JP6716664B2 - Batch type carrier water treatment method - Google Patents
Batch type carrier water treatment method Download PDFInfo
- Publication number
- JP6716664B2 JP6716664B2 JP2018206373A JP2018206373A JP6716664B2 JP 6716664 B2 JP6716664 B2 JP 6716664B2 JP 2018206373 A JP2018206373 A JP 2018206373A JP 2018206373 A JP2018206373 A JP 2018206373A JP 6716664 B2 JP6716664 B2 JP 6716664B2
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- anaerobic
- batch
- tank
- batch tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 89
- 238000000034 method Methods 0.000 title claims description 32
- 239000010802 sludge Substances 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 239000002351 wastewater Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 19
- 241000894006 Bacteria Species 0.000 claims description 18
- 238000007667 floating Methods 0.000 claims description 17
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 14
- 238000005273 aeration Methods 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 241001148470 aerobic bacillus Species 0.000 claims description 10
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 4
- 238000010907 mechanical stirring Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 57
- 238000012360 testing method Methods 0.000 description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 6
- 230000001546 nitrifying effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013019 agitation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000010808 liquid waste Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000000802 nitrating effect Effects 0.000 description 1
- HLNRBHDRGMNBEG-UHFFFAOYSA-N nitrous acid Chemical compound ON=O.ON=O HLNRBHDRGMNBEG-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、効果的な脱窒が可能な回分式担体水処理方法に関する。 The present invention relates to a batch type carrier water treatment method capable of effective denitrification.
特許文献1は、反応槽内で沈降可能な担体を用い、担体を曝気撹拌流動させ、曝気停止後に担体を沈降させる際に、担体に活性汚泥が付着することによって、活性汚泥単独よりも先に沈降させ、担体上部に活性汚泥が担体よりやや遅れて沈降する処理方法が記載されている。 Patent Document 1 uses a carrier that can be settled in a reaction tank, aerates and stirs the carrier, and when the carrier is settled after the aeration is stopped, the activated sludge adheres to the carrier, so that the activated sludge is provided before the activated sludge alone. A treatment method is described in which the activated sludge is allowed to settle, and the activated sludge settles on the upper part of the carrier with a slight delay from the carrier.
この特許文献1の方法では、反応槽からの担体の流出を防止するおそれがあるので、担体流出防止手段を設けており、担体流出防止手段としてメッシュの網体を用い、反応槽の下方に隙間を空けて設けられている。
この手法では、メッシュの金網上に、汚泥が付着した担体が堆積し、さらに担体の上部や担体間に汚泥が詰まっている。処理水は、金網の下方からポンプで抜き出すことにより得られるが、金網から汚泥が落ちてきて、清澄は処理水が得られにくい欠点がある。
In the method of Patent Document 1, since there is a risk of preventing the carrier from flowing out from the reaction tank, a carrier outflow preventing means is provided, and a mesh net is used as the carrier outflow preventing means, and there is a gap below the reaction tank. It is provided with a space.
In this method, a carrier to which sludge is attached is accumulated on a mesh wire mesh, and further, sludge is clogged in the upper part of the carrier or between the carriers. The treated water is obtained by pumping out from below the wire net, but sludge falls from the wire net, and clarification has a drawback that it is difficult to obtain the treated water.
特許文献2は、微生物固定化担体を用いた回分式の活性汚泥処理を行っているが、活性汚泥と処理水の固液分離を容易にするために、微生物生息性の高い担体を用いて、沈殿工程で、微生物が担持された担体の沈降性を速くして、処理水と微生物の分離を容易にしている。 Patent Document 2 performs batch-type activated sludge treatment using a microorganism-immobilized carrier. However, in order to facilitate solid-liquid separation of activated sludge and treated water, a carrier with high microbial habitability is used, In the precipitation step, the sedimentation of the carrier carrying the microorganisms is accelerated to facilitate the separation of the treated water and the microorganisms.
しかし、特許文献2は、処理槽内の担体を汚泥と併せて沈降させているため、結局沈降するまでの間処理を行うことができないといった問題がある。 However, in Patent Document 2, since the carrier in the treatment tank is settled together with the sludge, there is a problem that the treatment cannot be performed until the settling ends up.
そこで、本発明の課題は、回分槽内の担体を浮遊させた状態で、沈降時にも処理を進められ、処理時間の短縮を図ることができる回分式担体水処理方法を提供することにある。 Therefore, it is an object of the present invention to provide a batch-type carrier water treatment method capable of advancing the treatment even during sedimentation in a state in which the carrier in the batch tank is suspended and shortening the treatment time.
また本発明の他の課題は、以下の記載によって明らかとなる。 Other problems of the present invention will be clarified by the following description.
上記課題は、以下の各発明によって解決される。 The above problems can be solved by the following inventions.
