JP2006272261A - Sewage treatment method and sewage treatment apparatus - Google Patents

Sewage treatment method and sewage treatment apparatus Download PDF

Info

Publication number
JP2006272261A
JP2006272261A JP2005098830A JP2005098830A JP2006272261A JP 2006272261 A JP2006272261 A JP 2006272261A JP 2005098830 A JP2005098830 A JP 2005098830A JP 2005098830 A JP2005098830 A JP 2005098830A JP 2006272261 A JP2006272261 A JP 2006272261A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
aeration
oxygen concentration
sludge
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098830A
Other languages
Japanese (ja)
Inventor
Munehiro Kondo
宗浩 近藤
Masashi Yamamoto
正史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005098830A priority Critical patent/JP2006272261A/en
Publication of JP2006272261A publication Critical patent/JP2006272261A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage treatment method which enables the alternate execution of not only aerobic treatment and oxygen-free treatment but also temporary aeration under a proper condition for the purpose of stirring at the time of oxygen-free treatment and the development of a stable nitrogen removing capacity, and a sewage treatment apparatus. <P>SOLUTION: The sewage treatment apparatus 10 is equipped with a biological treatment tank 12 for biologically treating sewage by activated sludge and a blower 24 for sending air to an air diffuser 22 to alternately perform aerobic treatment for continuously driving the blower 24 and oxygen-free treatment for temporarily treating the blower 24 and also equipped with a sludge interface meter 16 for detecting the interface of sludge, a dissolved oxygen densitometer 18 for measuring the concentration of dissolved oxygen, a lifting device 20 for raising and lowering the sludge interface meter 16 and the dissolved oxygen densitometer 18 and a control unit 26 for controlling the temporary driving of the blower 24 on the basis of the measuring results of the sludge interface meter 16 and the dissolved oxygen densitometer 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は汚水処理方法及び装置に係り、特に生活系排水等の有機物及び窒素を含む汚水を処理する汚水処理方法及び装置に関する。   The present invention relates to a sewage treatment method and apparatus, and more particularly to a sewage treatment method and apparatus for treating sewage containing organic matter such as domestic wastewater and nitrogen.

従来より、生活系排水等の汚水の処理方法として、活性汚泥を用いた生物処理法が用いられている。この生物処理法は、活性汚泥中に生息する微生物によって、汚水の有機物を分解するものである。   Conventionally, a biological treatment method using activated sludge has been used as a treatment method for sewage such as domestic wastewater. In this biological treatment method, organic matter in sewage is decomposed by microorganisms that live in activated sludge.

生物処理法によって汚水中の有機物と窒素を処理する場合、活性汚泥を保持する生物処理槽に酸素を供給する好気処理と、酸素を供給しない無酸素処理とを交互に行う方法が一般に採用されている(例えば特許文献1参考)。これは、溶存酸素の存在下でアンモニア性窒素を亜硝酸性窒素或いは硝酸性窒素に変換する硝化反応と、溶存酸素が存在しない環境下で亜硝酸性窒素或いは硝酸性窒素を窒素ガスに変換する脱窒反応とが、汚水中の窒素を生物学的に処理するために必要だからである。   When treating organic matter and nitrogen in sewage by a biological treatment method, a method is generally adopted in which an aerobic treatment that supplies oxygen to a biological treatment tank that holds activated sludge and an oxygen-free treatment that does not supply oxygen are alternately performed. (For example, refer to Patent Document 1). This is a nitrification reaction that converts ammonia nitrogen to nitrite nitrogen or nitrate nitrogen in the presence of dissolved oxygen, and nitrite nitrogen or nitrate nitrogen to nitrogen gas in the absence of dissolved oxygen. This is because a denitrification reaction is necessary to biologically treat nitrogen in sewage.

ところで、無酸素処理において反応効率を高めるため、生物処理槽内に攪拌機を設けて攪拌する方法が一般的に採用されている。しかし、近年になって攪拌機を設けずに無酸素処理を行う方法が実用化されている。   By the way, in order to increase the reaction efficiency in the oxygen-free treatment, a method of stirring by providing a stirrer in the biological treatment tank is generally employed. However, in recent years, a method for performing oxygen-free treatment without providing a stirrer has been put into practical use.

しかし、この方法では、攪拌を行わないために、活性汚泥が時間の経過とともに沈降し、上澄み液が生じる。上澄み液には、微生物が殆ど存在しないため、上澄み液に含まれる亜硝酸性窒素或いは硝酸性窒素の脱窒処理が不十分となり、処理水に多くの窒素が残留するという問題が生じる。   However, in this method, since agitation is not performed, the activated sludge settles with time and a supernatant liquid is generated. Since there is almost no microorganisms in the supernatant, there is a problem in that denitrification of nitrite nitrogen or nitrate nitrogen contained in the supernatant is insufficient and a large amount of nitrogen remains in the treated water.

このため、攪拌機を設けずに無酸素処理を行う場合には、無酸素処理時にブロワを定期的に短時間稼働させている。これにより、生物処理槽内が曝気されて攪拌が行われ、汚泥界面の低下を防止でき、脱窒処理を十分に進めることができる。
特開2004−243248号公報
For this reason, when an oxygen-free process is performed without providing a stirrer, the blower is periodically operated for a short time during the oxygen-free process. Thereby, the inside of a biological treatment tank is aerated and agitation is performed, the fall of a sludge interface can be prevented, and a denitrification process can fully be advanced.
JP 2004-243248 A

しかしながら、従来の処理方法は、無酸素処理時の曝気量が過剰となった際に、生物処理槽内の溶存酸素濃度が上昇し、脱窒反応を行う上で不適当な環境となる。このため、曝気を行う時間間隔(以下、曝気間隔という)と一回の曝気時間(以下、単に曝気時間という)の設定が難しく、処理性能を高めることが困難であった。すなわち、曝気間隔と曝気時間は、槽内に流入する有機物や窒素の負荷量、さらには活性汚泥の沈降性によって適正値が異なり、これらの要素を考慮した適正な設定が難しいという問題があった。   However, in the conventional treatment method, when the amount of aeration at the time of oxygen-free treatment becomes excessive, the dissolved oxygen concentration in the biological treatment tank rises and becomes an unsuitable environment for performing the denitrification reaction. For this reason, it is difficult to set a time interval for performing aeration (hereinafter referred to as an aeration interval) and a single aeration time (hereinafter simply referred to as an aeration time), and it is difficult to improve processing performance. That is, the aeration interval and aeration time have different values depending on the load of organic matter and nitrogen flowing into the tank and the sedimentation property of activated sludge, and there is a problem that it is difficult to set appropriately considering these factors. .

例えば、沈降速度が遅い場合には汚泥の界面が常に高いので、脱窒反応は槽内の多くの範囲で進行し、攪拌を行う必要がなく、曝気間隔の適正値は大きくなる。これに対して沈降速度が早い場合には汚泥の界面がすぐに低下するため、脱窒反応は、槽内の底部でのみ行われ、脱窒処理が不十分となる。このため、沈降速度が早い場合には、沈降速度が遅い場合よりも曝気間隔を短く設定し、頻繁に攪拌する必要がある。   For example, when the sedimentation rate is slow, the sludge interface is always high, so the denitrification reaction proceeds in many areas in the tank, and stirring is not necessary, and the appropriate value of the aeration interval increases. On the other hand, when the sedimentation rate is high, the sludge interface is immediately lowered, so that the denitrification reaction is performed only at the bottom of the tank, and the denitrification treatment is insufficient. For this reason, when the sedimentation rate is fast, it is necessary to set the aeration interval shorter than when the sedimentation rate is slow and to stir frequently.

