start aeration, and the dissolved oxygen value reaches the dissolved oxygen index value D1. In the case of non-reaching, the constant speed operation is continued. If it is determined that it has arrived, the arrival time t0 required until the arrival and the amount of air supplied during the arrival time t0 are determined. The inflow load amount is calculated, and the anaerobic time t3 for stopping the aeration in the anaerobic processing of the next process is calculated from the inflow load amount and automatically set.

更に、溶存酸素指標値D1の到達から逸早く前記溶存酸素目標値D2に到達させるため既設定のサンプリング時間t1毎に現状の溶存酸素値が増加しているか否かを判定し、非増加の場合は前記制御装置8によりインバータ9に周波数を上げる指令信号を発信し曝気装置3が増速運転され現状の溶存酸素値が増加したと判定されればその時点での周波数運転状態を継続し、次に溶存酸素値が溶存酸素目標値D2に到達しているか否かが判定され、非到達の場合は再度上記前工程の現状の溶存酸素値を増加させる制御運転が行われ、到達したと判定されれば所定の溶存酸素一定制御運転時間t2が設定され該時間t2中は既設定のサンプリング時間t1毎に現状の溶存酸素値が溶存酸素目標値D2と同等か否かが判定され、溶存酸素目標値D2より低い場合は前記制御装置8によりインバータ9に周波数を上げる指令信号が発信され、逆に高い場合は周波数を下げる指令信号が発信され、また同等の場合はその時点での周波数運転状態が継続されてそれぞれの状況に応じた曝気装置3の可変速運転制御が溶存酸素一定制御運転時間t2継続された後、次工程の嫌気処理に移行される。   Further, in order to reach the dissolved oxygen target value D2 as soon as the dissolved oxygen index value D1 is reached, it is determined whether or not the current dissolved oxygen value is increasing at every preset sampling time t1, and if not, If the control device 8 sends a command signal for increasing the frequency to the inverter 9 to determine that the aeration device 3 has been speeded up and the current dissolved oxygen value has increased, then the frequency operation state at that time is continued, It is determined whether or not the dissolved oxygen value has reached the dissolved oxygen target value D2. If not, the control operation for increasing the current dissolved oxygen value in the previous step is performed again, and it is determined that the dissolved oxygen value has been reached. For example, a predetermined dissolved oxygen constant control operation time t2 is set, and during the time t2, it is determined whether or not the current dissolved oxygen value is equal to the dissolved oxygen target value D2 at every preset sampling time t1, and the dissolved oxygen target value is determined. D2 When the signal is low, a command signal for increasing the frequency is transmitted to the inverter 9 by the control device 8. Conversely, when the signal is high, a command signal for decreasing the frequency is transmitted, and when the frequency is equal, the frequency operation state at that time is continued. After the variable speed operation control of the aeration apparatus 3 corresponding to each situation is continued for the dissolved oxygen constant control operation time t2, the process proceeds to the anaerobic process of the next step.

次に、次工程の嫌気処理の場合、前記算出の嫌気時間t3において曝気装置3が停止され溶存酸素値が降下し嫌気状態が継続され、該嫌気時間t3が経過すると再び曝気装置3が起動し次の好気時間t4における曝気が開始されて好気状態が再開され、適正に好気処理と嫌気処理を交互に繰返す曝気サイクルCで間欠的に曝気装置3の運転制御を行わせる。   Next, in the anaerobic process of the next step, the aeration apparatus 3 is stopped at the calculated anaerobic time t3, the dissolved oxygen value is lowered and the anaerobic state is continued. When the anaerobic time t3 elapses, the aeration apparatus 3 is activated again. The aeration is started at the next aerobic time t4, the aerobic state is resumed, and the operation control of the aeration apparatus 3 is intermittently performed in the aeration cycle C in which the aerobic process and the anaerobic process are appropriately repeated alternately.