(請求項1)
回分槽内の汚泥の曝気停止後に、機械的な撹拌を停止し、該回分槽内の汚泥を沈降させて沈降汚泥と上澄水とに固液分離すると共に、少なくとも硝酸化又は亜硝酸化可能な好気性菌及び脱窒菌を担持してなる担体を液面近傍に浮上させた状態で、アンモニア態窒素を含有する廃水を導入すると共に、処理水を該回分槽外に取り出す嫌気第2工程と、
前記嫌気第2工程で導入された廃水を、前記回分槽内で浮遊する前記好気性菌や、前記担体に担持された前記好気性菌に接触させつつ、前記回分槽内に設けられた曝気装置から空気を供給して、亜硝酸化反応や硝酸化反応を含む硝化反応を行う好気性硝化工程と、
前記好気性硝化工程における空気の供給を停止し、該回分槽内の液を嫌気状態で撹拌しながら、脱窒菌による脱窒反応により窒素ガスを生成する嫌気第1工程
からなる処理サイクルを有することを特徴とする回分式担体水処理方法。
(請求項2)
前記回分槽内で、前記嫌気第2工程と、前記好気性硝化工程と、前記嫌気第1工程の前記処理サイクルを順次繰り返すことを特徴とする請求項1記載の回分式担体水処理方法。
(請求項3)
前記液面近傍に浮上した担体が、前記上澄水中に含まれる浮遊懸濁物質(ss)をろ過することを特徴とする請求項1又は2記載の回分式担体水処理方法。
(請求項4)
前記担体が、複数のセルを有する担体であることを特徴とする請求項1〜3の何れかに記載の回分式担体水処理方法。
(請求項5)
前記担体は、大きさが2〜50[mm角]、真比重が0.03〜0.05[g/cm3]であることを特徴とする請求項4記載の回分式担体水処理方法。
(Claim 1)
After aeration of sludge in the batch tank is stopped, mechanical stirring is stopped, the sludge in the batch tank is allowed to settle, and solid sludge is separated into sedimented sludge and supernatant water, and at least nitrification or nitrite conversion is possible. An anaerobic second step in which a carrier carrying aerobic bacteria and denitrifying bacteria is floated near the liquid surface, while introducing waste water containing ammonia nitrogen, and treating water is taken out of the batch tank,
An aeration device provided in the batch tank while contacting the wastewater introduced in the anaerobic second step with the aerobic bacteria floating in the batch tank or the aerobic bacteria carried on the carrier. An aerobic nitrification step of supplying air from a nitrification reaction including a nitrite reaction and a nitrification reaction,
In the aerobic nitrification step, the supply of air is stopped, and while the liquid in the batch tank is being stirred in an anaerobic state, there is a anaerobic first step in which nitrogen gas is generated by a denitrification reaction by denitrifying bacteria. A batch-type carrier water treatment method comprising:
(Claim 2)
The batch type carrier water treatment method according to claim 1, wherein the treatment cycle of the anaerobic second step, the aerobic nitrification step, and the anaerobic first step is sequentially repeated in the batch tank.
(Claim 3)
The batch type carrier water treatment method according to claim 1 or 2, wherein the carrier floating near the liquid surface filters suspended suspended matter (ss) contained in the supernatant water.
(Claim 4)
The batch type carrier water treatment method according to claim 1, wherein the carrier is a carrier having a plurality of cells.
(Claim 5)
The batch type carrier water treatment method according to claim 4, wherein the carrier has a size of 2 to 50 [mm square] and a true specific gravity of 0.03 to 0.05 [g/cm 3 ].
本発明によれば、回分槽内の担体を浮遊させた状態で、沈降時にも処理を進められ、処理時間の短縮を図ることができる回分式担体水処理方法を提供することができる。 According to the present invention, it is possible to provide a batch-type carrier water treatment method in which a carrier in a batch tank is suspended and the treatment can proceed even during sedimentation, and the treatment time can be shortened.
以下に、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
以下に、図面を参照して本発明について更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
図1は、本発明の回分式担体水処理方法の一例を示すブロック図であり、図2は、本発明の回分式担体水処理方法を実施するための回分式担体水処理装置の一例を概念的に説明する図である。 FIG. 1 is a block diagram showing an example of a batch type carrier water treatment method of the present invention, and FIG. 2 is a concept of an example of a batch type carrier water treatment apparatus for carrying out the batch type carrier water treatment method of the present invention. FIG.
本発明が処理対象とする廃水(原水ともいう)は、アンモニア態窒素(NH4-N)を含有するものであれば格別限定されない。本発明において、アンモニア態窒素と共に有機物を含有する廃水が好ましく、例えば、生ゴミ等の有機性廃棄物をメタン発酵した後の消化液やし尿、浄化槽汚泥などを好ましく挙げることができる。かかる消化液やし尿、浄化槽汚泥は、あらかじめ脱水処理を施して得られた濾液を用いることが特に好ましい。 The wastewater (also referred to as raw water) to be treated by the present invention is not particularly limited as long as it contains ammonia nitrogen (NH 4 —N). In the present invention, a wastewater containing an organic substance together with ammonia nitrogen is preferable, and for example, digestive liquid or human waste after methane fermentation of organic waste such as kitchen garbage, septic tank sludge and the like can be preferably mentioned. It is particularly preferable to use a filtrate obtained by subjecting the digested juice, human waste, and septic tank sludge to a dehydration treatment in advance.
本発明の回分式担体水処理方法は、好ましい態様として、図1に示す形態が挙げられ、嫌気第2工程100、好気性硝化工程101、嫌気第1工程102を有する。
以上の各工程を実施する装置の一例は、図2に示されている。
図2に示す回分式担体水処理装置は、アンモニア態窒素を含有する原水を貯留する原水槽1と、原水槽1から流入させた原水を生物学的に硝化脱窒処理する回分槽2と、回分槽2から流出させた処理水を貯留する放流槽3を備えている。
The batch type carrier water treatment method of the present invention has a form shown in FIG. 1 as a preferred embodiment, and has an anaerobic second step 100, an aerobic nitrification step 101, and an anaerobic first step 102.
An example of an apparatus that carries out each of the above steps is shown in FIG.