また、活性汚泥の溶存酸素濃度が高い場合には、曝気による攪拌を行うことによって、活性汚泥に酸素がさらに供給されるため、無酸素条件下で進行する脱窒反応が妨げられ、窒素除去性能が悪化する。したがって、活性汚泥の溶存酸素濃度が高い場合には、曝気間隔を長く、曝気時間を短く設定する必要がある。   In addition, when the dissolved oxygen concentration of activated sludge is high, oxygen is further supplied to the activated sludge by stirring by aeration, so that the denitrification reaction that proceeds under anoxic conditions is hindered, and nitrogen removal performance Gets worse. Therefore, when the dissolved oxygen concentration of activated sludge is high, it is necessary to set the aeration interval longer and the aeration time shorter.

このように曝気間隔と曝気時間の適正値は、活性汚泥の沈降速度や溶存酸素濃度等に応じて変化するので、最適値に設定することが困難であった。特に曝気間隔は、汚泥の沈降速度と溶存酸素濃度を長時間測定した上で適正値に設定しなければならず、最適値に設定することが難しい。このため、従来は、高い窒素処理性能を維持することができないという問題や、槽内への汚水流入量が変動した際に曝気間隔や曝気時間が適正範囲を外れ、処理水質が悪化するという問題があった。さらに、従来は、曝気間隔と曝気時間の最適値が分からないために、無駄な曝気を行うことが多く、そのために、ブロワの負担が大きくなり、ブロワ故障の発生率が高いという問題もあった。   As described above, the appropriate values of the aeration interval and the aeration time change according to the sedimentation rate of the activated sludge, the dissolved oxygen concentration, and the like, and it is difficult to set the optimum values. In particular, the aeration interval must be set to an appropriate value after measuring the sludge settling speed and dissolved oxygen concentration for a long time, and is difficult to set to an optimum value. For this reason, conventionally, the problem that high nitrogen treatment performance cannot be maintained, and the problem that the aeration interval and aeration time are outside the appropriate range when the amount of sewage inflow into the tank fluctuates and the quality of the treated water deteriorates. was there. Furthermore, conventionally, since the optimum values of the aeration interval and the aeration time are not known, wasteful aeration is often performed, which increases the burden on the blower and increases the incidence of blower failure. .

本発明はこのような事情に鑑みて成されたもので、好気処理と無酸素処理を交互に行うとともに、無酸素処理時に攪拌を目的とした一時的な曝気を適正な条件で行うことにより、安定した窒素除去性能を発揮できる汚水処理方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and performs aerobic treatment and oxygen-free treatment alternately, and performs temporary aeration for the purpose of stirring during oxygen-free treatment under appropriate conditions. An object of the present invention is to provide a wastewater treatment method and apparatus capable of exhibiting stable nitrogen removal performance.

請求項1に記載の発明は前記目的を達成するために、汚水(被処理水)を活性汚泥によって生物処理するとともに、連続曝気を行う好気処理と一時的曝気を行う無酸素処理とを交互に行う汚水処理方法において、前記無酸素処理時に前記活性汚泥の界面位置を検出するとともに、前記活性汚泥の溶存酸素濃度を検出し、前記界面位置と前記溶存酸素濃度の検出結果に応じて、前記一時的曝気の制御を行うことを特徴とする。   In order to achieve the above object, the invention according to claim 1 performs biological treatment of sewage (treated water) with activated sludge and alternately performs aerobic treatment for continuous aeration and oxygen-free treatment for temporary aeration. In the sewage treatment method to be performed, the interface position of the activated sludge is detected at the time of the oxygen-free treatment, the dissolved oxygen concentration of the activated sludge is detected, and according to the detection result of the interface position and the dissolved oxygen concentration, It is characterized by controlling temporary aeration.

請求項1の発明によれば、活性汚泥の界面位置と溶存酸素濃度に応じて一時的曝気の制御を行うようにしたので、一時的曝気を最適な条件で行うことができる。したがって、曝気不足によって攪拌不足が生じて脱窒処理が不十分となったり、或いは曝気過多によって溶存酸素濃度が上昇して脱窒処理が妨げられることを防止できる。   According to the first aspect of the present invention, since the temporary aeration is controlled according to the interface position of the activated sludge and the dissolved oxygen concentration, the temporary aeration can be performed under optimum conditions. Accordingly, it is possible to prevent the denitrification process from being insufficient due to insufficient aeration due to insufficient aeration, or the concentration of dissolved oxygen from being increased due to excessive aeration to prevent the denitrification process from being hindered.

請求項2に記載の発明は請求項1の発明において、前記界面位置の検出結果がしきい値以下になった際に前記一時的曝気を開始することを特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the temporary aeration is started when the detection result of the interface position becomes a threshold value or less.

界面位置よりも上側の上澄み部分では活性汚泥が存在しないために脱窒反応が進行せず、界面位置よりも下側の活性汚泥部分において脱窒反応が進行する。したがって、界面位置が高い場合には、槽内の広い範囲で脱窒反応が進行するために攪拌を行う必要がない。逆に、界面位置が低い場合には、槽内の狭い範囲でしか脱窒反応が進行せず、脱窒処理が不十分となる。したがって、界面位置が低い場合に一時的曝気して攪拌を行うことによって、界面位置を上昇させ、脱窒反応を行う範囲を広げることができる。このように請求項2の発明によれば、活性汚泥の界面位置に応じて一時的な曝気を行うようにしたので、無駄に曝気することなく、脱窒反応を十分に進行させることができる。   Since the activated sludge does not exist in the supernatant portion above the interface position, the denitrification reaction does not proceed, and the denitrification reaction proceeds in the activated sludge portion below the interface position. Therefore, when the interface position is high, the denitrification reaction proceeds in a wide range in the tank, so that stirring is not necessary. On the contrary, when the interface position is low, the denitrification reaction proceeds only in a narrow range in the tank, and the denitrification treatment becomes insufficient. Therefore, when the interface position is low, temporary aeration and stirring are performed, so that the interface position can be raised and the range for performing the denitrification reaction can be expanded. Thus, according to the second aspect of the present invention, since temporary aeration is performed according to the interface position of the activated sludge, the denitrification reaction can sufficiently proceed without wasteful aeration.

請求項3に記載の発明は請求項1又は2の発明において、前記汚水の溶存酸素濃度の検出値がしきい値以下になった際に前記一時的曝気を行うことを特徴とする。   A third aspect of the present invention is characterized in that, in the first or second aspect of the invention, the temporary aeration is performed when the detected value of the dissolved oxygen concentration of the sewage falls below a threshold value.

溶存酸素濃度が高い場合には脱窒反応が殆ど進行しない。したがって、溶存酸素濃度が高い場合に曝気を行うと、脱窒反応がさらに進行しなくなる。逆に、溶存酸素濃度が低い場合には、一時的な曝気を行っても、脱窒反応が大きく妨げられることがない。請求項3の発明によれば、溶存酸素濃度が低い時に一時的な曝気を行うようにしたので、曝気による脱窒処理の低下を最小限にとどめることができる。   When the dissolved oxygen concentration is high, the denitrification reaction hardly proceeds. Therefore, if aeration is performed when the dissolved oxygen concentration is high, the denitrification reaction does not proceed further. Conversely, when the dissolved oxygen concentration is low, the denitrification reaction is not greatly hindered even if temporary aeration is performed. According to the invention of claim 3, since temporary aeration is performed when the dissolved oxygen concentration is low, it is possible to minimize a decrease in denitrification treatment due to aeration.