実施例1の運転制御方法を前提として、曝気開始から溶存酸素指標値D1までの到達に要した到達時間t0と該到達時間t0中に供給された空気量を基に算出された流入負荷量を基に算出される嫌気時間t3と予め設定された好気・嫌気時間の比率より求められた好気時間t4より到達時間t0を差し引くことで溶存酸素目標値制御運転時間t2を算出しても良く、また、実験等の経験値による負荷処理係数を用いて算出により求められた現状の流入負荷量から直接的に溶存酸素目標値制御運転時間t2を算出しても良く、当該算出された溶存酸素目標値制御運転時間t2が自動的に設定処理され、溶存酸素指標値D1の到達時間t0経過後、該算出設定された溶存酸素目標値制御運転時間t2において初期は逸早く溶存酸素目標値D2に到達させるために溶存酸素値を増加するよう曝気装置3を運転制御し、溶存酸素目標値D2の到達後は曝気槽内の溶存酸素値を溶存酸素目標値D2状態に維持するよう曝気装置3を可変速運転制御させる。 Based on the operation control method of the first embodiment, the inflow load amount calculated based on the arrival time t0 required to reach the dissolved oxygen index value D1 from the start of aeration and the amount of air supplied during the arrival time t0 is calculated. and calculate the dissolved oxygen value control operating time t2 c by subtracting the arrival time t0 from aerobic time t4 determined from the ratio of a preset aerobic-anaerobic time anaerobic time t3, which is calculated based on well, also may be calculated directly dissolved oxygen value control operating time t2 c from the inflow load the current obtained by the calculation using the load processing coefficients empirical value of experiments, is the calculated automatically setting process dissolved oxygen value control operating time t2 c is, after reaching time t0 course of dissolved oxygen index values D1, initial in the calculated output set dissolved oxygen value control operating time t2 c is quickly dissolved oxygen target The aeration apparatus 3 is controlled to increase the dissolved oxygen value in order to reach the value D2, and after reaching the dissolved oxygen target value D2, the aeration is performed so that the dissolved oxygen value in the aeration tank is maintained in the dissolved oxygen target value D2 state. The apparatus 3 is controlled to operate at a variable speed.

本発明運転制御方法の実施対象とされる曝気設備の系統構成図である。It is a system configuration | structure figure of the aeration equipment made into the implementation object of this invention operation control method. 本発明運転制御方法を実施する曝気設備の平面図である。It is a top view of the aeration equipment which enforces this invention operation control method. 本発明の実施例1おける運転制御方法を示す溶存酸素線図である。It is a dissolved oxygen diagram which shows the operation control method in Example 1 of this invention. 本発明の実施例1おける運転制御方法のフローチャートである。It is a flowchart of the operation control method in Example 1 of this invention. 本発明の実施例2おける運転制御方法を示す溶存酸素線図である。It is a dissolved oxygen diagram which shows the operation control method in Example 2 of this invention. 本発明の実施例2おける運転制御方法のフローチャートである。It is a flowchart of the operation control method in Example 2 of this invention.

符号の説明Explanation of symbols

1 曝気槽
3 曝気装置
6 溶存酸素センサ
8 制御装置
9 インバータ
D1 溶存酸素指標値
D2 溶存酸素目標値
t0 溶存酸素指標値までの到達時間
t1 サンプリング時間
t2 溶存酸素一定制御運転時間
t2c 溶存酸素目標値制御運転時間
t3 嫌気時間
t4 好気時間
DESCRIPTION OF SYMBOLS 1 Aeration tank 3 Aeration apparatus 6 Dissolved oxygen sensor 8 Control apparatus 9 Inverter D1 Dissolved oxygen index value D2 Dissolved oxygen target value t0 Arrival time to dissolved oxygen index value t1 Sampling time t2 Dissolved oxygen constant control operation time
t2c dissolved oxygen target value control operation time t3 anaerobic time t4 aerobic time

Claims (2)