The batch type carrier water treatment device shown in FIG. 2 includes a raw water tank 1 for storing raw water containing ammonia nitrogen, a batch tank 2 for biologically nitrifying and denitrifying raw water introduced from the raw water tank 1. A discharge tank 3 that stores the treated water that has flowed out from the batch tank 2 is provided.
原水槽1と回分槽2は、原水供給配管4で接続されている。原水供給配管4には、該原水供給配管4を介して原水槽1内の原水を回分槽2に供給するための原水供給ポンプ5が設けられている。 The raw water tank 1 and the batch tank 2 are connected by a raw water supply pipe 4. The raw water supply pipe 4 is provided with a raw water supply pump 5 for supplying the raw water in the raw water tank 1 to the batch tank 2 via the raw water supply pipe 4.
また、回分槽2には、原水供給配管4に接続された原水流入部6と、該回分槽2での処理後の処理水を流出させる処理水流出部7が設けられている。 Further, the batch tank 2 is provided with a raw water inflow section 6 connected to the raw water supply pipe 4 and a treated water outflow section 7 for outflowing the treated water after the treatment in the batch tank 2.
処理水流出部7は、少なくとも処理水引出ポンプ71とスクリーン72と処理水配管73とからなる。
処理水流出部7において、処理水引出ポンプ71を駆動させて流出させた処理水は、処理水配管73を介して放流槽3に導入されるように構成されている。スクリーン72は、担体20の流出を防止するために設けられる。
なお、処理水引出ポンプ71を設けずに、回分槽2に廃水を導入した量をオーバーフローさせて、回分槽2で処理された処理水を押し出して放流槽3に導入させてもよい。
The treated water outflow unit 7 is composed of at least a treated water drawing pump 71, a screen 72, and a treated water pipe 73.
In the treated water outflow unit 7, the treated water drawn out by driving the treated water withdrawal pump 71 is introduced into the discharge tank 3 through the treated water pipe 73. The screen 72 is provided to prevent the carrier 20 from flowing out.
Alternatively, the treated water withdrawal pump 71 may not be provided, and the amount of the waste water introduced into the batch tank 2 may be overflowed so that the treated water treated in the batch tank 2 is pushed out and introduced into the discharge tank 3.
回分槽2内には、汚泥を撹拌するための撹拌機21を設けており、撹拌機21は、回分槽2内の汚泥中に配置された撹拌羽根210と、該撹拌羽根を駆動するモーター211により構成されている。 An agitator 21 for agitating the sludge is provided in the batch tank 2, and the agitator 21 has an agitation blade 210 arranged in the sludge in the batch tank 2 and a motor 211 for driving the agitation blade. It is composed by.
また回分槽2には、回分槽2内の汚泥を曝気するための曝気装置22を設けている。曝気装置22は、回分槽2内の下部に配置された散気管23と、該散気管23に接続されたブロワ24により構成されている。25は散気される気泡の大きさを調整可能なメンブレン部材である。 Further, the batch tank 2 is provided with an aeration device 22 for aeration of the sludge in the batch tank 2. The aeration device 22 is composed of an air diffuser 23 arranged in the lower part of the batch tank 2 and a blower 24 connected to the air diffuser 23. Reference numeral 25 is a membrane member capable of adjusting the size of air bubbles diffused.
曝気装置22は、回分槽2内で、廃水の硝化処理や有機物分解処理を行う際に用いられる。回分槽2内の汚泥に酸素を供給して好気性硝化菌や好気性亜硝酸菌を活性化できる。 The aeration device 22 is used when performing nitrification treatment or organic substance decomposition treatment of waste water in the batch tank 2. By supplying oxygen to the sludge in the batch tank 2, aerobic nitrifying bacteria and aerobic nitrites can be activated.
回分槽2には、窒素濃度を測定する窒素センサー26を設けることが好ましい。これにより処理時間を窒素濃度により調整することができる。 The batch tank 2 is preferably provided with a nitrogen sensor 26 for measuring the nitrogen concentration. Thereby, the processing time can be adjusted by the nitrogen concentration.
本実施形態の装置には、BOD源としてのメタノールを供給するメタノール貯留槽27が設けられている。メタノールは、メタノール貯留槽27からメタノール供給管28を介して、回分槽2に供給される。メタノール供給管28には、メタノール供給ポンプ29が設けられている。 The apparatus of this embodiment is provided with a methanol storage tank 27 that supplies methanol as a BOD source. Methanol is supplied from the methanol storage tank 27 to the batch tank 2 via the methanol supply pipe 28. The methanol supply pipe 28 is provided with a methanol supply pump 29.
回分槽2には、硝化を行う硝酸菌や亜硝酸菌を担持したり、あるいは脱窒を行う脱窒菌を担持したりするための担体20が分散して充填されている。 The batch tank 2 is filled with a carrier 20 for supporting nitrifying bacteria and nitrites for nitrification or for supporting denitrifying bacteria for denitrification.
回分槽2に用いる担体20としては、複数のセルを有する担体が好ましく用いられ、大きさが2〜50[mm角]、真比重が0.03〜0.05[g/cm3]、セル数が25〜55[個/25mm]、通気度が1.1〜1.4[dm3/sec]、比表面積が4500〜5500[m2/m3]である担体を好ましく用いる。 As the carrier 20 used in the batch tank 2, a carrier having a plurality of cells is preferably used, and has a size of 2 to 50 [mm square], a true specific gravity of 0.03 to 0.05 [g/cm 3 ], and a cell. A carrier having a number of 25 to 55 [pieces/25 mm], an air permeability of 1.1 to 1.4 [dm 3 /sec], and a specific surface area of 4500 to 5500 [m 2 /m 3 ] is preferably used.