請求項4に記載の発明は請求項1〜3のいずれか1の発明において、前記一時的曝気を開始した後に、前記溶存酸素濃度の検出を高さ方向に複数箇所で行い、該複数の検出値に基づいて前記一時的曝気を制御することを特徴とする。請求項4の発明によれば、一時的曝気を開始した後に、高さ方向に複数箇所で溶存酸素濃度を測定し、その複数の検出値に基づいて一時的曝気を制御するので、過剰な曝気を防止することができる。例えば、複数の測定値の最大値と最小値との差がしきい値以下となった際に一時的曝気を停止することによって、過剰な曝気を防止できる。これにより、過剰な曝気によって脱窒反応が妨げられることを防止でき、高い窒素除去性能を維持することができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the dissolved oxygen concentration is detected at a plurality of locations in the height direction after the temporary aeration is started, and the plurality of detections are performed. The temporary aeration is controlled based on a value. According to the invention of claim 4, after the temporary aeration is started, the dissolved oxygen concentration is measured at a plurality of locations in the height direction, and the temporary aeration is controlled based on the plurality of detected values. Can be prevented. For example, excessive aeration can be prevented by stopping the temporary aeration when the difference between the maximum value and the minimum value of the plurality of measurement values is less than or equal to the threshold value. Thereby, it can prevent that denitrification reaction is prevented by excessive aeration, and can maintain high nitrogen removal performance.

請求項5に記載の発明は前記目的を達成するために、活性汚泥によって汚水を生物処理する生物処理槽と、該生物処理槽内に配設された散気装置に気体を送気する送気手段と、を備え、前記送気手段を連続駆動する好気処理と、前記送気手段を一時的に駆動する無酸素処理とを交互に行う汚水処理装置において、前記生物処理槽の汚泥界面を検出する界面検出手段と、前記生物処理槽内の溶存酸素濃度を計測する溶存酸素濃度計と、前記界面検出手段と溶存酸素濃度計とを昇降させる昇降手段と、前記昇降手段で昇降させた際の前記界面検出手段の検出結果と溶存酸素濃度計の計測値とに基づいて、前記送気手段の一時的駆動を制御する制御装置と、を備えたことを特徴とする。   In order to achieve the above-mentioned object, the invention according to claim 5 provides a biological treatment tank that biologically treats sewage with activated sludge, and an air supply that feeds gas to an air diffuser arranged in the biological treatment tank. A sewage treatment apparatus that alternately performs an aerobic treatment for continuously driving the air supply means and an oxygen-free treatment for temporarily driving the air supply means. An interface detecting means for detecting, a dissolved oxygen concentration meter for measuring the dissolved oxygen concentration in the biological treatment tank, an elevating means for raising and lowering the interface detecting means and the dissolved oxygen concentration meter, and when being raised and lowered by the raising and lowering means And a control device for controlling the temporary drive of the air supply means based on the detection result of the interface detection means and the measured value of the dissolved oxygen concentration meter.

請求項5の発明によれば、界面検出手段と溶存酸素濃度計とを昇降させることによって、汚泥界面の高さ位置と、界面近傍での溶存酸素濃度を検出する。そして、汚泥界面の高さ位置と溶存酸素濃度に応じて、送気手段を一時的に駆動させる。このように、汚泥界面の高さ位置と溶存酸素濃度に応じて送気手段の制御を行うと、一時的な曝気を最適な条件で行うことができる。したがって、曝気不足によって攪拌が不十分になり、脱窒処理の能力が低下したり、或いは曝気過多によって溶存酸素濃度が向上し、嫌気処理の能力が低下したりすることを防止できる。   According to the invention of claim 5, the height position of the sludge interface and the dissolved oxygen concentration in the vicinity of the interface are detected by moving up and down the interface detecting means and the dissolved oxygen concentration meter. And according to the height position of a sludge interface and dissolved oxygen concentration, an air supply means is temporarily driven. Thus, if the air supply means is controlled according to the height position of the sludge interface and the dissolved oxygen concentration, temporary aeration can be performed under optimum conditions. Accordingly, it is possible to prevent agitation due to insufficient aeration and a decrease in denitrification ability, or an increase in dissolved oxygen concentration due to excessive aeration and a decrease in anaerobic ability.

本発明に係る汚水処理方法及び装置によれば、活性汚泥の界面位置と、汚水の溶存酸素濃度を検出し、その検出値に応じて無酸素処理時の一時的な曝気を制御するようにしたので、一時的な曝気を最適な条件で行うことができ、安定した窒素除去性能を発揮することができる。   According to the method and apparatus for treating sewage according to the present invention, the interface position of activated sludge and the dissolved oxygen concentration of sewage are detected, and temporary aeration during oxygen-free treatment is controlled according to the detected value. Therefore, temporary aeration can be performed under optimum conditions, and stable nitrogen removal performance can be exhibited.

以下、添付図面に従って本発明に係る汚水処理方法及び装置の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of a sewage treatment method and apparatus according to the present invention will be described with reference to the accompanying drawings.

図1は汚水処理装置の概略構成を示す模式図である。同図に示すように、汚水処理装置10は主として、生物処理槽12、沈殿槽14、汚泥界面計16、溶存酸素濃度計18、昇降装置20、散気装置22、ブロワ24、及び制御装置26で構成される。   FIG. 1 is a schematic diagram showing a schematic configuration of a sewage treatment apparatus. As shown in the figure, the sewage treatment apparatus 10 is mainly composed of a biological treatment tank 12, a sedimentation tank 14, a sludge interface meter 16, a dissolved oxygen concentration meter 18, an elevating device 20, an air diffuser 22, a blower 24, and a control device 26. Consists of.

生物処理槽12には流入管28が接続されており、この流入管28から汚水が生物処理槽12に流入する。生物処理槽12内では、汚水と活性汚泥とが混合され、活性汚泥中の微生物によって汚水中の有機物及び窒素が生物処理される。   An inflow pipe 28 is connected to the biological treatment tank 12, and sewage flows into the biological treatment tank 12 from the inflow pipe 28. In the biological treatment tank 12, sewage and activated sludge are mixed, and organic matter and nitrogen in the sewage are biologically treated by microorganisms in the activated sludge.

生物処理槽12は移送管30を介して沈殿槽14に接続されており、生物処理槽12で処理された処理水が沈殿槽14に移送される。沈殿槽14では、処理水中に含まれる汚泥が沈殿し、上澄み液が処理水流出管32から排水される。沈殿槽14の底部はホッパー状に形成されており、その下端には汚泥返送管36が接続される。そして、沈殿槽14に沈殿した活性汚泥が返送汚泥として汚泥返送管36から生物反応槽12に返送される。返送汚泥管36には、汚泥引抜管34が接続されており、返送汚泥の一部が定期的に引き抜かれる。   The biological treatment tank 12 is connected to the sedimentation tank 14 via a transfer pipe 30, and the treated water treated in the biological treatment tank 12 is transferred to the precipitation tank 14. In the settling tank 14, sludge contained in the treated water is precipitated, and the supernatant liquid is drained from the treated water outflow pipe 32. The bottom of the sedimentation tank 14 is formed in a hopper shape, and a sludge return pipe 36 is connected to the lower end thereof. Then, the activated sludge precipitated in the settling tank 14 is returned to the biological reaction tank 12 from the sludge return pipe 36 as return sludge. A sludge extraction pipe 34 is connected to the return sludge pipe 36, and a part of the return sludge is periodically extracted.