曝気槽内の汚水を連続的に攪拌し間欠的に曝気することにより時系列的に好気処理と嫌気処理を交互に行わせる曝気装置の運転制御方法において、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値および安定した硝化反応を確保するための溶存酸素目標値を基にして、好気処理の場合、曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出された前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、更に、溶存酸素指標値の到達から逸早く前記溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状のに溶存酸素値増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して曝気装置を運転制御し、溶存酸素目標値に到達すると所定の溶存酸素一定制御運転時間中は曝気槽内の溶存酸素値を溶存酸素目標値状態に維持するよう曝気装置を可変速運転制御し、また、次工程の嫌気処理の場合、前記溶存酸素一定制御運転時間が経過し前記算出の嫌気時間において曝気装置を停止させ溶存酸素値が降下し嫌気処理を継続させ、該嫌気時間が経過すると再び曝気装置が起動し次の好気時間における曝気を開始し好気処理を再開させ、適正に好気処理と嫌気処理を交互に繰返すよう間欠的に曝気装置の運転制御を行わせることを特徴する、曝気装置の運転制御方法。 In the operation control method of an aeration apparatus in which aerobic treatment and anaerobic treatment are alternately performed in time series by continuously stirring and intermittently aeration of sewage in the aeration tank, the inside of the tank supplied with air by the aeration apparatus The dissolved oxygen change value is detected by a dissolved oxygen sensor provided in the tank, the detection signal is processed by the control device, and a signal is transmitted to the inverter that controls the rotation of the aeration device. In the case of aerobic treatment, aeration is started based on the sampling time, which is the detection period of water, the dissolved oxygen index value for calculating the inflow load of sewage, and the dissolved oxygen target value for ensuring a stable nitrification reaction Until the dissolved oxygen index value is reached, the aeration apparatus is rotated at a constant speed, and the aeration stop in the anaerobic treatment of the next process is performed based on the inflow load amount calculated from the arrival time to the dissolved oxygen index value. Anaerobic time is calculated, and further, in order to reach quickly the dissolved oxygen target value from the arrival of the dissolved oxygen index value, the dissolved oxygen value to current state determines whether or not the incremented each said sampling time, non In the case of an increase, a command to increase the frequency of the inverter is issued, and in the case where the determination is an increase, a command is issued to continue the frequency operation state at that time to control the operation of the aeration apparatus, and the dissolved oxygen target value is reached. During a predetermined dissolved oxygen constant control operation time, the aeration apparatus is controlled at a variable speed so as to maintain the dissolved oxygen value in the aeration tank at the dissolved oxygen target value state. In the case of anaerobic treatment in the next process, the dissolved oxygen constant is controlled. When the control operation time elapses and the aerobic device is stopped during the calculated anaerobic time, the dissolved oxygen value is lowered and the anaerobic treatment is continued. Takes to resume started aerobic treatment aeration, proper to characterized in that intermittently perform operation control of the aeration device to repeat alternately aerobic treatment and anaerobic treatment, the operation control method of the aeration device. 曝気槽内の汚水を連続的に攪拌し間欠的に曝気することにより時系列的に好気処理と嫌気処理を交互に行わせる曝気装置の運転制御方法において、曝気装置により空気供給される槽内の溶存酸素変化値を槽内に付設された溶存酸素センサにより検知し、その検知信号を制御装置により処理し前記曝気装置を回転制御するインバータに信号を送信し、予め設定されている溶存酸素値の検出周期であるサンプリング時間と、汚水の流入負荷量を算出するための溶存酸素指標値を基にして、好気処理の場合、曝気開始から溶存酸素指標値に到達するまでの間は曝気装置を定速回転し、溶存酸素指標値までの到達時間より算出された前記流入負荷量に基づいて次工程の嫌気処理における曝気停止の嫌気時間を算出させ、さらに、予め設定された好気・嫌気時間の比率より前記嫌気時間に基づき求められた好気時間から前記到達時間を差し引くことで溶存酸素目標値制御運転時間が算出され自動的に設定処理させ、溶存酸素指標値の到達時間経過後、該算出設定した溶存酸素目標値制御運転時間において初期は逸早く溶存酸素目標値に到達させるため、前記サンプリング時間毎に現状の溶存酸素値増加しているか否かを判定し、非増加の場合は前記インバータの周波数を上げる指令を発し、前記判定が増加の場合はその時点での周波数運転状態を継続するよう指令を発して該曝気装置を運転制御し、溶存酸素目標値に到達後は曝気槽内の溶存酸素値を溶存酸素目標値状態に維持するよう該曝気装置を可変速運転制御させることを特徴する、曝気装置の運転制御方法。 In the operation control method of an aeration apparatus in which aerobic treatment and anaerobic treatment are alternately performed in time series by continuously stirring and intermittently aeration of sewage in the aeration tank, the inside of the tank supplied with air by the aeration apparatus The dissolved oxygen change value is detected by a dissolved oxygen sensor provided in the tank, the detection signal is processed by the control device, and a signal is transmitted to the inverter that controls the rotation of the aeration device. In the case of aerobic treatment, the aeration apparatus from the start of aeration until reaching the dissolved oxygen index value based on the sampling time that is the detection period of the gas and the dissolved oxygen index value for calculating the inflow load of sewage the rotating at a constant speed, anaerobic time in the aeration stop is calculated in anaerobic treatment of the next step based on the inflow load amount calculated from the arrival time to the dissolved oxygen index value, further aerobic-set in advance The more the ratio of air time dissolved oxygen value control operating time from aerobic time obtained based on anaerobic time by subtracting the arrival time is calculated automatically by setting processing, the arrival time course of dissolved oxygen index values Thereafter, in the calculated and set dissolved oxygen target value control operation time, in order to quickly reach the dissolved oxygen target value in the initial stage, it is determined whether or not the current dissolved oxygen value is increasing at each sampling time, and is not increased. In this case, a command to increase the frequency of the inverter is issued, and when the determination is increased, a command is issued to continue the frequency operation state at that time to control the operation of the aeration apparatus, and after reaching the dissolved oxygen target value Is a variable speed operation control of the aeration apparatus so that the dissolved oxygen value in the aeration tank is maintained at the dissolved oxygen target value state.
JP2005070196A 2005-03-14 2005-03-14 Operation control method for aeration apparatus Active JP4464851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070196A JP4464851B2 (en) 2005-03-14 2005-03-14 Operation control method for aeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070196A JP4464851B2 (en) 2005-03-14 2005-03-14 Operation control method for aeration apparatus