本発明の回分式担体水処理方法は、回分槽2内で、嫌気第2工程100と、好気性硝化工程101と、嫌気第1工程102の各処理工程を有する処理サイクル少なくとも1回実施するが、好ましくは、前記処理サイクルを順次繰り返すことが好ましい。 The batch type carrier water treatment method of the present invention is carried out in the batch tank 2 at least once in the treatment cycle including the anaerobic second step 100, the aerobic nitrification step 101 and the anaerobic first step 102. It is preferable that the treatment cycles are sequentially repeated.
各処理工程について、以下に説明する。
<嫌気第2工程100>
この工程は、廃水の導入工程であり、さらに処理水の取出工程でもある。
この工程の前工程(後述の嫌気第1工程102)で、回分槽2内の汚泥の曝気を停止して機械的な撹拌を行って、脱窒処理を行うが、嫌気第2工程100に進む際には、機械的な撹拌も停止する。
機械的な撹拌を停止すると、回分槽2内の汚泥を沈降させて沈降汚泥と上澄水とに固液分離する。
Each processing step will be described below.
<Anaerobic second step 100>
This step is a step of introducing waste water and a step of extracting treated water.
In the previous step (anaerobic first step 102 described later) of this step, aeration of the sludge in the batch tank 2 is stopped and mechanical agitation is performed to perform denitrification treatment, but the process proceeds to the anaerobic second step 100. At this time, mechanical stirring is also stopped.
When the mechanical agitation is stopped, the sludge in the batch tank 2 is settled and solid-liquid separated into the settled sludge and the supernatant water.
一方、少なくとも硝酸化又は亜硝酸化可能な好気性菌及び脱窒を行う脱窒菌を担持してなる担体20を液面近傍に浮上させた状態で、アンモニア態窒素を含有する廃水を導入する。 On the other hand, the wastewater containing ammonia nitrogen is introduced with the carrier 20 carrying at least aerobic bacteria capable of nitrifying or nitrite and denitrifying bacteria for denitrification being floated near the liquid surface.
この廃水導入によって、処理水を該回分槽外に取り出すことができる。この際に、廃水(原水)の回分槽2内での滞留時間が十分確保されており、ショートパスして廃水が未処理のままで処理水配管73から排出されることはない。ショートパス防止のために、必要により図示しない遮蔽板を設けることもできる。 By introducing this waste water, the treated water can be taken out of the batch tank. At this time, the retention time of the waste water (raw water) in the batch tank 2 is sufficiently secured, and the waste water is not discharged untreated from the treated water pipe 73 due to a short pass. If necessary, a shielding plate (not shown) may be provided to prevent a short path.
廃水(原水)を回分槽2に導入する際には、原水供給ポンプ5を駆動させて、原水槽1から回分槽2に廃水を導入する。 When introducing the waste water (raw water) into the batch tank 2, the raw water supply pump 5 is driven to introduce the waste water from the raw water tank 1 into the batch tank 2.
担体20に担持される菌体は、次の硝化工程を機能させるために、アンモニア態窒素を亜硝酸化可能な亜硝酸菌や、亜硝酸を硝酸化可能な硝酸菌等の好気性菌が挙げられる。またこの段階で担体20に脱窒菌が担持されていてもよい。従って、本発明では、担体20に、硝酸菌、亜硝酸菌、脱窒菌が担持されていてもよく、硝化処理では、硝酸菌や亜硝酸菌が活性化し、脱窒処理では、脱窒菌が活性化する。 Examples of the bacterial cells carried on the carrier 20 include aerobic bacteria such as nitrite bacteria capable of nitrite nitrating ammonia nitrogen and nitric acid bacteria capable of nitrite nitrite in order to function the next nitrification step. To be Further, the denitrifying bacteria may be carried on the carrier 20 at this stage. Therefore, in the present invention, the carrier 20 may carry nitric acid bacteria, nitrite bacteria, and denitrifying bacteria. Nitrifying treatment activates nitric acid bacteria and nitrite bacteria, and denitrifying treatment activates denitrifying bacteria. Turn into.
本発明において、好気性硝化工程101では、嫌気第2工程100で導入された廃水を、回分槽2内で浮遊する好気性菌や、担体20に担持された好気性菌に接触させつつ、回分槽2内に設けられた曝気装置22から空気を供給して、亜硝酸化反応や硝酸化反応を含む硝化反応を行う。すなわち、好気性硝化工程101では、廃水に含まれるアンモニア態窒素に、担体20に担持された好気性菌を接触させ、散気管23から供給される空気により、亜硝酸化反応や硝酸化反応を含む硝化反応を行う。 In the present invention, in the aerobic nitrification step 101, while the wastewater introduced in the anaerobic second step 100 is contacted with aerobic bacteria floating in the batch tank 2 and aerobic bacteria carried on the carrier 20, the batch Air is supplied from the aeration device 22 provided in the tank 2 to perform nitrification reaction including nitrite reaction and nitrification reaction. That is, in the aerobic nitrification step 101, the aerobic bacteria carried on the carrier 20 is brought into contact with the ammonia nitrogen contained in the wastewater, and the nitrite reaction and the nitrification reaction are carried out by the air supplied from the air diffuser 23. Perform nitrification reaction including.