生物処理槽12の底部には散気装置22が設けられる。散気装置22は、ブロワ(送気手段に相当)24に接続されており、このブロワ24を駆動することによってエアが散気装置22に送気され、生物処理槽12内の曝気が行われる。すなわち、散気装置22から気泡が発生し、この気泡が汚水中を上昇することによって、生物処理槽12内が攪拌されるとともに、生物処理槽12内の活性汚泥に酸素が供給される。なお、散気装置22の形状や構成は特に限定するものではなく、例えば、多数の孔が形成された散気管が用いられる。   An air diffuser 22 is provided at the bottom of the biological treatment tank 12. The air diffuser 22 is connected to a blower (corresponding to an air supply means) 24. By driving the blower 24, air is supplied to the air diffuser 22 and aeration in the biological treatment tank 12 is performed. . That is, bubbles are generated from the air diffuser 22 and the bubbles rise in the sewage, whereby the inside of the biological treatment tank 12 is agitated and oxygen is supplied to the activated sludge in the biological treatment tank 12. The shape and configuration of the air diffuser 22 are not particularly limited. For example, an air diffuser tube in which a large number of holes are formed is used.

ブロワ24は制御装置26に接続されており、この制御装置26によってブロワ24の駆動、及び駆動停止が制御される。ブロワ24が連続駆動されることによって好気処理が行われ、ブロワ24が間欠駆動されることによって無酸素処理が行われる。好気処理と無酸素処理は交互に行われ、各処理の一回の運転時間は数十分程度に設定される。   The blower 24 is connected to the control device 26, and the control device 26 controls the drive and stop of the blower 24. Aerobic processing is performed by continuously driving the blower 24, and oxygen-free processing is performed by intermittently driving the blower 24. The aerobic treatment and the oxygen-free treatment are performed alternately, and the operation time for each treatment is set to several tens of minutes.

昇降装置20は、汚泥界面計16と溶存酸素濃度計18を昇降させて生物処理槽12内での高さ位置を調節する装置である。汚泥界面計16と溶存酸素濃度計18は、固定されて同時に昇降するように構成してもよいし、別々に昇降するようにしてもよい。また、昇降装置20による昇降方法は特に限定するものではないが、例えば、汚泥界面計16や溶存酸素濃度計18のケーブル線を巻きかけたローラ(不図示)を回転駆動させて昇降させるようにするとよい。あるいは、汚泥界面計16や溶存酸素濃度計18を、棒状部材(不図示)で支持し、この棒状部材をリニアモータ等で昇降させるようにしてもよい。   The lifting device 20 is a device that moves the sludge interface meter 16 and the dissolved oxygen concentration meter 18 up and down to adjust the height position in the biological treatment tank 12. The sludge interface meter 16 and the dissolved oxygen concentration meter 18 may be fixed and moved up and down at the same time, or may be moved up and down separately. Moreover, although the raising / lowering method by the raising / lowering apparatus 20 is not specifically limited, For example, the roller (not shown) around which the cable wire of the sludge interface meter 16 or the dissolved oxygen concentration meter 18 is rotationally driven is moved up and down. Good. Alternatively, the sludge interface meter 16 and the dissolved oxygen concentration meter 18 may be supported by a rod-shaped member (not shown), and the rod-shaped member may be moved up and down by a linear motor or the like.

汚泥界面計16は、汚泥の界面位置を検出する装置であり、例えば、所定の間隔で配置された投光部(不図示)と受光部(不図示)とを有し、この投光部から投光して受光部で受光した光量(透過光量)を測定する。そして、この透過光量がしきい値を超えた場合に汚泥の存在を検出する。このような汚泥界面計16を生物処理槽12内で昇降させながら、汚泥の存在を検出することによって汚泥界面の高さ位置を検出することができる。   The sludge interface meter 16 is a device that detects the interface position of sludge. For example, the sludge interface meter 16 has a light projecting unit (not shown) and a light receiving unit (not shown) arranged at a predetermined interval. The amount of light that has been projected and received by the light receiving unit (the amount of transmitted light) is measured. And when this transmitted light quantity exceeds a threshold value, the presence of sludge is detected. The height position of the sludge interface can be detected by detecting the presence of sludge while raising and lowering the sludge interface meter 16 in the biological treatment tank 12.

汚泥界面計16と溶存酸素濃度計18は、前述した制御装置26に電気的に接続されており、その検出値が制御装置26に出力される。また、制御装置26は、昇降装置20に接続されており、昇降装置20によって昇降させた際の溶存酸素濃度計18と汚泥界面計16の高さ位置を検出できるようになっている。   The sludge interface meter 16 and the dissolved oxygen concentration meter 18 are electrically connected to the control device 26 described above, and the detected value is output to the control device 26. The control device 26 is connected to the lifting device 20 and can detect the height positions of the dissolved oxygen concentration meter 18 and the sludge interface meter 16 when lifted and lowered by the lifting device 20.

制御装置26は、前述したブロワ24の連続駆動と駆動停止とを切り換えることにより、好気処理と無酸素処理とを切り換える。また、制御装置26は無酸素処理時において、汚泥界面計16と溶存酸素濃度計18の計測値に基づいてブロワ24を一時的に駆動させ、生物処理槽12内の攪拌を行う。以下に、制御装置26による制御フローについて図3に基づいて説明する。   The control device 26 switches between an aerobic process and an oxygen-free process by switching between the continuous drive and the drive stop of the blower 24 described above. Moreover, the control apparatus 26 drives the blower 24 temporarily based on the measured value of the sludge interface meter 16 and the dissolved oxygen concentration meter 18 at the time of an oxygen-free process, and stirs in the biological treatment tank 12. FIG. Below, the control flow by the control apparatus 26 is demonstrated based on FIG.

まず、時間を計時するための第1タイマの時間T1を0にリセットし(ステップS1)、その後、第1タイマの時間T1が設定値(例えば25分)になるまで、ブロワ24を連続駆動して好気処理を行う(ステップS2、S3)。   First, the time T1 of the first timer for measuring time is reset to 0 (step S1), and then the blower 24 is continuously driven until the time T1 of the first timer reaches a set value (for example, 25 minutes). Then, an aerobic process is performed (steps S2 and S3).

そして、第1タイマの時間T1が設定値になった際に、無酸素処理に切り換える。無酸素処理ではまず、第2タイマの時間T2を0にリセットした後(ステップS4)、ブロワ24を停止して無酸素処理を開始する(ステップ5)。この無酸素処理は、前述の第1タイマーT1が設定値(例えば60分、すなわち無酸素処理時間が35分)になるまで行い(ステップS6)、無酸素処理が終了した後は好気処理(ステップS1〜S3)を繰り返す。   Then, when the time T1 of the first timer reaches the set value, the operation is switched to the oxygen-free process. In the oxygen-free treatment, first, the time T2 of the second timer is reset to 0 (step S4), and then the blower 24 is stopped and the oxygen-free treatment is started (step 5). This anaerobic treatment is performed until the above-described first timer T1 reaches a set value (for example, 60 minutes, that is, the anaerobic treatment time is 35 minutes) (step S6). Steps S1 to S3) are repeated.

無酸素処理中、第2タイマT2が曝気間隔の設定値(例えば10分)になると(ステップS7)、汚泥界面の高さ位置と溶存酸素濃度の計測を行う(ステップS8)。すなわち、昇降装置20によって汚泥界面計16と溶存酸素濃度計18とを降下させ、汚泥界面計16によって汚泥界面の高さ位置を検出するとともに、溶存酸素濃度計18によって活性汚泥の溶存酸素濃度を測定する。   When the second timer T2 reaches the set value of the aeration interval (for example, 10 minutes) during the oxygen-free treatment (step S7), the height position of the sludge interface and the dissolved oxygen concentration are measured (step S8). That is, the sludge interface meter 16 and the dissolved oxygen concentration meter 18 are lowered by the lifting device 20, the height position of the sludge interface is detected by the sludge interface meter 16, and the dissolved oxygen concentration of the activated sludge is determined by the dissolved oxygen concentration meter 18. taking measurement.