Publications (2)

Publication Number Publication Date
JP2006247586A JP2006247586A (en) 2006-09-21
JP4464851B2 true JP4464851B2 (en) 2010-05-19

Family

ID=37088616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070196A Active JP4464851B2 (en) 2005-03-14 2005-03-14 Operation control method for aeration apparatus

Country Status (1)

Country Link
JP (1) JP4464851B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022565B1 (en) 2006-10-27 2007-12-19 株式会社オ−ラテック Aeration equipment
JP5276279B2 (en) * 2007-04-16 2013-08-28 株式会社鶴見製作所 Operation control method for aeration apparatus
JP5127064B2 (en) * 2009-02-26 2013-01-23 株式会社グンビル Polymer wax peeling waste liquid treatment method
CN104724835B (en) * 2015-03-18 2016-08-24 中国科学院南京土壤研究所 Method and the device thereof of various heavy pollution in synchronous removal agricultural area source sewage
CN115504573A (en) * 2022-09-23 2022-12-23 深圳市环境科学研究院 Wastewater treatment system and wastewater treatment method

Also Published As

Publication number Publication date
JP2006247586A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US20220306502A1 (en) Systems and methods for automated control of mixing and aeration in treatment processes
KR101729932B1 (en) Realtime water treatment control system using ORP and pH
JP5276279B2 (en) Operation control method for aeration apparatus
AU2010224478B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
JP4464851B2 (en) Operation control method for aeration apparatus
US20150266759A1 (en) Wastewater treatment apparatus with dual-level control
JP4230310B2 (en) Waste water treatment apparatus and operation method thereof
JP2006075804A (en) Apparatus for assisting operation of sewage disposal plant
JP2006272261A (en) Sewage treatment method and sewage treatment apparatus
JP4620391B2 (en) Sewage treatment equipment
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
KR20170130547A (en) METHOD FOR CONTROLLING PROCESSING APPARATUS, PROCESSING APPARATUS AND PROCESSING PLANT
JP5205760B2 (en) Aeration tank control method
JPH1190480A (en) Operation control of aeration apparatus
JP2002336892A (en) Control method in intermittent sewage treatment
JP3637819B2 (en) Waste water nitrification method
KR20160093575A (en) Process Controlling Method in Sequencing Batch Reactor
JP6677502B2 (en) Wastewater treatment system, air supply control device and air supply control method
JP2023030660A (en) Double layer type processing tank and sewage treatment system
JP2023030661A (en) Double layer type processing tank and sewage processing system
JP2000167583A (en) Sewage treatment control system
JP4837266B2 (en) Operation method of oxidation ditch
JPH06142688A (en) Control method for intermittent aeration in purifying method for sewage of intermittent aeration type
JPH01194986A (en) Automatic control equipment for waste water treatment
JP2004283639A (en) Method for controlling operation of aerating agitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250