具体的には、回分槽2に導入された廃水と、回分槽2内を浮遊する菌体や担体20に担持された菌体を接触させつつ、散気管23から供給された空気により、以下の硝化反応を行う。 Specifically, the waste water introduced into the batch tank 2 and the bacterial cells floating in the batch tank 2 or the bacterial cells carried on the carrier 20 are brought into contact with each other by the air supplied from the air diffuser 23 to Carry out a nitrification reaction.
[硝化]
(亜硝酸型)NH4 ++1.5O2→NO2 −+H2O+2H+
(硝酸型) NH4 ++2O2→NO3 −+H2O+2H+
[Nitrification]
(Nitrite type) NH 4 + +1.5O 2 →NO 2 − +H 2 O+2H +
(Nitric acid type) NH 4 + +2O 2 →NO 3 − +H 2 O+2H +
亜硝酸型の硝化を行う際には、アンモニア性窒素が硝酸(NO3 −)まで酸化されることを抑制して、亜硝酸(NO2 −)までの酸化に止めることも可能である。 When nitrite type nitrification is performed, it is possible to suppress the oxidation of ammoniacal nitrogen to nitric acid (NO 3 − ) and to stop the oxidation to nitric acid (NO 2 − ).
以下に示す嫌気第1工程102において、硝化された亜硝酸態窒素や硝酸態窒素を脱窒菌により、以下の脱窒反応を行う。
[脱窒]
(亜硝酸型)6NO2 −+3CH3OH+3CO2→3N2+6HCO3 −+3H2
(硝酸型) 6NO3 −+5CH3OH+CO2→3N2+6HCO3 −+7H2
In the anaerobic first step 102 shown below, the following denitrification reaction is performed on the nitrified nitrite nitrogen and nitrate nitrogen by denitrifying bacteria.
[Denitrification]
(Nitrite type) 6NO 2 − +3CH 3 OH+3CO 2 →3N 2 +6HCO 3 − +3H 2
(Nitrate type) 6NO 3 - + 5CH 3 OH + CO 2 → 3N 2 + 6HCO 3 - + 7H 2
嫌気第1工程102と嫌気第2工程100を実行する手法を図3に基づいて説明する。
嫌気第1工程102を実施するには、図3(A)の状態にある回分槽2における曝気停止後、空気の供給がない状態で、図3(B)に示すように、回分槽2内の液を嫌気状態で撹拌する。撹拌は、撹拌機21を駆動させて行う。この工程での処理時間は30〜50分であることが好ましい。
A method of executing the anaerobic first step 102 and the anaerobic second step 100 will be described with reference to FIG.
In order to carry out the anaerobic first step 102, after the aeration in the batch tank 2 in the state of FIG. 3(A) is stopped, as shown in FIG. Stir the liquid in anaerobically. The stirring is performed by driving the stirrer 21. The processing time in this step is preferably 30 to 50 minutes.
脱窒処理を行うに際して、メタノール供給ポンプ29を駆動して、汚泥へのメタノールの供給が行われることが好ましい。なお、原水が十分な量の有機物を含む場合は、メタノールの供給は適宜省略できる。 When performing the denitrification treatment, it is preferable to drive the methanol supply pump 29 to supply methanol to the sludge. If the raw water contains a sufficient amount of organic matter, the supply of methanol can be appropriately omitted.
この工程では、脱窒菌による脱窒反応により窒素ガスを生成する。
処理時間が所定時間経過し、脱窒反応が終了したら、前記嫌気第1工程102の処理を終了する。
In this step, nitrogen gas is generated by the denitrification reaction by the denitrifying bacteria.
When the treatment time has passed a predetermined time and the denitrification reaction ends, the process of the anaerobic first step 102 ends.
前述の嫌気第2工程100を実行するには、撹拌機21の駆動を停止し、撹拌を停止する。撹拌を停止して、回分槽内の液を静置すると、図3(C)に示すように、回分槽2内の汚泥は沈降して、沈降汚泥と上澄水とに固液分離する。 In order to execute the above-described anaerobic second step 100, driving of the stirrer 21 is stopped and stirring is stopped. When the stirring is stopped and the liquid in the batch tank is allowed to stand still, as shown in FIG. 3(C), the sludge in the batch tank 2 is settled and solid-liquid separated into the settled sludge and the supernatant water.
嫌気第2工程100では、脱窒反応により生成した窒素ガスが担体20内部に取り込まれる。担体20は好ましくは複数のセルを有するために、そのセル内に窒素ガスが取り込まれる。担体20は、微生物が担持されているので、複数のセルは微生物の存在により、窒素ガスが取り込まれやすい構造になっている。 In the anaerobic second step 100, the nitrogen gas generated by the denitrification reaction is taken into the carrier 20. Since the carrier 20 preferably has a plurality of cells, nitrogen gas is taken into the cells. Since the carrier 20 carries microorganisms, the plurality of cells have a structure in which nitrogen gas is easily taken in due to the presence of microorganisms.
本発明において、担体20は、セルを有することにより、窒素ガスを良好に取り込むことができる部屋が確保できて好ましい。 In the present invention, the carrier 20 is preferable because it has a cell because a room in which nitrogen gas can be taken in well can be secured.
本発明において、図3(C)に示すように、担体20は液面近傍に浮上させている。すなわち担体20による脱窒処理が進むにつれ、脱窒反応により生成した窒素ガスを巻き込んだ担体20が、槽上部へ浮上する。
そして、窒素ガスを巻き込んだ担体20が、回分槽2内の液面上部で、担体浮上層30を形成する。
In the present invention, as shown in FIG. 3(C), the carrier 20 is floated near the liquid surface. That is, as the denitrification treatment by the carrier 20 progresses, the carrier 20 entrained with the nitrogen gas generated by the denitrification reaction floats above the tank.