測定した汚泥界面の高さ位置がしきい値よりも大きい(高い)場合には、一時攪拌処理を1サイクル分スキップし、ステップS4に戻って曝気間隔計測用の第2タイマを0にリセットする。逆に汚泥界面の高さ位置がしきい値よりも小さい(低い)場合には、次のステップに移行する。そして、測定した溶存酸素濃度としきい値を比較し(ステップS10)、溶存酸素濃度がしきい値よりも大きい場合には、一時的曝気処理を1サイクル分スキップし、ステップS4に戻る。逆に溶存酸素濃度がしきい値よりも小さい場合には、ブロワ24を所定時間(例えば30秒)、一時的に駆動し、曝気を行う(ステップS11)。曝気が終了した後は、ステップS4に戻り、第2タイマを0にリセットして、曝気間隔の計測を開始する。このように必要に応じて一時的な曝気処理を行い、これを定期的に繰り返す。   If the measured height position of the sludge interface is larger (higher) than the threshold value, the temporary stirring process is skipped for one cycle, and the process returns to step S4 to reset the second timer for measuring the aeration interval to zero. . Conversely, when the height position of the sludge interface is smaller (lower) than the threshold value, the process proceeds to the next step. Then, the measured dissolved oxygen concentration is compared with the threshold value (step S10). If the dissolved oxygen concentration is larger than the threshold value, the temporary aeration process is skipped for one cycle, and the process returns to step S4. Conversely, when the dissolved oxygen concentration is smaller than the threshold value, the blower 24 is temporarily driven for a predetermined time (for example, 30 seconds) to perform aeration (step S11). After the aeration is completed, the process returns to step S4, the second timer is reset to 0, and the measurement of the aeration interval is started. Thus, temporary aeration processing is performed as necessary, and this is repeated periodically.

次に各処理について図2(A)〜図2(C)に基づいて説明する。   Next, each process will be described with reference to FIGS. 2 (A) to 2 (C).

好気処理を行う場合には、図2(A)に示すように、汚泥界面計16及び溶存酸素濃度計18を生物処理槽12の水面近傍に配置しておく。制御装置26は、この状態でブロワ24を連続駆動させ、生物処理槽12内を曝気処理する。これにより、生物処理槽12の内部全体が好気状態に維持されるので、好気処理である硝化反応が効率よく行われる。なお、好気処理中の汚泥界面計16及び溶存酸素濃度計18の位置は、特に限定するものではないが、汚水中に配置しておくと攪拌によって揺れて壁面にぶつかるおそれがあり、また、水面の上に配置しておくと水中に降下させた際に汚泥を攪拌するおそれがあるので、水面の位置に配置しておくことが好ましい。   When the aerobic treatment is performed, the sludge interface meter 16 and the dissolved oxygen concentration meter 18 are arranged in the vicinity of the water surface of the biological treatment tank 12 as shown in FIG. In this state, the control device 26 continuously drives the blower 24 to aerate the inside of the biological treatment tank 12. Thereby, since the whole inside of the biological treatment tank 12 is maintained in an aerobic state, the nitrification reaction which is an aerobic process is performed efficiently. The positions of the sludge interface meter 16 and the dissolved oxygen concentration meter 18 during the aerobic treatment are not particularly limited, but if placed in the sewage, there is a risk of shaking and colliding with the wall, If placed on the water surface, the sludge may be agitated when lowered into the water, so it is preferable to place it on the water surface.

一方、無酸素処理では、ブロワ24を停止し、曝気を停止して無酸素状態を形成する。このとき、曝気による攪拌も停止するため、活性汚泥が時間の経過とともに徐々に沈降し、図2(B)さらには図2(C)に示すように汚泥界面が降下する。このとき、汚泥界面より上側の上澄み部分では活性汚泥が殆どないので、脱窒反応が殆ど進行せず、汚泥界面の下側の活性汚泥において脱窒処理が行われる。したがって、汚泥界面が低下することによって、脱窒処理が行われる範囲が減少するため、生物処理槽12全体での脱窒処理の能力が低下する。   On the other hand, in the oxygen-free treatment, the blower 24 is stopped, aeration is stopped, and an oxygen-free state is formed. At this time, since agitation by aeration is also stopped, the activated sludge gradually settles with time, and the sludge interface descends as shown in FIG. 2B and FIG. 2C. At this time, since there is almost no activated sludge in the supernatant portion above the sludge interface, the denitrification reaction hardly proceeds, and the denitrification treatment is performed in the activated sludge below the sludge interface. Therefore, since the range where denitrification processing is performed decreases by the sludge interface decreasing, the ability of denitrification processing in the biological treatment tank 12 as a whole decreases.

そこで、本実施の形態では、無酸素処理を行っている間に、昇降装置20を定期的(例えば5分、或いは10分おき)に駆動し、汚泥界面計16と溶存酸素濃度計18を降下させる。そして、汚泥界面計16によって汚泥界面の高さ位置を検出し、さらに、この汚泥界面の下側となる位置(例えば汚泥界面の0.1m下側の位置)で、溶存酸素濃度計18によって活性汚泥の溶存酸素濃度を計測する。   Therefore, in the present embodiment, while the oxygen-free treatment is performed, the lifting device 20 is driven periodically (for example, every 5 minutes or every 10 minutes), and the sludge interface meter 16 and the dissolved oxygen concentration meter 18 are lowered. Let Then, the height of the sludge interface is detected by the sludge interface meter 16, and further activated by the dissolved oxygen concentration meter 18 at a position below this sludge interface (for example, a position 0.1 m below the sludge interface). Measure the dissolved oxygen concentration of sludge.

制御装置26は、このようにして計測した汚泥界面の高さ位置と溶存酸素濃度に基づいて、ブロワ24の一時的な駆動を行うか否かを判断する。具体的には、汚泥界面の高さ位置が所定値以下になり、且つ、溶存酸素濃度が所定値以下になった際に、ブロワ24を駆動し、一時的な駆動を行う。一時的な駆動を行うことにより、散気装置22から曝気が行われ、沈降した活性汚泥が巻き上げられ、生物処理槽12内が攪拌される。これにより、生物処理槽12の内部全体で脱窒反応が進行するようになり、脱窒処理の能力が向上する。なお、ブロワ24を一時的に駆動する時間は、活性汚泥の濃度が生物処理槽12の内部で略均一になるまでに要する時間であり、脱窒反応に適した環境が形成されるまでの時間である。この駆動時間の目安は例えば数10秒程度であり、実際には汚水処理設備の状況に応じて調整する。   The control device 26 determines whether or not to temporarily drive the blower 24 based on the height position of the sludge interface and the dissolved oxygen concentration thus measured. Specifically, when the height position of the sludge interface becomes a predetermined value or less and the dissolved oxygen concentration becomes a predetermined value or less, the blower 24 is driven to perform temporary driving. By performing temporary driving, aeration is performed from the air diffuser 22, the activated sludge that has settled is wound up, and the inside of the biological treatment tank 12 is agitated. Thereby, a denitrification reaction will advance in the whole inside of the biological treatment tank 12, and the capability of a denitrification process will improve. The time for temporarily driving the blower 24 is the time required until the concentration of activated sludge becomes substantially uniform inside the biological treatment tank 12, and the time until the environment suitable for the denitrification reaction is formed. It is. The standard of the driving time is, for example, about several tens of seconds, and is actually adjusted according to the situation of the sewage treatment facility.