Then, the carrier 20 containing the nitrogen gas forms the carrier floating layer 30 above the liquid surface in the batch tank 2.
そして、担体20によって担体浮上層30が形成され、汚泥が沈殿している間でも、担体20により、脱窒処理が進めることができる。
そして、嫌気第2工程100で廃水が導入され、それに応じて、処理水流出部7において、回分槽2から上澄水を処理水として引き抜き、放流槽3へ移送する。この際、槽上部の液面近傍に浮上している担体20によって、上澄水中に含まれる浮遊懸濁物質(ss)をろ過することができる。
Then, the carrier 20 allows the carrier floating layer 30 to be formed, and the denitrification treatment can be promoted by the carrier 20 even while the sludge is settled.
Then, the wastewater is introduced in the anaerobic second step 100, and accordingly, in the treated water outflow section 7, the supernatant water is drawn out from the batch tank 2 as treated water and transferred to the discharge tank 3. At this time, the floating suspended substance (ss) contained in the supernatant water can be filtered by the carrier 20 floating near the liquid surface in the upper part of the tank.
担体20は液面近傍に浮上させ、好ましくは担体浮上層30を形成するのは、担体物性に関連し、本発明では、担体20は、大きさが2〜50[mm角]、真比重が0.03〜0.05[g/cm3]、セル数が25〜55[個/25mm]、通気度が1.1〜1.4[dm3/sec]、比表面積が4500〜5500[m2/m3]であることが好ましい。 It is related to the physical properties of the carrier that the carrier 20 is floated near the liquid surface, and preferably the carrier floating layer 30 is formed. In the present invention, the carrier 20 has a size of 2 to 50 [mm square] and a true specific gravity. 0.03 to 0.05 [g/cm 3 ], the number of cells is 25 to 55 [cells/25 mm], the air permeability is 1.1 to 1.4 [dm 3 /sec], and the specific surface area is 4500 to 5500 [. it is preferably m 2 / m 3].
本発明では、回分槽2を用いて、嫌気第2工程100、好気性硝化工程101、嫌気第1工程102の各工程を実行することが好ましい。本発明においては、これらの各工程を順に含む1サイクルを複数サイクル繰り返すことが好ましい。 In the present invention, it is preferable that the batch tank 2 is used to execute each of the anaerobic second step 100, the aerobic nitrification step 101, and the anaerobic first step 102. In the present invention, it is preferable to repeat one cycle including these steps in sequence for a plurality of cycles.
図示の例では、1サイクルの合計時間が240分になるように設定されることが好ましい。1日複数サイクルの運転を行うことができる。各工程の切り替え(各工程の継続時間)は、タイマー制御により行ってもよいし、上述の窒素センサーにより窒素濃度による制御を行ってもよい。 In the illustrated example, it is preferable that the total time of one cycle is set to 240 minutes. It is possible to operate a plurality of cycles per day. Switching of each process (duration of each process) may be performed by timer control or may be controlled by nitrogen concentration by the above-mentioned nitrogen sensor.
上記のようなサイクルで運転を行うことにより、放流槽3には、回分槽2から流出させた処理水が貯留される。放流槽3内の処理水は、処理水引出ポンプ71を用いた場合には、河川放流基準を好適に満たすことが好ましい。なお、処理水引出ポンプ71を用いずに、オーバーフローにより放流槽3に導入させる場合には、下水道放流基準を好適に満たすことが好ましい。なお、オーバーフローにより放流槽3に導入する場合は、放流槽3の後段に、図示しない仕上処理槽を設けることも好ましい。この場合、仕上処理槽で処理することにより、好適に河川放流基準を好適に満たすことができる。 By performing the operation in the above cycle, the treated water discharged from the batch tank 2 is stored in the discharge tank 3. When the treated water drawing pump 71 is used, the treated water in the discharge tank 3 preferably satisfies the river discharge standard. In addition, when introducing into the discharge tank 3 by overflow, without using the treated water extraction pump 71, it is preferable to satisfy the sewer discharge standard suitably. In addition, when introducing into the discharge tank 3 by overflow, it is also preferable to provide a finishing treatment tank (not shown) in the subsequent stage of the discharge tank 3. In this case, the treatment in the finishing treatment tank can satisfy the river discharge standard.
上記好気性硝化工程101では、曝気によって十分な撹拌作用が得られるので、撹拌機21は適宜停止してもよい。
好気性硝化工程の継続時間は、嫌気工程の継続時間の1.5〜3倍の範囲で設定されることが好ましい。
In the aerobic nitrification step 101, since a sufficient stirring action can be obtained by aeration, the stirrer 21 may be stopped appropriately.
The duration of the aerobic nitrification step is preferably set within the range of 1.5 to 3 times the duration of the anaerobic step.
回分式担体水処理装置は、図2に例示的に示したが、本発明は、これに限定されず、好気性硝化を本発明の装置とは別装置を用いて処理し、その硝化された処理液を本発明の回分槽2に導入して、前述の脱窒工程だけを実施するようにしてもよい。 The batch type carrier water treatment apparatus is exemplarily shown in FIG. 2, but the present invention is not limited to this, and aerobic nitrification is treated by using an apparatus different from the apparatus of the present invention, and the nitrification is performed. The treatment liquid may be introduced into the batch tank 2 of the present invention so that only the above-mentioned denitrification step is performed.
以下、本発明の実施例を説明するが、本発明は、かかる実施例によって限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the examples.
(実施例1)
<処理性能確認試験>
図2に示す回分式担体水処理装置を用いて、硝化脱窒ができていることを確認する試験を行った。
嫌気第2工程(沈殿・廃水流入・処理水流出)⇒好気性硝化工程(アンモニアの硝酸・亜硝酸への酸化)⇒嫌気第1工程(脱窒)を、1サイクルとして、2サイクルの試験を行った。各工程の処理状況の把握を確実に行うためである。
(Example 1)
<Processing performance confirmation test>
Using the batch type carrier water treatment device shown in FIG. 2, a test was conducted to confirm that nitrification denitrification was completed.
Anaerobic 2nd process (precipitation, wastewater inflow, treated water outflow) ⇒ Aerobic nitrification process (ammonia to nitric acid/nitrite oxidation) ⇒ Anaerobic 1st process (denitrification) as 1 cycle, 2 cycle test went. This is to ensure that the processing status of each process is understood.
試験条件としては、以下の表1に示した条件で試験した。また、試験に用いた担体としては、下記表2に示した特性を有する担体を用いた。 The test conditions were as shown in Table 1 below. As the carrier used in the test, a carrier having the properties shown in Table 2 below was used.
上記試験条件において、回分運転の時間経過とNH4−N、及びNOx−Nの濃度との推移を示すグラフを図4に示す。 FIG. 4 is a graph showing changes over time in batch operation and changes in the concentrations of NH 4 —N and NO x —N under the above test conditions.
<評価>
図4からもわかるように、好気性硝化工程(図では「好気」と標記)で、NH4−Nが減少し、嫌気第1工程(図では「嫌気1」と標記)でNOx−Nが減少し、脱窒が進んでいた。
嫌気第2工程(図では「嫌気2」と標記)では、原水が流入したために、原水由来のNH4−Nが増加している。NOx−Nは減少し続けており、脱窒がこの工程でも進んでいた。
<Evaluation>
As can be seen from FIG. 4, NH 4 —N decreases in the aerobic nitrification step (marked as “aerobic” in the figure) and NO x − in the anaerobic first step (marked as “anaerobic 1” in the figure). N decreased and denitrification was progressing.
In the anaerobic second step (labeled as "anaerobic 2" in the figure), raw water-derived NH 4 -N derived from raw water is increasing. The amount of NO x -N continued to decrease, and denitrification proceeded in this step as well.
(実施例2)
<担体浮上特性確認試験>
実施例1における担体の大きさを、5[mm角]に代える以外は、同じ担体を用いて、その担体浮上特性の確認試験を、硝化(NH4-N→NOX-N)した後の液と担体を用いて試験した。
(Example 2)
<Carrier levitation characteristics confirmation test>
The same carrier was used except that the size of the carrier in Example 1 was changed to 5 [mm square], and the confirmation test of the carrier floating characteristics was performed after nitrification (NH 4 -N→NO X -N). Tested with liquid and carrier.
試験条件としては、以下の表3に示す条件で試験した。 The test conditions were as shown in Table 3 below.
メタノール添加率を4.2(条件1)、2.8(条件2)、2.1(条件3)、1.4(条件4)、0(条件5)[kg−CH3OH/kg−N]と変化させて担体の浮上率を確認した。試験結果を表4に示す。また、メタノール添加率の違いによる時間経過と担体の浮上率との関係を示すグラフを図5に示す。 The methanol addition rate was 4.2 (Condition 1), 2.8 (Condition 2), 2.1 (Condition 3), 1.4 (Condition 4), 0 (Condition 5) [kg-CH 3 OH/kg- N] to change the floatation rate of the carrier. The test results are shown in Table 4. Further, FIG. 5 shows a graph showing the relationship between the elapsed time and the floating rate of the carrier due to the difference in the methanol addition rate.
(評価)
図5からもわかるように、メタノール添加率を増加させるに従って、担体の浮上率も上がっている。槽内の担体の状態を示す図を図6に示す。図6において、メタノール添加率の増加に伴って、担体の浮上率が増加していることを目視でも確認できた。
(Evaluation)
As can be seen from FIG. 5, as the methanol addition rate increases, the floating rate of the carrier also rises. A diagram showing the state of the carrier in the tank is shown in FIG. In FIG. 6, it was visually confirmed that the floatation rate of the carrier increased with the increase of the methanol addition rate.
また、表4、図5からわかるように条件1におけるメタノール添加率によるNOx−N除去量と担体の浮上率との関係を示すグラフを図7に示す。図7からもわかるように、NOx−N除去量に伴って、担体の浮上率が上昇する比例関係にあることが分かった。 Further, as can be seen from Table 4 and FIG. 5, FIG. 7 is a graph showing the relationship between the NO x —N removal amount by the methanol addition rate and the floating rate of the carrier under the condition 1. As can be seen from FIG. 7, it was found that there is a proportional relationship in which the floating rate of the carrier increases with the amount of NO x —N removed.