以上のような昇降装置20による汚泥界面計16と溶存酸素濃度計18の降下と、その際の汚泥界面計16と溶存酸素濃度計18による計測を定期的に繰り返し行い、必要に応じてブロワ24を一時的に駆動し、生物処理槽12の内部の攪拌処理する。このように汚泥界面の高さ位置と溶存酸素濃度に基づいて一時的な曝気を制御することによって、脱窒処理を効率良く行うことができる。   The lowering of the sludge interface meter 16 and the dissolved oxygen concentration meter 18 by the elevating device 20 as described above, and the measurement by the sludge interface meter 16 and the dissolved oxygen concentration meter 18 at that time are periodically repeated, and if necessary, the blower 24 Is temporarily driven to stir the inside of the biological treatment tank 12. Thus, denitrification can be efficiently performed by controlling temporary aeration based on the height position of the sludge interface and the dissolved oxygen concentration.

以下、汚泥界面の高さ位置、溶存酸素濃度と脱窒効率との関係について説明する。   Hereinafter, the relationship between the height position of the sludge interface, the dissolved oxygen concentration, and the denitrification efficiency will be described.

図2(B)に示すように汚泥界面が高い場合、生物処理槽12内の広い範囲で無酸素状態が保たれており、脱窒反応が効率よく進行する。したがって、一時的な曝気を行わなくても脱窒処理が十分に進行する。よって、汚泥界面が十分に高い場合にはブロワ24の一時的な駆動を行わないことによって、脱窒反応に適した環境を維持する。   As shown in FIG. 2B, when the sludge interface is high, the oxygen-free state is maintained over a wide range in the biological treatment tank 12, and the denitrification reaction proceeds efficiently. Therefore, the denitrification process proceeds sufficiently without performing temporary aeration. Therefore, when the sludge interface is sufficiently high, the environment suitable for the denitrification reaction is maintained by not temporarily driving the blower 24.

図2(C)に示すように汚泥界面が低い場合には、汚泥界面より下側の狭い範囲でしか脱窒反応が進行しないので、脱窒処理が不十分となる。そこで、汚泥界面計16で検出した汚泥界面が所定値よりも低い場合には、ブロワ24を一時的に駆動させ、生物処理槽12内を攪拌し、生物処理槽12内の広い範囲で脱窒処理を行うようにする。これにより、脱窒処理を効率良く行うことができる。なお、ブロワ24を一時的に駆動させる際の汚泥界面の高さ位置の目安としては、有機物及び窒素の負荷量によって異なるが、生物処理槽12の水深の3/4〜2/3程度が好ましい。   As shown in FIG. 2C, when the sludge interface is low, the denitrification reaction proceeds only in a narrow range below the sludge interface, so that the denitrification treatment is insufficient. Therefore, when the sludge interface detected by the sludge interface meter 16 is lower than a predetermined value, the blower 24 is temporarily driven, the inside of the biological treatment tank 12 is stirred, and denitrification is performed in a wide range within the biological treatment tank 12. Do processing. Thereby, denitrification processing can be performed efficiently. In addition, as a standard of the height position of the sludge interface at the time of driving the blower 24 temporarily, although it changes with load amounts of organic matter and nitrogen, about 3/4 to 2/3 of the water depth of the biological treatment tank 12 is preferable. .

一方、汚泥界面の高さ位置に依らず、溶存酸素濃度が高い場合(すなわち好気環境の場合)には、無酸素条件が必要な脱窒反応は殆ど進行しない。したがって、溶存酸素濃度が高い場合にブロワ24を一時的に駆動して攪拌を行うと、ブロワ24による酸素供給と、上澄み液に残存する酸素の巻き込みによって、活性汚泥の溶存酸素濃度が高まるため、脱窒反応が進行しないまま、無酸素処理時間が終了するおそれがある。このため、溶存酸素濃度計18の計測値が所定値以下まで低下してない場合には、ブロワ24の一時的な駆動を行わず、所定値以下まで低下した後にブロワ24を一時的に駆動して攪拌する。これにより、生物処理槽12内を常に、脱窒反応に適した環境を整えることができる。なお、ブロワ24を一時的に駆動させる際の、活性汚泥の溶存酸素濃度としては0mg/Lにできるだけ近い値が好ましく、例えば0.5mg/Lに設定される。   On the other hand, regardless of the height position of the sludge interface, when the dissolved oxygen concentration is high (that is, in an aerobic environment), the denitrification reaction that requires anoxic conditions hardly proceeds. Therefore, when the blower 24 is temporarily driven and stirred when the dissolved oxygen concentration is high, the dissolved oxygen concentration of the activated sludge increases due to the oxygen supply by the blower 24 and the entrainment of oxygen remaining in the supernatant. There is a risk that the oxygen-free treatment time will end without the denitrification reaction proceeding. For this reason, when the measured value of the dissolved oxygen concentration meter 18 has not decreased to a predetermined value or less, the blower 24 is temporarily not driven without being temporarily driven. And stir. Thereby, the environment suitable for denitrification reaction can always be prepared in the biological treatment tank 12. Note that the dissolved oxygen concentration of the activated sludge when the blower 24 is temporarily driven is preferably as close to 0 mg / L as possible, for example, set to 0.5 mg / L.

このように本実施の形態によれば、汚泥界面の高さ位置と活性汚泥の溶存酸素濃度に基づいて、ブロワ24を一時的に駆動させ、無酸素処理時の攪拌を行うようにしたので、生物処理槽12内を常に脱窒処理に適した環境に維持することができ、脱窒処理を効率良く行うことができる。   As described above, according to the present embodiment, the blower 24 is temporarily driven based on the height position of the sludge interface and the dissolved oxygen concentration of the activated sludge, and the agitation during the oxygen-free treatment is performed. The inside of the biological treatment tank 12 can always be maintained in an environment suitable for the denitrification treatment, and the denitrification treatment can be performed efficiently.

また、本実施の形態によれば、汚泥界面の高さ位置と活性汚泥の溶存酸素濃度に基づいて一時的曝気を行うので、曝気時間や曝気間隔の調整の難易度が低下し、高い処理性能を容易に確保することができる。したがって、本実施の形態によれば、全ての処理の自動化が容易になり、自動化した場合にも安定した窒素処理性能を確保することができる。   Further, according to the present embodiment, since temporary aeration is performed based on the height position of the sludge interface and the dissolved oxygen concentration of the activated sludge, the difficulty of adjusting the aeration time and the aeration interval is reduced, and high processing performance is achieved. Can be easily secured. Therefore, according to the present embodiment, automation of all the processes is facilitated, and stable nitrogen treatment performance can be ensured even when the processes are automated.

さらに、本実施の形態はブロワ24を必要最小限の稼働で良いので、ブロワ24の機械的な負担を減少させることができる。   Further, in this embodiment, since the blower 24 can be operated with the minimum necessary, the mechanical burden on the blower 24 can be reduced.

また、本実施の形態の汚水処理装置10は、好気処理用の散気装置22及びブロワ24を無酸素処理時の攪拌手段として兼用しているので、攪拌翼等の機械的攪拌手段が不要であり、コストの削減を図ることができる。   Further, since the sewage treatment apparatus 10 of the present embodiment also uses the aeration apparatus 22 and the blower 24 for aerobic treatment as a stirring means at the time of oxygen-free treatment, a mechanical stirring means such as a stirring blade is unnecessary. Therefore, the cost can be reduced.

なお、上述した実施形態では、一時的な曝気処理を所定時間行なった後に自動的に停止するようにしたが、一時的曝気処理の制御方法はこれに限定するものではない。例えば、一時的な曝気処理の開始後に、高さ方向の複数箇所で溶存酸素濃度を測定し、この測定値に基づいて一時的な曝気処理を停止してもよい。図4は、図3の一時的曝気処理(ステップS11)の詳細を示すフローチャートである。   In the above-described embodiment, the temporary aeration process is automatically stopped after a predetermined time, but the control method of the temporary aeration process is not limited to this. For example, after the start of the temporary aeration process, the dissolved oxygen concentration may be measured at a plurality of locations in the height direction, and the temporary aeration process may be stopped based on this measured value. FIG. 4 is a flowchart showing details of the temporary aeration process (step S11) of FIG.

まず、一時的曝気処理の時間を計時するための第3タイマの時間T3を0にリセットし(ステップS21)、DOの計測時間間隔を計時するための第4タイマの時間T4を0にリセットする(ステップS22)。   First, the time T3 of the third timer for timing the temporary aeration process is reset to 0 (step S21), and the time T4 of the fourth timer for timing the DO measurement time interval is reset to 0. (Step S22).

次いで、ブロワ24をONにし、一時的曝気処理を行う(ステップS23)。そして、一時的曝気処理の時間T3が設定時間を超えた場合を除き(ステップS24)、以下の処理を行う。すなわち、DOの計測時間間隔の時間T4が設定時間になるまで、ブロワ24の駆動状態を維持し、計測時間間隔の時間T4が設定時間になった場合に(ステップS25)、高さ方向に複数箇所で溶存酸素濃度を測定する(ステップS26)。溶存酸素濃度の測定は、昇降装置20によって溶存酸素濃度計18を昇降させることによって、高さ方向に複数の箇所で測定を行う。   Next, the blower 24 is turned on and a temporary aeration process is performed (step S23). Then, except for the case where the temporary aeration processing time T3 exceeds the set time (step S24), the following processing is performed. That is, the driving state of the blower 24 is maintained until the time T4 of the DO measurement time interval reaches the set time, and when the time T4 of the measurement time interval reaches the set time (step S25), a plurality of height directions are set. The dissolved oxygen concentration is measured at the location (step S26). The dissolved oxygen concentration is measured at a plurality of locations in the height direction by moving the dissolved oxygen concentration meter 18 up and down by the lifting device 20.

次いで、複数の測定値から、最大値と最小値を求め、この最大値と最小値との差を演算する(ステップS27)。そして、演算した差の値としきい値を比較し(ステップS28)、差の演算値がしきい値よりも大きい場合には、攪拌が十分に行われていないと判断し、ステップS22に戻り、時間T4が設定時間になった際に再び溶存酸素濃度を複数箇所で測定し、同様の処理を行う。また、差の演算値がしきい値以下になった場合には、攪拌が十分に行われ、溶存酸素濃度が均一になったと判断し、ブロワ24をOFFにして一時的曝気処理を終了する。なお、差の演算値がしきい値以下にならない場合であっても、一時的曝気処理の時間T3が設定時間を超えた場合には(ステップS24)、ブロワ24をOFFにして一時的曝気処理を終了する。   Next, a maximum value and a minimum value are obtained from a plurality of measured values, and a difference between the maximum value and the minimum value is calculated (step S27). Then, the calculated difference value is compared with a threshold value (step S28), and if the calculated difference value is larger than the threshold value, it is determined that stirring is not sufficiently performed, and the process returns to step S22. When the time T4 reaches the set time, the dissolved oxygen concentration is measured again at a plurality of locations, and the same processing is performed. If the calculated value of the difference is less than or equal to the threshold value, it is determined that the agitation has been sufficiently performed and the dissolved oxygen concentration has become uniform, the blower 24 is turned off, and the temporary aeration process is terminated. Even if the calculated value of the difference does not fall below the threshold value, if the time T3 of the temporary aeration process exceeds the set time (step S24), the blower 24 is turned off and the temporary aeration process is performed. Exit.

上述したように、一時的曝気処理を開始した後に、高さ方向に複数箇所で溶存酸素濃度を測定し、その最大値と最小値との差を求め、この差がしきい値以下になった際に一時的曝気処理を終了するようにしたので、曝気量を適切な量に制御することができる。すなわち、溶存酸素濃度の複数の測定値の差が小さくなって攪拌が十分に行われたと判断した際に一時的曝気処理を停止するので、適切な曝気量に制御することができる。これにより、過剰な曝気を防止でき、攪拌後の溶存酸素濃度が上昇し過ぎることを防止できる。よって、一時的曝気処理後の脱窒反応を十分に進行させることができる。また、上記の制御方法では、適切な曝気量に制御することができるので、ブロワ24の駆動時間が短くなり、ブロワ24の負担を軽減することができ、ブロワ24の故障発生率を低減させることができる。   As described above, after starting the temporary aeration treatment, the dissolved oxygen concentration was measured at a plurality of locations in the height direction, and the difference between the maximum value and the minimum value was obtained, and this difference was below the threshold value. At this time, since the temporary aeration process is ended, the aeration amount can be controlled to an appropriate amount. That is, the temporary aeration process is stopped when it is determined that the difference between the plurality of measured values of the dissolved oxygen concentration is small and the stirring is sufficiently performed, so that the amount of aeration can be controlled to an appropriate amount. Thereby, excessive aeration can be prevented and it can prevent that the dissolved oxygen concentration after stirring rises too much. Therefore, the denitrification reaction after the temporary aeration treatment can sufficiently proceed. Further, in the above control method, since it is possible to control to an appropriate aeration amount, the driving time of the blower 24 can be shortened, the burden on the blower 24 can be reduced, and the failure occurrence rate of the blower 24 can be reduced. Can do.

なお、溶存酸素濃度計18を昇降させて複数の測定点で測定する代わりに、予め複数の溶存酸素濃度計18を設けて同時に測定するようにしてもよい。   Instead of moving the dissolved oxygen concentration meter 18 up and down and measuring at a plurality of measurement points, a plurality of dissolved oxygen concentration meters 18 may be provided in advance and measured simultaneously.

本発明に係る汚水処理装置の構成を示す模式図The schematic diagram which shows the structure of the sewage treatment apparatus which concerns on this invention. 各処理時における生物処理槽を示す模式図Schematic showing the biological treatment tank at the time of each treatment 汚水処理装置の制御フローを示すフローチャートFlow chart showing control flow of sewage treatment equipment 一時的曝気処理の制御フローを示すフローチャートFlow chart showing control flow of temporary aeration processing

符号の説明Explanation of symbols

10…汚水処理装置、12…生物処理槽、14…沈殿槽、16…汚泥界面計、18…溶存酸素濃度計、20…昇降装置、22…散気装置、24…ブロワ、26…制御装置、28…流入管、30…移送管、32…処理水流出管、34…汚泥引抜管、36…汚泥返送管
DESCRIPTION OF SYMBOLS 10 ... Sewage treatment apparatus, 12 ... Biological treatment tank, 14 ... Precipitation tank, 16 ... Sludge interface meter, 18 ... Dissolved oxygen concentration meter, 20 ... Lifting device, 22 ... Aeration device, 24 ... Blower, 26 ... Control device, 28 ... Inflow pipe, 30 ... Transfer pipe, 32 ... Treated water outflow pipe, 34 ... Sludge extraction pipe, 36 ... Sludge return pipe

Claims (5)

汚水を活性汚泥によって生物処理するとともに、連続曝気を行う好気処理と一時的曝気を行う無酸素処理とを交互に行う汚水処理方法において、
前記無酸素処理時に前記活性汚泥の界面位置を検出するとともに、前記活性汚泥の溶存酸素濃度を検出し、
前記界面位置と前記溶存酸素濃度の検出結果に応じて、前記一時的曝気の制御を行うことを特徴とする汚水処理方法。
In a sewage treatment method in which sewage is biologically treated with activated sludge, and aerobic treatment in which continuous aeration is performed and oxygen-free treatment in which temporary aeration is performed alternately.
While detecting the interface position of the activated sludge during the oxygen-free treatment, the dissolved oxygen concentration of the activated sludge is detected,
The sewage treatment method, wherein the temporary aeration is controlled according to the detection result of the interface position and the dissolved oxygen concentration.
前記界面位置の検出値がしきい値以下になった際に前記一時的曝気を行うことを特徴とする請求項1に記載の汚水処理方法。   The sewage treatment method according to claim 1, wherein the temporary aeration is performed when a detection value of the interface position becomes a threshold value or less. 前記活性汚泥の溶存酸素濃度の検出値がしきい値以下になった際に前記一時的曝気を行うことを特徴とする請求項1又は2に記載の汚水処理方法。   The sewage treatment method according to claim 1 or 2, wherein the temporary aeration is performed when a detected value of a dissolved oxygen concentration of the activated sludge becomes a threshold value or less. 前記一時的曝気を開始した後に、前記溶存酸素濃度の検出を高さ方向に複数箇所で行い、該複数の検出値に基づいて前記一時的曝気を制御することを特徴とする請求項1〜3のいずれか1に記載の汚水処理方法。   4. The dissolved oxygen concentration is detected at a plurality of locations in the height direction after the temporary aeration is started, and the temporary aeration is controlled based on the plurality of detection values. The sewage treatment method according to any one of the above. 活性汚泥によって汚水を生物処理する生物処理槽と、該生物処理槽内に配設された散気装置に気体を送気する送気手段と、を備え、前記送気手段を連続駆動する好気処理と、前記送気手段を一時的に駆動する無酸素処理とを交互に行う汚水処理装置において、
前記生物処理槽の汚泥界面を検出する界面検出手段と、
前記生物処理槽内の溶存酸素濃度を計測する溶存酸素濃度計と、
前記界面検出手段と溶存酸素濃度計とを昇降させる昇降手段と、
前記昇降手段で昇降させた際の前記界面検出手段の検出結果と溶存酸素濃度計の計測値とに基づいて、前記送気手段の一時的駆動を制御する制御装置と、
を備えたことを特徴とする汚水処理装置。
An aerobic system comprising: a biological treatment tank for biologically treating sewage with activated sludge; and an air supply means for supplying gas to an air diffuser disposed in the biological treatment tank, wherein the air supply means is continuously driven. In a sewage treatment apparatus that alternately performs treatment and oxygen-free treatment that temporarily drives the air supply means,
An interface detecting means for detecting a sludge interface of the biological treatment tank;
A dissolved oxygen concentration meter for measuring the dissolved oxygen concentration in the biological treatment tank;
Elevating means for elevating and lowering the interface detecting means and the dissolved oxygen concentration meter;
A control device for controlling the temporary driving of the air supply means based on the detection result of the interface detection means and the measured value of the dissolved oxygen concentration meter when the elevating means is moved up and down;
A sewage treatment apparatus comprising:
JP2005098830A 2005-03-30 2005-03-30 Sewage treatment method and sewage treatment apparatus Pending JP2006272261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098830A JP2006272261A (en) 2005-03-30 2005-03-30 Sewage treatment method and sewage treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098830A JP2006272261A (en) 2005-03-30 2005-03-30 Sewage treatment method and sewage treatment apparatus

Publications (1)

Publication Number Publication Date
JP2006272261A true JP2006272261A (en) 2006-10-12

Family

ID=37207511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098830A Pending JP2006272261A (en) 2005-03-30 2005-03-30 Sewage treatment method and sewage treatment apparatus

Country Status (1)

Country Link
JP (1) JP2006272261A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109250811A (en) * 2018-10-08 2019-01-22 广州资源环保科技股份有限公司 A kind of automatic domesticating device of activated sludge and its method for preparing activated sludge
JP2019177323A (en) * 2018-03-30 2019-10-17 株式会社フジタ Processing device and processing method
CN115072888A (en) * 2022-07-06 2022-09-20 山东恒坤环境工程有限公司 Sewage treatment aeration equipment and sewage treatment system
CN115504573A (en) * 2022-09-23 2022-12-23 深圳市环境科学研究院 Wastewater treatment system and wastewater treatment method
CN115779505A (en) * 2022-11-23 2023-03-14 广州市龙粤环保机械设备有限公司 Sewage treatment system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177323A (en) * 2018-03-30 2019-10-17 株式会社フジタ Processing device and processing method
JP7008562B2 (en) 2018-03-30 2022-01-25 株式会社フジタ Processing equipment
CN109250811A (en) * 2018-10-08 2019-01-22 广州资源环保科技股份有限公司 A kind of automatic domesticating device of activated sludge and its method for preparing activated sludge
CN115072888A (en) * 2022-07-06 2022-09-20 山东恒坤环境工程有限公司 Sewage treatment aeration equipment and sewage treatment system
CN115504573A (en) * 2022-09-23 2022-12-23 深圳市环境科学研究院 Wastewater treatment system and wastewater treatment method
CN115779505A (en) * 2022-11-23 2023-03-14 广州市龙粤环保机械设备有限公司 Sewage treatment system and method
CN115779505B (en) * 2022-11-23 2023-09-01 广州市龙粤环保机械设备有限公司 Sewage treatment system and treatment method

Similar Documents

Publication Publication Date Title
JP2008221160A (en) Denitrifying treatment device and denitrifying treatment method
JP2006272261A (en) Sewage treatment method and sewage treatment apparatus
JP5276279B2 (en) Operation control method for aeration apparatus
KR101231210B1 (en) Advanced wastewater treatment apparatus and method according to change of inflow rate in sbr
JP4464851B2 (en) Operation control method for aeration apparatus
JP6334897B2 (en) Aeration and stirring system
JP3388293B2 (en) Biological nitrification and denitrification method for night soil
JP4307307B2 (en) Biological treatment method and apparatus using membrane separator
JP2005103381A (en) Method and apparatus for nitrification
JP2006088022A (en) Operation control method of oxidation ditch, and oxidation ditch
JP2013005754A (en) Aeration method and aeration apparatus
KR101036568B1 (en) Apparatus and Method for dissolving gas with high efficiency
JP6716664B2 (en) Batch type carrier water treatment method
JP2006088047A (en) Water treatment method and equipment therefor
JP7166181B2 (en) Aeration and agitation system and method of operating the aeration and agitation system
JP4837267B2 (en) Oxidation ditch operation control method and oxidation ditch operation control apparatus
JP3837758B2 (en) Nitrification denitrification equipment
JP4837266B2 (en) Operation method of oxidation ditch
JP2007029882A (en) Nitrogen-containing waste liquid treatment method
JP6613043B2 (en) Waste water treatment method and waste water treatment equipment
JP2021159860A (en) Aerobic biological film treatment method and device
JP2004290780A (en) Method for automatically controlling aeration stirrer
JP2021030158A (en) Water treatment method and water treatment equipment
JPH06142688A (en) Control method for intermittent aeration in purifying method for sewage of intermittent aeration type
JPH09187794A (en) Method for treatment of waste water and its apparatus