100:嫌気第2工程
101:好気性硝化工程
102:嫌気第1工程
1:原水槽
2:回分槽
21:撹拌機
210:撹拌羽根
211:モーター
22:曝気装置
23:散気管
24:ブロワ
25:メンブレン部材
26:窒素センサー
27:メタノール貯留槽
28:メタノール供給管
29:メタノール供給ポンプ
3:放流槽
4:原水供給配管
5:原水供給ポンプ
6:原水流入部
7:処理水流出部
71:処理水引出ポンプ
72:スクリーン
73:処理水配管
20:担体
30:担体浮上層
100: Anaerobic second step 101: Aerobic nitrification step 102: Anaerobic first step 1: Raw water tank 2: Batch tank 21: Stirrer 210: Stirring blade 211: Motor 22: Aeration device 23: Air diffuser 24: Blower 25: Membrane member 26: Nitrogen sensor 27: Methanol storage tank 28: Methanol supply pipe 29: Methanol supply pump 3: Discharge tank 4: Raw water supply pipe 5: Raw water supply pump 6: Raw water inflow part 7: Treated water outflow part 71: Treated water Drawout pump 72: Screen 73: Treated water pipe 20: Carrier 30: Carrier floating layer
Claims (4)
前記嫌気第2工程は、アンモニア性窒素を含有する廃水の導入工程であると共に脱窒処理された処理水の取出工程でもあり、回分槽内の汚泥の曝気の停止状態にある嫌気第1工程から該嫌気第2工程に進む際に、機械的な撹拌も停止し、該回分槽内の汚泥を沈降させて沈降汚泥と処理水とに固液分離すると共に、前記嫌気第1工程で生成した窒素ガスを巻き込んだ担体を、該回分槽の液面近傍に浮上させた状態で、処理水を該回分槽外に取り出すことにより、脱窒処理を進め、
前記好気性硝化工程は、前記嫌気第2工程で導入された廃水を、前記回分槽内で浮遊する前記好気性菌や、前記担体に担持された前記好気性菌に接触させつつ、前記回分槽内に設けられた曝気装置から空気を供給して、亜硝酸化反応や硝酸化反応を含む硝化反応を行い、
前記嫌気第1工程は、前記好気性硝化工程における空気の供給を停止し、該回分槽内の液を嫌気状態で撹拌しながら、脱窒菌による脱窒反応により窒素ガスを生成することを特徴とする回分式担体水処理方法。 A batch type carrier water treatment method in which a treatment cycle of an anaerobic second step, an aerobic nitrification step, and an anaerobic first step is sequentially repeated in one batch tank,
The anaerobic second step is a step of introducing waste water containing ammoniacal nitrogen and a step of taking out denitrified treated water, and from the anaerobic first step in which aeration of sludge in the batch tank is stopped. When proceeding to the anaerobic second step, mechanical stirring is also stopped , the sludge in the batch tank is allowed to settle and solid-liquid separation is performed into the settled sludge and the treated water, and the nitrogen produced in the anaerobic first step is also used. With the carrier entrained with gas floating in the vicinity of the liquid surface of the batch tank , the treated water is taken out of the batch tank to advance denitrification treatment,
The aerobic nitrification step, the wastewater introduced in the anaerobic second step, while contacting the aerobic bacteria floating in the batch tank, and the aerobic bacteria carried on the carrier, the batch tank Air is supplied from the aeration device provided inside to perform nitrification reaction including nitrite reaction and nitrification reaction,
The anaerobic first step is characterized in that the supply of air in the aerobic nitrification step is stopped, the liquid in the batch tank is stirred in an anaerobic state, and nitrogen gas is generated by a denitrification reaction by denitrifying bacteria. Batch type carrier water treatment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018206373A JP6716664B2 (en) | 2018-11-01 | 2018-11-01 | Batch type carrier water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018206373A JP6716664B2 (en) | 2018-11-01 | 2018-11-01 | Batch type carrier water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020069449A JP2020069449A (en) | 2020-05-07 |
JP6716664B2 true JP6716664B2 (en) | 2020-07-01 |
Family
ID=70548833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018206373A Active JP6716664B2 (en) | 2018-11-01 | 2018-11-01 | Batch type carrier water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6716664B2 (en) |
-
2018
- 2018-11-01 JP JP2018206373A patent/JP6716664B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020069449A (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005279447A (en) | Water treatment method and apparatus | |
CN110891908B (en) | Method for water treatment in a system comprising at least one sequencing batch reactor and a moving bed biofilm reactor | |
JP2008284427A (en) | Apparatus and method for treating waste water | |
JP5963668B2 (en) | Wastewater treatment method | |
CN104891655B (en) | Device and method for treating high ammonia nitrogen wastewater | |
KR100876323B1 (en) | Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus | |
JP2004261711A (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
JP5597002B2 (en) | Waste water treatment apparatus and waste water treatment method | |
KR101537755B1 (en) | Apparatus for treating landfill leachate using aerobic granular sludge and treatment method using thereof | |
JP4409532B2 (en) | Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method | |
JP3771870B2 (en) | Sewage treatment system by oxidation ditch method | |
JP3119770B2 (en) | Sewage denitrification treatment method and denitrification treatment device | |
KR101367229B1 (en) | Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof | |
JP2004249252A (en) | Waste water treatment method | |
JP6716664B2 (en) | Batch type carrier water treatment method | |
JP5743448B2 (en) | Sewage treatment equipment | |
JP2007196207A (en) | Wastewater treatment apparatus and wastewater treatment method | |
JPH07241596A (en) | Treatment of waste water | |
JP4034074B2 (en) | Wastewater treatment equipment | |
JP6875059B2 (en) | Wastewater treatment method and wastewater treatment equipment | |
JPH09253687A (en) | Anaerobic and aerobic treatment apparatus for waste water | |
JP2004275820A (en) | Wastewater treatment apparatus | |
JPH09150181A (en) | Sewage purifying device | |
TW201623155A (en) | Wastewater treatment method and wastewater treatment device | |
JP2003334583A (en) | Control method for intermittent aeration method and control device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191107 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191107 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6716664 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |