JP2021159860A - Aerobic biological film treatment method and device - Google Patents

Aerobic biological film treatment method and device Download PDF

Info

Publication number
JP2021159860A
JP2021159860A JP2020064159A JP2020064159A JP2021159860A JP 2021159860 A JP2021159860 A JP 2021159860A JP 2020064159 A JP2020064159 A JP 2020064159A JP 2020064159 A JP2020064159 A JP 2020064159A JP 2021159860 A JP2021159860 A JP 2021159860A
Authority
JP
Japan
Prior art keywords
aeration
biofilm
cost
reduction treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020064159A
Other languages
Japanese (ja)
Other versions
JP7347304B2 (en
Inventor
孝之 大月
Takayuki Otsuki
つばさ 鏡
Tsubasa Kagami
幸一 藤江
Koichi Fujie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020064159A priority Critical patent/JP7347304B2/en
Publication of JP2021159860A publication Critical patent/JP2021159860A/en
Application granted granted Critical
Publication of JP7347304B2 publication Critical patent/JP7347304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Abstract

To provide aerobic biological film treatment method and device for comparing electrical power expense in the case of performing biological film holding amount reduction treatment with that in the case of not performing the biological film holding amount reduction treatment, and selecting one of the cases in which electrical power expense is low.SOLUTION: There is provided a method for supplying raw water to an aeration tank and subjecting a removal object substance in the raw water to an aerobic biological film treatment by a biological film carrier or a granule filled in an aeration tank. The method calculates an aeration electrical power expense A in a subsequent predetermined period when biological film holding amount reduction treatment is not performed, and then calculates a total expense (B+C) of a subsequent aeration electrical power expense B and a biological film holding amount reduction treatment expense C in a subsequent prescribed period when the biological film holding amount reduction treatment is performed, then compares (B+C) and A, and determines that the biological film holding amount reduction treatment is preferable if the (B+C) is smaller than A.SELECTED DRAWING: Figure 1

Description

本発明は、生物学的に酸化できる汚濁物質を含む排水を、自己造粒グラニュールや流動床担体、固定床担体などにより生物膜処理する方法及び装置に係り、特にその曝気強度制御に関する。本発明においては微生物処理を行う生物膜の外部に存在する排水をバルク水と呼ぶ。 The present invention relates to a method and an apparatus for treating wastewater containing a pollutant that can be biologically oxidized with a biological membrane using a self-granulation granule, a fluidized bed carrier, a fixed bed carrier, or the like, and particularly relates to an aeration intensity control thereof. In the present invention, wastewater existing outside the biofilm to be treated with microorganisms is referred to as bulk water.

生物学的に酸化できる汚濁物質を含む排水の処理方法として、浮遊汚泥を用いる活性汚泥法のほか、自己造粒グラニュール法や流動床担体法、固定床担体法など、微生物が生物膜とよばれる集積増殖した様態で処理を行う生物膜法などが利用されている。 Microorganisms are called biofilms, such as the activated sludge method using suspended sludge, the self-granulation granule method, the fluidized bed carrier method, and the fixed bed carrier method, as methods for treating wastewater containing pollutants that can be biologically oxidized. A biofilm method or the like is used in which treatment is performed in a state of accumulation and proliferation.

前者の浮遊汚泥を用いる活性汚泥法では、微生物フロックと称される典型的には1mm前後の微生物の凝集体内外において、微生物とバルク水相との接触面積が十分確保されているため、フロック内での酸素や汚濁物質の浸透性・拡散性が汚濁物除去速度の主要な処理性能の律速因子とならない。特許文献1には、汚濁物質の負荷を計器で計測し、これに比例して曝気風量を制御することが記載されている。 In the former activated sludge method using suspended sludge, the contact area between the microorganisms and the bulk aqueous phase is sufficiently secured inside and outside the agglutination of microorganisms, which is typically about 1 mm, which is called microbial flocs. The permeability and diffusivity of oxygen and pollutants in the plant are not the main rate-determining factors for the treatment performance of the pollutant removal rate. Patent Document 1 describes that the load of a pollutant substance is measured by an instrument and the aeration air volume is controlled in proportion to the load.

浮遊汚泥を用いる活性汚泥法、および自己造粒グラニュール法、流動床担体法、固定床担体法などの生物膜法においては、原水の負荷に比例した酸素供給量調整を簡易に行う手法として、液中の溶存酸素濃度(以下DOと記載する)を一定に保つ風量制御を行ういわゆるDO制御システムが広く用いられている。 In the activated sludge method using suspended sludge and the biological membrane method such as the self-granulation granule method, the fluidized bed carrier method, and the fixed bed carrier method, as a method for easily adjusting the oxygen supply amount in proportion to the load of raw water, A so-called DO control system that controls the air volume to keep the dissolved oxygen concentration in the liquid (hereinafter referred to as DO) constant is widely used.

自己造粒グラニュール法、流動床担体法に関して、特許文献2には、BOD容積負荷が所定値よりも小さいときは微生物担体の流動化を判断基準とし、BOD容積負荷が前記所定値よりも大きいときは廃水の酸素要求量を判断基準として廃水に対する曝気量を制御する廃水処理方法及び装置が記載されている。 Regarding the self-granulation granule method and the fluidized bed carrier method, Patent Document 2 states that when the BOD volume load is smaller than the predetermined value, the fluidization of the microbial carrier is used as a criterion, and the BOD volume load is larger than the predetermined value. In some cases, a wastewater treatment method and an apparatus for controlling the amount of aeration to wastewater based on the oxygen demand of wastewater are described.

各種水処理プラントにおいて、運転管理従事者は受変電盤で受ける電力量や薬剤の購入量を管理しており、水処理プラント全体としての収支からコスト、原単位の状態を把握している(特許文献3〜6)。 In various water treatment plants, operation management workers manage the amount of power received by the substation and the amount of chemicals purchased, and grasp the cost and basic unit status from the balance of the entire water treatment plant (patent). Documents 3 to 6).

特開2001−353496号公報Japanese Unexamined Patent Publication No. 2001-335496 特開昭63−256185号公報JP-A-63-256185 特開平9−318665号公報Japanese Unexamined Patent Publication No. 9-318665 特開2000−339002号公報Japanese Unexamined Patent Publication No. 2000-339002 特開2002−86131号公報Japanese Unexamined Patent Publication No. 2002-86131 特開2006−260519号公報Japanese Unexamined Patent Publication No. 2006-260519

自己造粒グラニュール法、流動床担体法、固定床担体法など生物膜を利用した処理を行う方法では、原水負荷の指標として一般的である、原水の単位時間あたりの流量と原水の汚濁物質濃度との積により求められる流入負荷や、流入負荷を反応槽の容積で除算して求められる槽負荷のみに基づいて適切な酸素供給量調整を行うことは、厳密には困難である。その理由として以下が挙げられる。 In methods such as the self-granulation granule method, fluidized bed carrier method, and fixed bed carrier method that use biological membranes, the flow rate per unit time of raw water and pollutants in raw water are common indicators of raw water load. Strictly speaking, it is difficult to adjust the appropriate oxygen supply amount based only on the inflow load obtained by the product of the concentration and the tank load obtained by dividing the inflow load by the volume of the reaction tank. The reasons for this are as follows.

(i) 原水負荷が同じで、原水中の有機物を酸化するために必要な酸素量が同じであっても、生物膜を利用した方法では、反応槽に生物膜の様態で保持されている微生物量が時間により変化するため、微生物自体の自己分解プロセスに起因して発生する酸素消費量が変化する。従って、装置に与える酸素供給量は同因子も考慮して決定する必要がある。 (i) Even if the raw water load is the same and the amount of oxygen required to oxidize organic substances in the raw water is the same, in the method using the biofilm, the microorganisms are retained in the reaction tank in the form of a biofilm. Since the amount changes with time, the amount of oxygen consumed due to the self-decomposition process of the microorganism itself changes. Therefore, it is necessary to determine the amount of oxygen supplied to the device in consideration of the same factor.

(ii) 生物膜を利用した処理方法では、微生物が集積している生物膜内に酸素を拡散させる必要がある。生物膜内への酸素の拡散性に影響を与える主な因子としては、微生物膜とバルク水との接触面積およびバルク水のDOの高低、微生物膜内の汚泥保持濃度や無機成分蓄積濃度などが知られており、自己造粒グラニュール法ではグラニュールの保持量およびグラニュールサイズが変化するため、微生物とバルク水との接触面積が変化する。 (ii) In the treatment method using biofilm, it is necessary to diffuse oxygen in the biofilm where microorganisms are accumulated. The main factors that affect the diffusivity of oxygen into the biofilm are the contact area between the microbial membrane and bulk water, the high and low DO of bulk water, the sludge retention concentration in the microbial membrane, and the accumulation concentration of inorganic components. It is known that in the self-granulation granule method, the amount of granule retained and the size of the granule change, so that the contact area between the microorganism and the bulk water changes.

(iii) 流動床担体法では担体内外での微生物付着量の変化により、生物膜とバルク水の接触面積が変化する。特に、担体内部に空隙部がある構造で生物膜が空隙部に増殖する場合、担体への生物膜付着量が増加し、空隙部が全て閉塞した場合には、バルク水と生物膜との接触面積は顕著に低減する。 (iii) In the fluidized bed carrier method, the contact area between the biofilm and bulk water changes due to changes in the amount of microbial adhesion inside and outside the carrier. In particular, when the biofilm grows in the void in a structure having voids inside the carrier, the amount of the biofilm attached to the carrier increases, and when all the voids are closed, the bulk water comes into contact with the biofilm. The area is significantly reduced.

(iv) このようなバルク水と生物膜との接触面積の変化は、生物膜への酸素拡散性に大きな影響を与える。例えば、バルク水と生物膜との接触面積が低減した場合には、同一の酸素量を生物膜内に供給する場合でも、バルク水のDOを高める必要があり、バルク水の溶存酸素濃度を高めるためには、より大流量の空気吹き込みが必要となる。また、原水の負荷が高くなった場合、酸素消費量は増加する。そのため、必要な酸素を拡散現象で生物膜内に供給するためには、バルク水の溶存酸素濃度を高くする必要がある。 (iv) Such a change in the contact area between bulk water and the biofilm has a great influence on the oxygen diffusivity to the biofilm. For example, when the contact area between the bulk water and the biofilm is reduced, it is necessary to increase the DO of the bulk water even when the same amount of oxygen is supplied into the biofilm, and the dissolved oxygen concentration of the bulk water is increased. For that purpose, a larger flow rate of air is required. In addition, when the load of raw water increases, oxygen consumption increases. Therefore, in order to supply the necessary oxygen into the biofilm by the diffusion phenomenon, it is necessary to increase the dissolved oxygen concentration of the bulk water.

こういった要因により、負荷変動に応じて原水有機物の酸化に必要な酸素量は変化し、処理装置内に保持されている微生物膜の量により供給する必要がある酸素量は変化し、特に、酸素供給について拡散現象に依存している生物膜法の場合、生物膜に供給すべき酸素量に応じてバルク水のDOを調整する必要があり、バルク水のDOを維持するための曝気風量も調整する必要がある。 Due to these factors, the amount of oxygen required to oxidize raw water organic matter changes according to load fluctuations, and the amount of oxygen required to supply changes depending on the amount of microbial membrane held in the treatment equipment, especially. In the case of the biological membrane method that relies on the diffusion phenomenon for oxygen supply, it is necessary to adjust the DO of bulk water according to the amount of oxygen to be supplied to the biological membrane, and the amount of blast air to maintain the DO of bulk water is also Need to be adjusted.

なお、曝気風量の負荷に応じた調整・制御をしない運転を行う場合は、高負荷時においてもバルク水のDOを高く維持し酸素供給量を維持できるように曝気風量を過剰に多くした状態での風量一定運転をする必要がある。 When operating without adjusting or controlling the aeration air volume according to the load, the aeration air volume should be excessively increased so that the DO of the bulk water can be maintained high and the oxygen supply amount can be maintained even at a high load. It is necessary to operate with a constant air volume.

高負荷時において必要な高いDOを維持できる風量一定運転下では、負荷低下時の酸素消費低下時の酸素消費低下に応じた風量抑制をしないためエネルギーの無駄が発生することになる。
また高負荷時の酸素供給を想定し高めのDO目標値を設定した曝気制御を行った場合も、生物膜処理装置では負荷低下維持にはDOレベルを低下することができるため曝気制御の目標DOレベルをさげればさらに曝気風量を絞ることが可能であるが、通常の曝気制御ではこのようなDO目標値低下による風量抑制をしないためエネルギー消費の無駄はなお発生することになる。
Under constant air volume operation that can maintain the required high DO under high load, energy is wasted because the air volume is not suppressed according to the decrease in oxygen consumption when the load is reduced.
In addition, even when aeration control is performed by assuming oxygen supply at high load and setting a high DO target value, the target DO of aeration control can be lowered to maintain the load reduction with the biological membrane treatment device. Although it is possible to further reduce the aeration air volume by lowering the level, energy consumption is still wasted because the normal aeration control does not suppress the air volume due to such a decrease in the DO target value.

一般的なDO一定の風量制御を行う場合も、高負荷時に生物膜内部への十分な酸素拡散量を確保することを想定したDO設定を行う必要がある。そのため、低負荷時には、必要な酸素供給量の維持に必要なDOレベル以上のDO設定に維持することになる。その結果、DOを維持するための曝気風量は必要量より多くなり、エネルギー消費の無駄が発生する。 Even when general DO constant air volume control is performed, it is necessary to set the DO on the assumption that a sufficient amount of oxygen diffusion into the biofilm is secured at the time of high load. Therefore, when the load is low, the DO setting is maintained at the DO level or higher required to maintain the required oxygen supply amount. As a result, the amount of aerated air for maintaining DO becomes larger than the required amount, resulting in waste of energy consumption.

従って、エネルギー消費の無駄は、負荷変動が大きな場合に特に顕著となる。 Therefore, the waste of energy consumption becomes particularly remarkable when the load fluctuation is large.

さらに、負荷変動に応じた適切な曝気制御をしていても、生物膜を活用した生物処理装置は長期間運転を継続すると処理水槽内の生物膜の保持量が増加する傾向にあり、生物膜の保持量が増加すると、生物膜とバルク水との接触面積が低下し、酸素透過性が低下し、生物膜への酸素供給量が低下し、処理水質が悪化する状況が発生する。生物膜の保持量の増加に伴い生物膜の処理水水質が所定値を逸脱したときに、曝気槽中の生物膜の保持量が必要以上に増加したと判定し、担体の生物膜保持量低減処理又はグラニュールの部分解体処理などの生物膜保持量低減処理を行うことが考えられる。しかし、生物膜保持量低減処理自体にも、実施の判断の手間と実施のためのコストがかかる。 Furthermore, even if appropriate aeration control is performed according to load fluctuations, the amount of biofilm retained in the treated water tank tends to increase when the biofilm-based biofilm is operated for a long period of time, and the biofilm tends to be retained. When the retention amount of the biofilm increases, the contact area between the biofilm and the bulk water decreases, the oxygen permeability decreases, the amount of oxygen supplied to the biofilm decreases, and the treated water quality deteriorates. When the treated water quality of the biofilm deviates from the predetermined value due to the increase in the biofilm retention amount, it is determined that the biofilm retention amount in the aeration tank has increased more than necessary, and the biofilm retention amount of the carrier is reduced. It is conceivable to perform treatment or treatment for reducing the amount of biofilm retained, such as treatment of a partially decomposed product of granules. However, the biofilm retention reduction treatment itself also requires time and effort to determine the implementation and costs for implementation.

本発明は、生物膜保持量低減処理を行う場合と行わない場合との電力費用を比較し、電力費用が安価な方を選択する好気性生物膜処理方法及び装置を提供することを目的とする。 An object of the present invention is to provide an aerobic biofilm treatment method and apparatus for comparing the power costs of the case where the biofilm retention reduction treatment is performed and the case where the treatment is not performed and selecting the one with the lower power cost. ..

本発明の好気性生物膜処理方法は、原水を曝気槽に供給し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物膜処理する方法において、生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出し、生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出し、(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行うことを特徴とする。 The aerobic biological membrane treatment method of the present invention is a method in which raw water is supplied to an aerobic tank and the substance to be removed in the raw water is treated with an aerobic biological membrane by a biological membrane holding carrier or granule filled in the aerobic tank. The aerobic power cost A within the subsequent predetermined period when the membrane retention reduction treatment is not performed is calculated, and the aerobic power cost B and the biological membrane within the subsequent predetermined period when the biological membrane retention reduction treatment is performed. The total cost (B + C) with the retention amount reduction treatment cost C is calculated, (B + C) and A are compared, and if (B + C) is smaller than A, it is determined that the biological membrane retention reduction treatment is suitable. It is characterized by doing.

本発明の好気性生物膜処理装置は、原水が供給される曝気槽と、該曝気槽に充填された生物膜保持担体またはグラニュールと、該曝気槽を曝気する曝気装置とを有する好気性生物膜処理装置において、生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出する手段と、生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出する手段と、(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行う手段とを有することを特徴とする。 The aerobic biological membrane treatment apparatus of the present invention is an aerobic organism having an aeration tank to which raw water is supplied, a biological membrane holding carrier or granule filled in the aeration tank, and an aeration device that aerates the aeration tank. In the membrane treatment apparatus, a means for calculating the aeration power cost A within the subsequent predetermined period when the biological membrane retention amount reduction treatment is not performed, and within the subsequent predetermined period when the biological membrane retention amount reduction treatment is performed. The means for calculating the total cost (B + C) of the aeration power cost B and the biological membrane retention reduction processing cost C is compared with (B + C) and A, and if (B + C) is smaller than A, the biological membrane It is characterized by having a means for determining that the holding amount reduction treatment is suitable.

本発明の一態様では、前記A,(B+C)の算出及び比較を定期的に又は実行指令が与えられたときに行う。 In one aspect of the present invention, the calculations and comparisons of A and (B + C) are performed periodically or when an execution command is given.

本発明の一態様では、前記(B+C)がAよりも所定金額以上小さいときに前記生物膜保持量低減処理を好適とする判定を行う。 In one aspect of the present invention, when the (B + C) is smaller than A by a predetermined amount or more, it is determined that the biofilm retention reduction treatment is suitable.

本発明の一態様では、前記生物膜保持量低減処理費用は、前記担体の生物膜保持量低減処理又はグラニュールの部分解体処理の操作を行う費用と、該操作により生じた排出汚泥を処理する費用とを含む。 In one aspect of the present invention, the biofilm retention reduction treatment cost includes the cost of performing the biofilm retention reduction treatment of the carrier or the partial decomposition product treatment of the granule, and the waste sludge generated by the operation. Including costs.

本発明の一態様では、前記コストの算定時の前の規定期間における曝気電力消費量から単位時間の電力消費量Hを求め、該算定時以降は、予め設定した逓増パターンに従って単位時間電力消費量が逓増するものとし、この逓増した単位時間電力消費量H’と、前記所定期間と、電力単価との積とによって前記曝気電力コストAを算出し、該単位時間電力消費量H’に、予め設定した規定比率α(ただしα<1)を乗じたα・H’を、生物膜保持量低減処理を行った後の単位時間電力消費量とみなして、α・Aを前記曝気電力コストBとする。 In one aspect of the present invention, the unit-time power consumption H is obtained from the exposed power consumption in the specified period before the cost calculation, and after the calculation, the unit-time power consumption follows a preset gradual increase pattern. Is gradually increased, the aerated power cost A is calculated from the product of the gradually increased unit time power consumption H', the predetermined period, and the power unit price, and the unit time power consumption H'is set in advance. Α · H'multiplied by the set specified ratio α (where α <1) is regarded as the unit time power consumption after the biological membrane retention reduction treatment, and α · A is defined as the aerated power cost B. do.

本発明の一態様では、前記曝気槽内のDO目標値及び/又は曝気強度設定値から曝気動力にかかる電力使用量を算出する数式モデルと、電力使用量に対応する単価データと、原水負荷または酸素消費速度と、DO目標値及び/または曝気強度設定値と、の相関関係を、酸素透過性の良否に関係づけて決定した2つ以上の相関関係グループとを設定しておき、原水負荷または酸素消費速度の計測値(別の測定項目の実測値から算出したものを含む)の変動に応じて、前記相関関係の1つに基づいて、該計測値に対応するDO目標値及び/または曝気強度設定値を調整して曝気制御を行う。 In one aspect of the present invention, a mathematical model for calculating the amount of power used for aeration power from the DO target value and / or the set value of aeration intensity in the aeration tank, unit price data corresponding to the amount of power used, raw water load, or Two or more correlation groups determined by relating the correlation between the oxygen consumption rate and the DO target value and / or the aeration intensity setting value to the quality of oxygen permeability are set, and the raw water load or Based on one of the above correlations, the DO target value and / or aeration corresponding to the measured value depends on the fluctuation of the measured value of the oxygen consumption rate (including the one calculated from the measured value of another measurement item). Aeration is controlled by adjusting the intensity setting value.

本発明の一態様では、選定した前記相関関係のDO目標値あるいはその実測値、及び/又は曝気強度設定値あるいはその実測値から、現状の単位期間当たりの曝気動力にかかる電力使用量の算出値を求め、今後の前記所定期間の曝気動力が該算出値で一定であるとするか、曝気動力の経時的な上昇を予測する数式モデルによって今後の曝気動力の予測値を求め、該算出値または予測値と、電力使用量の単価データとに基づいて、前記電力費用Aを算出し、使用していた前記相関関係よりも相対的に酸素透過性の良い相関関係を相関関係グループから選定し、この相関関係における曝気作用に基づいて今後の前記所定期間の前記費用Bを算出する。 In one aspect of the present invention, the calculated value of the amount of power used for the aeration power per current unit period is calculated from the selected DO target value of the correlation or the actually measured value thereof, and / or the aeration intensity set value or the actually measured value thereof. Is determined, and the aeration power for the predetermined period in the future is constant at the calculated value, or the predicted value of the future aeration power is obtained by a mathematical model that predicts the increase of the aeration power over time, and the calculated value or The power cost A is calculated based on the predicted value and the unit price data of the power consumption, and a correlation having a relatively better oxygen permeability than the correlation used is selected from the correlation group. Based on the aeration action in this correlation, the cost B for the predetermined period in the future is calculated.

本発明の一態様では、前記生物膜保持量低減処理を、回転撹拌羽根又は逆洗による強撹拌、強曝気、高流速循環、及び槽内水の破砕ポンプへの通水のいずれか1又は2以上により行う。 In one aspect of the present invention, the biological film retention reduction treatment is performed by any one or two of strong stirring by a rotary stirring blade or backwash, strong aeration, high flow velocity circulation, and water flow to a crushing pump of water in the tank. It is done by the above.

本発明の一態様では、前記生物膜保持量低減処理費用Cを定数として設定しておく。 In one aspect of the present invention, the biofilm retention reduction processing cost C is set as a constant.

本発明の一態様では、前記費用Aが前記費用(B+C)よりも小さい場合、費用Aと費用(B+C)とが等しくなるまでの期間を求める。 In one aspect of the present invention, when the cost A is smaller than the cost (B + C), the period until the cost A and the cost (B + C) become equal is determined.

本発明によれば、原水負荷あたりの曝気動力効率が低下した場合に、流動床担体の性能向上策の実施の提案や、担体の更新、固定担体の強逆洗等のメンテナンス作業で得られる省エネルギー効果や、メンテナンス費用に対する費用対効果を定量的に示すことができる。 According to the present invention, when the aeration power efficiency per raw water load decreases, the energy saving obtained by the proposal of implementation of the performance improvement measure of the fluidized bed carrier, the renewal of the carrier, and the maintenance work such as strong backwashing of the fixed carrier. It is possible to quantitatively show the effect and the cost-effectiveness for the maintenance cost.

本発明が適用される生物処理装置の構成図である。It is a block diagram of the biological processing apparatus to which this invention is applied. 本発明が適用される生物処理装置の構成図である。It is a block diagram of the biological processing apparatus to which this invention is applied. 本発明が適用される生物処理装置の構成図である。It is a block diagram of the biological processing apparatus to which this invention is applied. 生物処理装置の構成図である。It is a block diagram of a biological processing apparatus. 生物処理装置の構成図である。It is a block diagram of a biological processing apparatus.

本発明では、現時点で生物膜保持量低減処理を行う方が、所定期間経過後に生物膜保持量低減処理を行うよりも電力費用が安価であると判定されるならば、担体の生物膜保持量低減処理(例えば、担体からの生物膜剥離、グラニュールの部分解体など)が適切との判断を行う。 In the present invention, if it is determined that the biofilm retention reduction treatment at present is cheaper than the biofilm retention reduction treatment after a lapse of a predetermined period, the biofilm retention of the carrier It is determined that the reduction treatment (for example, biofilm peeling from the carrier, partial decomposition product of granule, etc.) is appropriate.

すなわち、生物膜保持量低減処理を行わず現状の曝気制御を継続するときの費用(費用A:現状の単位時間の電力使用量に電力単価を乗じた単位時間の電力費を所定期間分だけ累積して算出した費用)と、生物膜保持量低減処理を行った後に曝気制御を継続するときの費用(費用B:現状よりも酸素透過性指標が良好である場合の単位時間の電力使用量に電力単価を乗じた単位時間の電力費を所定期間分だけ累積して算出した費用)に生物膜保持量低減処理費用Cを加算した費用(B+C)とを比較する。 That is, the cost of continuing the current exposure control without performing the biological membrane retention reduction treatment (cost A: the current unit-time power consumption multiplied by the power unit price is accumulated for a predetermined period of time. (Cost calculated by It is compared with the cost (B + C) obtained by adding the biological membrane retention reduction processing cost C to the cost calculated by accumulating the power cost per unit time multiplied by the power unit price for a predetermined period.

そして、費用Aと費用(B+C)の大小を比較してコストメリットに基づいて生物膜保持量低減処理の実行の要否を決定する。 Then, the size of the cost A and the cost (B + C) are compared, and the necessity of executing the biofilm retention reduction treatment is determined based on the cost merit.

なお、費用(B+C)が費用Aを下回るまでの期間を求めるべく所定期間を変数とし、費用Aと費用(B+C)とが等しくなる(あるいは差が小額となる)までの期間の長短を比較してコストメリットを判定してもよい。 In addition, in order to obtain the period until the cost (B + C) falls below the cost A, the predetermined period is set as a variable, and the length of the period until the cost A and the cost (B + C) become equal (or the difference becomes small) is compared. You may judge the cost merit.

生物膜剥離やグラニュール部分解体の操作としては、以下の(1)〜(4)のように剪断力を付与して強制的に汚泥を低減する操作が好適である。
(1) 回転撹拌羽根や逆洗により強撹拌する。
(2) 強曝気する。
(3) 高流速循環する。
(4) 槽内水を槽内又は槽外で破砕ポンプに通水する。
As the operation of biofilm exfoliation and granule decomposition product, it is preferable to apply shearing force to forcibly reduce sludge as described in (1) to (4) below.
(1) Strongly stir with a rotary stirring blade or backwash.
(2) Strong aeration.
(3) Circulate at high flow velocity.
(4) Pass the water in the tank through the crushing pump inside or outside the tank.

なお、担体から剥離された生物膜やグラニュールを部分解体することにより生じた汚泥は、SSとして処理水と共に槽外に排出され、固液分離(凝集沈殿、凝集加圧浮上、凝集濾過など)処理後、系外排出される。 The sludge generated by partially decomposing the biological film and granules peeled off from the carrier is discharged as SS to the outside of the tank together with the treated water, and solid-liquid separation (aggregation precipitation, aggregation pressure flotation, aggregation filtration, etc.) After processing, it is discharged from the system.

生物膜の剥離手段、部分解体手段は、剥離又は部分解体の処理業務を行うときに仮設してもよく、常設の設備として設置してもよい。 The biofilm peeling means and the partially decomposed body means may be temporarily installed at the time of peeling or processing of the partially decomposed body, or may be installed as permanent equipment.

生物膜保持量低減処理費用には、追加使用部材の単価データ、処理作業の労務費データ、ポンプの動力費用、強曝気時のブロワの増強分の動力費用などが含まれる。 The biological membrane retention reduction processing cost includes unit price data of additional materials used, labor cost data of processing work, pump power cost, power cost for boosting the blower during strong aeration, and the like.

以下に、図面を参照して流動床担体からの付着生物膜の剥離手段又は自己造粒グラニュール部分解体手段を備えた好気性生物処理装置の構成について説明する。 Hereinafter, the configuration of an aerobic biological treatment apparatus provided with a means for exfoliating the adhered biofilm from the fluidized bed carrier or a means for decomposing a self-granulated granule part will be described with reference to the drawings.

図1の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、グラニュール又は生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。 In the biological treatment apparatus of FIG. 1, the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1. The aeration tank 2 is filled with a carrier C carrying a granule or a biofilm. An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 to perform aeration.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out as treated water from the pipe 7.

この生物処理装置では、生物膜剥離手段として、曝気槽2のグラニュールや担体を吸引ポンプ11で引き抜き、撹拌水槽12に導入し、攪拌機13により強撹拌してグラニュール部分解体または担体付着生物膜剥離を実施した後、配管14を通じて曝気槽2に返送する。 In this biological treatment apparatus, as a means for peeling the biological film, the granule or carrier of the aeration tank 2 is pulled out by the suction pump 11, introduced into the stirring water tank 12, and strongly stirred by the stirrer 13 to decompose the granule part or the carrier-attached biological film. After the peeling is performed, the pump is returned to the aeration tank 2 through the pipe 14.

グラニュールの部分解体又は担体付着生物膜の剥離の程度は、次の(a),(b),(c)などにより調整される。
(a) 吸引ポンプ11の吐出量を調節して、撹拌水槽12の滞留時間を調整する。
(b) 攪拌機13の回転速度を調節して、生物膜解体/剥離の強度を調整する。
(c) 上記2つを共に調整する。
The degree of exfoliation of the partially decomposed granule or the carrier-attached biofilm is adjusted by the following (a), (b), (c) and the like.
(A) The discharge amount of the suction pump 11 is adjusted to adjust the residence time of the stirring water tank 12.
(B) The rotation speed of the stirrer 13 is adjusted to adjust the strength of biofilm disassembly / peeling.
(C) Adjust both of the above.

なお、撹拌水槽12と攪拌機13を設ける代わりに、水中破砕ポンプを設置して代替することもできる。 Instead of providing the stirring water tank 12 and the stirring machine 13, a submersible crushing pump can be installed instead.

図1では、吸引ポンプ11からの送水をそのまま撹拌水槽12に供給しているが、図2のように、吸引ポンプ11からの送水を、サイクロン等の沈降速度による処理対象担体の選別装置15に供給し、生物膜保持量が多く沈降速度が大きい担体やグラニュールのみを選択的に撹拌水槽12に供給してグラニュールの部分解体又は生物膜剥離処理を行うようにしてもよい。生物膜保持量が少なく、沈降速度が小さい担体やグラニュールは配管16を通じて曝気槽2に返送する。 In FIG. 1, the water supply from the suction pump 11 is supplied to the stirring water tank 12 as it is, but as shown in FIG. 2, the water supply from the suction pump 11 is sent to the processing target carrier sorting device 15 based on the sedimentation speed of the cyclone or the like. It is also possible to supply and selectively supply only the carrier or granule having a large amount of biological film retention and a high sedimentation rate to the stirring water tank 12 to perform the partial decomposition product of the granule or the biological film peeling treatment. The carrier or granule having a small amount of biofilm retained and a low sedimentation rate is returned to the aeration tank 2 through the pipe 16.

図3は、強曝気により、グラニュールの部分解体又は担体付着生物膜の剥離を行うようにした生物処理装置を示している。 FIG. 3 shows a biological treatment apparatus in which a partially decomposed product of granule or a biofilm attached to a carrier is peeled off by strong aeration.

図3の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、グラニュール又は生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。配管5には、強曝気用のブロア17からも空気が供給可能とされている。 In the biological treatment apparatus of FIG. 3, the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1. The aeration tank 2 is filled with a carrier C carrying a granule or a biofilm. An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 to perform aeration. Air can also be supplied to the pipe 5 from the blower 17 for strong aeration.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out as treated water from the pipe 7.

この生物処理装置では、曝気槽2内のDOを測定するDO計19と、ブロア4から配管5へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア4が制御されることにより曝気強度が制御される。 In this biological treatment apparatus, a DO meter 19 for measuring the DO in the aeration tank 2 and an air volume meter 20 for measuring the amount of air supplied from the blower 4 to the pipe 5 are provided, and these detected values are the controllers. It is input to 21. The aeration intensity is controlled by controlling the blower 4 by the controller 21.

グラニュールの部分解体又は担体付着生物膜の剥離を行うときには、ブロア17を作動させて強曝気する。 When the partially decomposed product of granule or the biofilm attached to the carrier is peeled off, the blower 17 is operated to strongly aerate.

<酸素拡散性指標>
汚濁物質除去のために自己造粒微生物グラニュールや流動床もしくは固定床担体に付着させた生物膜を利用する生物膜処理の場合、浮遊法と比較して流動状態の液相と微生物とが接触する表面積が少なく、汚濁物質の生分解のためには生物膜の内部へ(厚み方向へ)酸素や汚濁物質が拡散浸透する必要があり、この拡散浸透プロセスの速度は微生物の増殖速度・酸素消費速度と比較して遅いため、拡散浸透プロセスが処理性能を決定する主要な要因の一つである。
<Oxygen diffusivity index>
In the case of biological film treatment using a self-granulating microbial granule or a biological film attached to a fluidized bed or fixed bed carrier to remove pollutants, the liquid phase in a fluid state and the microorganisms come into contact with each other as compared with the floating method. The surface area is small, and in order to biodecompose pollutants, oxygen and pollutants must diffuse and permeate inside the biological membrane (in the thickness direction), and the rate of this diffusion permeation process is the growth rate of microorganisms and oxygen consumption. Due to its slowness compared to its speed, the diffusion infiltration process is one of the major determinants of processing performance.

生物膜がバルク水と接触する表面積は拡散浸透プロセスに影響を与える因子である。表面積が狭くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が減り、処理性能が低下して処理水水質が悪化する傾向となる。逆に、表面積が広くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が増加し、処理能力が上がり、処理水質が良好となる傾向となる。また、低いDOであっても十分な処理性能を発揮することができ、曝気量、曝気に関わる電力を削減できる。 The surface area of the biofilm in contact with bulk water is a factor affecting the diffusion osmosis process. When the surface area is narrowed, even if the DO of the bulk water is the same, the total amount of oxygen diffused into the biofilm is relatively reduced, the treatment performance is deteriorated, and the quality of the treated water tends to be deteriorated. On the contrary, when the surface area is widened, even if the DO of the bulk water is the same, the total amount of oxygen diffusion to the biofilm is relatively increased, the treatment capacity is increased, and the treated water quality tends to be good. Further, even if the DO is low, sufficient processing performance can be exhibited, and the amount of aeration and the electric power related to aeration can be reduced.

自己造粒微生物グラニュールを利用する装置の場合、長期的な運用によりグラニュールが肥大した場合、自己造粒微生物グラニュールの充填容積あたりのバルク水と接触する比表面積が低下し、装置容積あたりのバルク水と接触する表面積が低下する。 In the case of equipment using self-granulating microbial granules, if the granules are enlarged due to long-term operation, the specific surface area in contact with bulk water per filling volume of self-granulating microbial granules will decrease, and the specific surface area in contact with bulk water will decrease. The surface area in contact with bulk water is reduced.

担体を利用する装置の場合、特に担体内部に空隙部がある構造の担体を利用した場合、長期的な運用により担体が保持する生物膜保持量が増加すると、担体内部の空隙空間が微生物膜自体およびスケール成分等の生物活性のない固形分により閉塞するため、バルク水と生物膜の接触面積が低下する。この結果、担体充填容積あたりのバルク水と接触する比表面積が低下し、曝気槽容積あたりのバルク水と接触する表面積が低下する。また担体内部の空隙部の有無にかかわらず、長期間の運用を行った場合、生物膜内の汚泥密度が上昇する、もしくは、スケール成分等の生物活性のない固形物の蓄積により微生物膜の固形物密度が上昇することにより、酸素の拡散速度が低下する。 In the case of a device using a carrier, especially when a carrier having a structure having voids inside the carrier is used, when the amount of biofilm retained by the carrier increases due to long-term operation, the void space inside the carrier becomes the microbial membrane itself. And because it is blocked by non-biologically active solids such as scale components, the contact area between bulk water and biofilm is reduced. As a result, the specific surface area in contact with bulk water per carrier filling volume is reduced, and the surface area in contact with bulk water per aeration tank volume is reduced. In addition, regardless of the presence or absence of voids inside the carrier, when the product is operated for a long period of time, the sludge density in the biological membrane increases, or the solid matter of the microbial membrane becomes solid due to the accumulation of non-biologically active solids such as scale components. As the density increases, the diffusion rate of oxygen decreases.

さらに、固定担体に付着させた生物膜を利用する処理の場合は、運用期間が長期に渡ると担体間の空間に過剰な生物膜が保持されていく傾向がある。このような状況では、生物膜保持量の増加に応じバルク水相の容量が相対的に低下する。また、この状態がさらに進むと、担体間の空間が生物膜により閉塞し、バルク水が流入できない空間が発生する。この結果、バルク水相と生物膜との接触面積が徐々に低下し、生物膜への酸素や汚濁物質の浸透透過性が経時的に低下する傾向がある。 Further, in the case of the treatment using the biofilm attached to the fixed carrier, the excess biofilm tends to be retained in the space between the carriers over a long period of operation. In such a situation, the volume of the bulk aqueous phase decreases relatively as the biofilm retention increases. Further, when this state is further advanced, the space between the carriers is blocked by the biofilm, and a space where bulk water cannot flow in is generated. As a result, the contact area between the bulk aqueous phase and the biofilm gradually decreases, and the permeation permeability of oxygen and pollutants into the biofilm tends to decrease over time.

<制御ロジックの構築例>
本発明で使用する曝気制御の手法として、高負荷時には一般的なDO制御を行い、低負荷時には弱曝気と強曝気を交互に繰り返すいわゆる間欠曝気を組み合わせた場合の事例を説明する。本事例の間欠曝気では、一定時間サイクル毎に、所定時間最低限の一定風量で曝風量の抑制を行う弱曝気工程と、残りの時間DO制御を行う強曝気工程をくりかえす。本事例の間欠曝気の説明では、弱曝気工程を状曝気工程から構成される制御サイクルの合計工程時間をサイクル時間と称し、弱曝気工程の工程時間を弱曝気工程時間、強曝気工程の工程時間を強曝気工程時間と称する。
<Example of control logic construction>
As a method of aeration control used in the present invention, a case will be described in which general DO control is performed at a high load and so-called intermittent aeration in which weak aeration and strong aeration are alternately repeated at a low load is combined. In the intermittent aeration of this case, the weak aeration process in which the air volume is suppressed with the minimum constant air volume for a predetermined time and the strong aeration process in which the DO control is performed for the remaining time are repeated at regular time cycles. In the explanation of intermittent aeration in this case, the weak aeration process is referred to as the total process time of the control cycle composed of the state aeration process, and the process time of the weak aeration process is referred to as the weak aeration process time and the process time of the strong aeration process. Is referred to as a strong aeration process time.

原水負荷や反応槽の酸素消費速度と、DO目標値や曝気強度設定値(本事例では弱曝気工程時間の設定値)の適正値との相関関係を、複数の酸素拡散性指標において予め作成する。原水負荷とDO目標値および弱曝気工程時間との相関を制御表で整理した下記の表1を例に説明する。 The correlation between the raw water load and the oxygen consumption rate of the reaction tank and the appropriate values of the DO target value and the aeration intensity set value (in this case, the set value of the weak aeration process time) is created in advance using a plurality of oxygen diffusivity indexes. .. The following Table 1 in which the correlation between the raw water load and the DO target value and the weak aeration process time is arranged in a control table will be described as an example.

下記の表1では、上から順番に5個の制御表(相関関係表)が示されている。各表は、それぞれ生物膜における酸素拡散性が異なる条件を想定して作成されており、1番目の表が最も酸素拡散性が高い条件で作成され、順次酸素拡散性が低下し、5番目の表がもっとも酸素拡散性が悪い想定での表となっている。各々の表はTOC担体容積負荷とDO目標値及び弱曝気工程時間設定値との関係を表わしている。 In Table 1 below, five control tables (correlation tables) are shown in order from the top. Each table is prepared assuming the condition that the oxygen diffusivity in the biofilm is different, the first table is prepared under the condition that the oxygen diffusivity is the highest, the oxygen diffusivity is gradually decreased, and the fifth table is prepared. The table is based on the assumption that oxygen diffusivity is the worst. Each table shows the relationship between the TOC carrier volume loading and the DO target value and the weak aeration process time setting value.

例えば、上から3番目の表では、担体充填容積当りTOC負荷[kgC/(m・d)。以下、単位を省略する場合がある。]が0.1以上〜0.6未満の負荷条件では強曝気工程におけるDO目標値を3.1mg/Lとし、TOC負荷0.1以上〜0.2未満の場合は弱曝気工程時間を2時間ごとに110分、TOC負荷0.2以上0.3未満の場合は弱曝気工程時間を2時間ごとに90分、TOC負荷0.3以上0.4未満の場合は弱曝気工程時間を2時間ごとに80分、TOC負荷0.4以上0.5未満の場合は弱曝気工程時間を2時間ごとに60分、TOC負荷0.5以上0.6未満の場合は弱曝気工程時間を2時間ごとに40分をそれぞれ適正値として設定しており、TOC負荷0.6以上0.7未満の場合は強曝気工程でのDO目標値を3.8mg/L弱曝気工程時間を2時間ごとに20分、TOC負荷0.7以上の場合は、間欠曝気を行わず(弱曝気時間を0分として)TOC負荷0.7以上0.9未満の場合はDO目標値を3.9とし、TOC負荷0.9以上1.0未満の場合はDO目標値を4.4、TOC負荷1.0以上の場合はDO目標値を4.8をそれぞれ適正値として設定している。他の表も同様である。 For example, in the third table from the top, the carrier filling volume per TOC load [kgC / (m 3 · d ). Hereinafter, the unit may be omitted. ] Is 0.1 or more and less than 0.6, the DO target value in the strong aeration process is 3.1 mg / L, and when the TOC load is 0.1 or more and less than 0.2, the weak aeration process time is 2. 110 minutes per hour, 90 minutes every 2 hours when the TOC load is 0.2 or more and less than 0.3, and 2 weak aeration process times when the TOC load is 0.3 or more and less than 0.4. 80 minutes per hour, weak aeration process time every 2 hours when TOC load 0.4 or more and less than 0.5, weak aeration process time 2 when TOC load 0.5 or more and less than 0.6 40 minutes is set as an appropriate value for each hour, and when the TOC load is 0.6 or more and less than 0.7, the DO target value in the strong aeration process is 3.8 mg / L and the weak aeration process time is every 2 hours. If the TOC load is 0.7 or more, intermittent aeration is not performed (weak aeration time is 0 minutes), and if the TOC load is 0.7 or more and less than 0.9, the DO target value is set to 3.9. When the TOC load is 0.9 or more and less than 1.0, the DO target value is set to 4.4, and when the TOC load is 1.0 or more, the DO target value is set to 4.8 as appropriate values. The same applies to the other tables.

処理水水質(例えばTOC濃度)が所定時間にわたって良好なときは、1つ上の制御表に移行し、逆に処理水水質が所定時間にわたって不良なときは、1つ下の制御表に移行する。例えば、標準の制御表(上から3番目の表)を用いて適切に曝気制御を継続していたにも拘わらず処理水水質が悪化したときは酸素拡散性が悪化したとみなし、1つ下側の制御表(上から4番目の表)を用いた曝気制御に切り替える。逆に処理水水質が過度に良くなったときは曝気を弱めても安定処理できるとみなして1つ上側の制御表(上から2番目の表)を用いた曝気制御に切り替える。本制御手順の適用により、実機の生物膜の状態に応じた酸素拡散性を想定した制御表が自動的に選択されることになり、結果として酸素拡散性指標を推定していることになる。 When the treated water quality (for example, TOC concentration) is good for a predetermined time, the control table moves up one level, and conversely, when the treated water quality is poor for a predetermined time, the control table moves down one level. .. For example, if the quality of treated water deteriorates even though aeration control has been continued appropriately using the standard control table (third table from the top), it is considered that the oxygen diffusivity has deteriorated, and the oxygen diffusivity is considered to have deteriorated. Switch to aeration control using the side control table (fourth table from the top). On the contrary, when the treated water quality becomes excessively good, it is considered that stable treatment can be performed even if the aeration is weakened, and the aeration control is switched to the one above the control table (the second table from the top). By applying this control procedure, a control table assuming oxygen diffusivity according to the state of the biofilm of the actual machine will be automatically selected, and as a result, the oxygen diffusivity index will be estimated.

なお酸素拡散性指標は実機で直接計測することは困難であるが、上記の操作により通常の運転データから推定することが可能となる。 Although it is difficult to directly measure the oxygen diffusivity index with an actual machine, it is possible to estimate it from normal operation data by the above operation.

Figure 2021159860
Figure 2021159860

最も処理性能が低下した状況を想定した制御表(表1では最下段の制御表)を選択して制御しているときに処理水のTOCが制御目標のTOC上限値よりも高い場合、それよりも曝気強度を大きくした制御表は設定されていないので、生物膜保持量低減処理を行って性能を回復させる。 If the TOC of the treated water is higher than the TOC upper limit of the control target when the control table (the control table at the bottom in Table 1) is selected and controlled assuming the situation where the processing performance is the lowest, it is higher than that. However, since the control table with increased aeration intensity has not been set, the performance is restored by performing the biofilm retention reduction treatment.

なお、処理性能が若干低下した段階(例えば上から4番目の制御表の状態)であっても、曝気強化のエネルギー効率やコストなどを考慮して、生物膜保持量低減処理を行うことにより性能を回復させるようにしてもよい。 Even at the stage where the processing performance is slightly deteriorated (for example, the state of the fourth control table from the top), the performance is performed by performing the biofilm retention reduction treatment in consideration of the energy efficiency and cost of aeration enhancement. May be restored.

<制御の管理指標>
原水負荷を管理指標とする場合の原水担体負荷の計算方法について、図4を用いて次に説明する。
<Control management index>
The calculation method of the raw water carrier load when the raw water load is used as a control index will be described below with reference to FIG.

[TOC計と流量計から原水負荷を算出する方法]
図4に示す生物処理装置は、原水のTOC濃度の計測値を利用した原水負荷に基づく曝気制御を行うものである。
[Method of calculating raw water load from TOC meter and flow meter]
The biological treatment apparatus shown in FIG. 4 performs aeration control based on the raw water load using the measured value of the TOC concentration of the raw water.

図4の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。 In the biological treatment apparatus of FIG. 4, the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1. The aeration tank 2 is filled with a carrier C supporting a biofilm. An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 to perform aeration.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out as treated water from the pipe 7.

この生物処理装置では、計測手段として、配管1を流れる原水の流量及びTOC濃度を測定する流量計22及びTOC計23と、曝気槽2内のDOを測定するDO計19と、ブロア14から散気管13へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア14が制御されることにより曝気強度が制御される。 In this biological treatment apparatus, as measuring means, a flow meter 22 and a TOC total 23 for measuring the flow rate and TOC concentration of raw water flowing through the pipe 1, a DO total 19 for measuring DO in the aeration tank 2, and a blower 14 disperse. An aeration meter 20 for measuring the amount of air supplied to the trachea 13 is provided, and these detected values are input to the controller 21. The aeration intensity is controlled by controlling the blower 14 by the controller 21.

原水流量を流量計22で測定し、TOC計23で原水のTOC濃度を測定することで、TOC負荷を算出する。 The TOC load is calculated by measuring the raw water flow rate with the flow meter 22 and measuring the TOC concentration of the raw water with the TOC total 23.

<原水負荷>
原水負荷は次式によって算出される。
<Raw water load>
The raw water load is calculated by the following formula.

Load=Q・Conc
Load:原水負荷[kg/d]
Q:原水流量[m/d]
Conc:原水濃度[kg/m
原水濃度としてはTOCに限らず、微生物による酸化処理の対象となる物質の濃度であれば処理目的に応じて他の指標を利用してもよい。典型的にはCODCr、CODMn、亜硝酸性窒素、アンモニア性窒素、有機アミン類等の特定化学物質の濃度を利用することが可能である。
Road = Q ・ Conc
Road: Raw water load [kg / d]
Q: Raw water flow rate [m 3 / d]
Conc: Raw water concentration [kg / m 3 ]
The raw water concentration is not limited to TOC, and other indexes may be used depending on the treatment purpose as long as it is the concentration of the substance to be oxidized by the microorganism. Typically, it is possible to utilize the concentration of a specific chemical substance such as COD Cr , COD Mn, nitrite nitrogen, ammoniacal nitrogen, and organic amines.

<担体容積負荷>
担体容積負荷は次式によって算出される。
<Carrier volume loading>
The carrier volume load is calculated by the following equation.

LoadCarrierVol=Load/VCarrier
LoadCarrierVol:担体容積負荷[kg/(m・d)]
Carrier:曝気槽内の担体充填容積[m
Road CarrierVol = Road / V Carrier
Load CarrierVol: support volume loading [kg / (m 3 · d )]
V Carrier : Carrier filling volume in the aeration tank [m 3 ]

<担体表面積負荷>
担体表面積負荷は次式によって算出される。
<Carrier surface area load>
The carrier surface area load is calculated by the following equation.

LoadCarrierSurf=Load/SCarrier
LoadCarrierSurf:担体表面積負荷[kg/(m・d)]
Carrier:曝気槽内の担体群の総表面積[m
Road CarrierSurf = Road / S Carrier
Road CarrierSurf : Carrier surface area load [kg / (m 2 · d)]
S Carrier : Total surface area of the carrier group in the aeration tank [m 2 ]

なお、曝気槽においては、原水負荷は経時的に分単位で急速に変動することがあるが、担体の性状(曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積)の経時的変化は日から月単位で比較的緩慢に変化する。そのため、原水負荷の計算値は頻繁に更新するのが好ましい。また、曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積については、担体を定期的に(例えば1〜3ヶ月に1回程度の頻度で)サンプリングして解析し、担体充填容積、担体群の総表面積データを更新すればよい。 In the aeration tank, the raw water load may fluctuate rapidly in minutes over time, but the properties of the carrier (carrier filling volume in the aeration tank or total surface area of the carrier group in the aeration tank) over time. Changes change relatively slowly from day to month. Therefore, it is preferable to update the calculated value of the raw water load frequently. The carrier filling volume in the aeration tank or the total surface area of the carrier group in the aeration tank is analyzed by sampling the carriers periodically (for example, once every 1 to 3 months), and the carrier filling volume is analyzed. , The total surface area data of the carrier group may be updated.

[酸素消費速度を管理指標とした制御]
[酸素消費速度の演算方法]
本発明の一態様では、酸素消費速度を管理指標として曝気制御を行う。即ち、酸素消費速度が所定値以下となる低負荷条件下において曝気強度を規定強度以上とする。このように酸素消費速度を管理指標とする場合の酸素消費速度の演算方法について、図5を用いて説明する。
[Control using oxygen consumption rate as a management index]
[Calculation method of oxygen consumption rate]
In one aspect of the present invention, aeration control is performed using the oxygen consumption rate as a control index. That is, the aeration intensity is set to be equal to or higher than the specified intensity under a low load condition in which the oxygen consumption rate is equal to or less than a predetermined value. A method of calculating the oxygen consumption rate when the oxygen consumption rate is used as a control index will be described with reference to FIG.

図5の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3a,3b,3cが設置されており、ブロア4から配管5及び分岐配管5a,5b,5cを通じて空気が供給され、曝気が行われる。曝気槽2には天蓋2rが設けられている。 In the biological treatment apparatus of FIG. 5, the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1. The aeration tank 2 is filled with a carrier C supporting a biofilm. Air diffusers 3a, 3b, 3c are installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 and the branch pipes 5a, 5b, 5c to perform aeration. The aeration tank 2 is provided with a canopy 2r.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out as treated water from the pipe 7.

この生物処理装置では、計測手段として、曝気槽2上部かつ天蓋2r下側の気相部ガス中の酸素濃度を測定する排ガス計24と、曝気槽2内のDOを測定するDO計19と、ブロア4から散気管3a〜3cへ供給される空気量を測定する風量計20が設けられている。 In this biological treatment apparatus, as measuring means, an exhaust gas meter 24 for measuring the oxygen concentration in the gas phase portion gas above the aeration tank 2 and below the canopy 2r, and a DO total 19 for measuring the DO in the aeration tank 2 are used. An air volume meter 20 for measuring the amount of air supplied from the blower 4 to the aeration pipes 3a to 3c is provided.

<ケース1:風量計と排ガス計から酸素消費速度を演算する方法>
曝気風量と排ガス中の酸素濃度を計測し、酸素消費速度qOを次式により直接的に演算する。
<Case 1: How to calculate the oxygen consumption rate from the air volume meter and the exhaust gas meter>
The aeration air volume and the oxygen concentration in the exhaust gas are measured, and the oxygen consumption rate qO 2 is directly calculated by the following equation.

Figure 2021159860
Figure 2021159860

Figure 2021159860
Figure 2021159860

OTE:酸素移動効率[−]
:吹き込み空気中の酸素モル分率[−]
Z:排ガス中の酸素モル分率[−]
qO:酸素消費速度[kg/d]
Gν:標準状態換算の曝気空気の吹き込み流量[Nm/d]
ν:酸素の比容[Nm/kg]
OTE: Oxygen transfer efficiency [-]
Z 0 : Oxygen mole fraction in blown air [-]
Z: Mole fraction of oxygen in exhaust gas [-]
qO 2 : Oxygen consumption rate [kg / d]
Gν: Blow-in flow rate of aerated air converted to standard state [Nm 3 / d]
ν m : Specific volume of oxygen [Nm 3 / kg]

<ケース2:DO計と曝気風量とから酸素消費速度を計算する方法>
曝気風量とDOを計測し、酸素消費速度qOを間接的に推算する。
(i) (制御装置実装前の準備)酸素消費速度の推算に必要な酸素溶解性指標φを次式により算出する。
<Case 2: Method of calculating oxygen consumption rate from DO meter and aeration air volume>
The aeration air volume and DO are measured, and the oxygen consumption rate qO 2 is indirectly estimated.
(I) (Preparation before mounting the control device) Calculate the oxygen solubility index φ required for estimating the oxygen consumption rate by the following formula.

Figure 2021159860
Figure 2021159860

Figure 2021159860
Figure 2021159860

OTE:酸素移動効率[−]
:吹き込み空気中の酸素モル分率[−]
Z:排ガス中の酸素モル分率[−]
φ:酸素溶解性指標[m]
ν:酸素の比容[Nm/kg]
h:散気装置の水深[m]
Cs:飽和溶存酸素濃度[kg/m
C:混合液中の溶存酸素濃度[kg/m
OTE: Oxygen transfer efficiency [-]
Z 0 : Oxygen mole fraction in blown air [-]
Z: Mole fraction of oxygen in exhaust gas [-]
φ: Oxygen solubility index [m]
ν m : Specific volume of oxygen [Nm 3 / kg]
h: Water depth of the air diffuser [m]
Cs: Saturated dissolved oxygen concentration [kg / m 3 ]
C: Dissolved oxygen concentration in the mixture [kg / m 3 ]

(ii) (装置稼働時)酸素消費速度の経時変化を連続計測する。 (Ii) (During equipment operation) Continuously measure changes in oxygen consumption rate over time.

DO計と曝気風量の連続計測データ、および予め求めた酸素溶解性指標φから酸素消費速度qOを次式により連続推算する。 The oxygen consumption rate qO 2 is continuously estimated by the following formula from the DO meter, the continuous measurement data of the aeration air volume, and the oxygen solubility index φ obtained in advance.

Figure 2021159860
Figure 2021159860

qO:酸素消費速度[kg/d]
Gν:標準状態換算の曝気空気の吹き込み流量[Nm/h]
h:散気装置の水深[m]
Cs:飽和溶存酸素濃度[kg/m
C:混合液中の溶存酸素濃度[kg/m
φ:酸素溶解性指標[m]
qO 2 : Oxygen consumption rate [kg / d]
Gν: Blow-in flow rate of aerated air converted to standard state [Nm 3 / h]
h: Water depth of the air diffuser [m]
Cs: Saturated dissolved oxygen concentration [kg / m 3 ]
C: Dissolved oxygen concentration in the mixture [kg / m 3 ]
φ: Oxygen solubility index [m]

[原水負荷又は酸素消費速度と、DO濃度目標値及び/又は曝気強度設定値との相関関係]
原水負荷又は酸素消費速度と、DO濃度目標値及び/または曝気強度設定値との相関関係は、予備実験の結果データ、実機の運転実績データ、生物膜における酸素の拡散性を考慮した機構モデルのシミュレーション結果などを用いて設定される。
[Correlation between raw water load or oxygen consumption rate and DO concentration target value and / or aeration intensity setting value]
The correlation between the raw water load or oxygen consumption rate and the DO concentration target value and / or the aeration intensity setting value is the result data of the preliminary experiment, the operation record data of the actual machine, and the mechanism model considering the diffusivity of oxygen in the biological membrane. It is set using simulation results.

この相関関係は、原水負荷とDO目標値および/又は曝気強度設定値の適正値との関数関係を記述した関数式、あるいは、制御表などで整理し利用する。 This correlation is organized and used in a functional expression describing the functional relationship between the raw water load and the appropriate value of the DO target value and / or the aeration intensity setting value, or a control table or the like.

[制御表を作成するための生物膜機構モデル]
制御表を構築するための1手法として、汚濁物質と酸素を含む流動状態にあるバルク水相に生物膜が接したときの、汚濁物質の減少や生物膜中の活性汚泥菌体量の増減を推定する動力学モデル(以降、生物膜機構モデルと称する場合がある。)を利用することができる。このような動力学モデルは、菌体増殖と汚濁物質の消費・酸素消費が生物膜内で同時に発生する状況、バルク水相中の溶存酸素の生物膜への拡散およびエアレーションにより酸素がバルク水量に溶解する現象も考慮して構築する必要がある。また、生物膜の増加や縮小は、菌体の増殖および死滅に伴った菌体群の体積の増加および減少やバルク水からの菌体の付着およびバルク水への菌体の剥離により発生する。生物膜利用処理に動力学モデルを利用する場合これらの現象を数学モデル化する必要がある。このような現象は本来3次元空間で発生する現象のため、モデル化は複雑なものとなるが、生物膜の増加・縮小を厚さ方向のみの変化を考慮する1次元モデルで表現することでシミュレーションを比較的容易に行うことができる。活性汚泥による排水処理をシミュレーションするための数学モデルとしては、例えばInternational Water AssociationのTask groupが提案している一連の数学モデルが活用できる(下記報文1)。生物膜を対象とした数学モデル例としては、下記報文2などが報告されている。
[Biofilm mechanism model for creating control tables]
One method for constructing a control table is to reduce the amount of pollutants and increase or decrease the amount of activated sludge cells in the biofilm when the biofilm comes into contact with the bulk aqueous phase in a fluid state containing pollutants and oxygen. An estimated kinetic model (hereinafter sometimes referred to as a biofilm mechanism model) can be used. In such a kinetic model, bacterial cell growth and pollutant consumption / oxygen consumption occur simultaneously in the biological membrane, and oxygen is converted to bulk water volume by diffusion of dissolved oxygen in the bulk aqueous phase to the biological membrane and aeration. It is necessary to consider the melting phenomenon. In addition, the increase or contraction of the biofilm occurs due to the increase or decrease in the volume of the bacterial cell group accompanying the growth and death of the bacterial cell, the attachment of the bacterial cell from the bulk water, and the exfoliation of the bacterial cell into the bulk water. When using a kinetic model for biofilm utilization processing, it is necessary to mathematically model these phenomena. Since such a phenomenon originally occurs in a three-dimensional space, modeling is complicated, but by expressing the increase / contraction of the biological membrane with a one-dimensional model that considers changes only in the thickness direction. The simulation can be done relatively easily. As a mathematical model for simulating wastewater treatment with activated sludge, for example, a series of mathematical models proposed by the Task group of the International Water Association can be used (report 1 below). The following report 2 and the like have been reported as examples of mathematical models for biofilms.

1. M Henze; IWA. Task Group on Mathematical Modelling for Design andoperaton of Biological Wastewater Treatment; et al
2.Boltz, J. P., Johnson, B.R., Daigger, G.T., Sandino, J., (2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81(6), 555-575
1. M Henze; IWA. Task Group on Mathematical Modeling for Design and operator of Biological Wastewater Treatment; et al
2. Boltz, JP, Johnson, BR, Daigger, GT, Sandino, J., (2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81 ( 6), 555-575

前項のような数学モデルを利用することで、例えば流動床担体の数学モデルを構築することができる。一般にこのような数学モデルは連立常微分方程式の形式で記述されることが多く、連立常微分方程式の数値積分ソフトウエアを利用して同プロセスの動的な挙動をシミュレーションすることができる。例えば、特定の装置構成、負荷想定、曝気強度により変化するバルク水相のDOの条件に応じた処理水質の予想を行うことが可能である。 By using the mathematical model as in the previous section, for example, a mathematical model of a fluidized bed carrier can be constructed. In general, such mathematical models are often described in the form of simultaneous ordinary differential equations, and the dynamic behavior of the process can be simulated using numerical integration software for simultaneous ordinary differential equations. For example, it is possible to predict the treated water quality according to the DO conditions of the bulk aqueous phase, which changes depending on a specific device configuration, load assumption, and aeration intensity.

前項のような数学モデルを利用することで、様々な負荷条件に対して、様々な曝気強度で処理を行った際の、例えば処理水のTOC濃度を予想することができる。シミュレーション結果を整理した表を作成し、本発明の制御システムで利用する制御表に活用できる。 By using the mathematical model as described in the previous section, it is possible to predict, for example, the TOC concentration of the treated water when the treatment is performed with various aeration intensities under various load conditions. A table in which the simulation results are organized can be created and used as a control table used in the control system of the present invention.

[曝気強度の制御]
本特許実装の一様態として、高負荷時には一般的なDO制御を行い、低負荷時には弱曝気と強曝気を交互に繰り返すいわゆる間欠曝気を組み合わせた事例を説明する。本事例の間欠曝気では、一定の時間サイクル毎に、所定時間必要最低限の一定風量で曝気風量を抑制もしくは曝気停止を行う弱曝気工程と、残りの時間DO制御を行う強曝気工程とを繰り返す。曝気停止時間はいわゆる間欠曝気における一定の時間サイクルの内曝気を停止する時間を示す。曝気抑制時間とは、強曝気と弱曝気を交互に繰り返す運転における弱曝気の時間である。本事例の間欠曝気の説明では、弱曝気工程と強曝気工程から構成される制御サイクルの合計工程時間をサイクル時間と称し、弱曝気工程の工程時間を弱曝気工程時間、強気工程の工程時間を強曝気工程時間と称する。弱曝気工程の時間および強曝気工程におけるDO目標値は、原水負荷に応じて連続的又は段階的に制御する。強曝気工程時間はサイクル時間から弱曝気工程時間を引いた時間として自動的に決定される。また、弱曝気工程時間を調整する場合の最長時間を最長弱曝気工程時間と称する。
[Control of aeration intensity]
As a uniform form of the implementation of this patent, an example of combining so-called intermittent aeration in which general DO control is performed at a high load and weak aeration and strong aeration are alternately repeated at a low load will be described. In the intermittent aeration of this case, the weak aeration step of suppressing or stopping the aeration with the minimum required constant air volume for a predetermined time and the strong aeration step of performing DO control for the remaining time are repeated every fixed time cycle. .. The aeration stop time indicates the time for stopping the internal aeration in a fixed time cycle in so-called intermittent aeration. The aeration suppression time is the time of weak aeration in the operation of alternately repeating strong aeration and weak aeration. In the explanation of intermittent aeration in this case, the total process time of the control cycle consisting of the weak aeration process and the strong aeration process is referred to as the cycle time, the process time of the weak aeration process is referred to as the weak aeration process time, and the process time of the bullish process is referred to as the process time of the bullish process. It is called the strong aeration process time. The time of the weak aeration step and the DO target value in the strong aeration step are controlled continuously or stepwise according to the raw water load. The strong aeration process time is automatically determined as the cycle time minus the weak aeration process time. Further, the longest time when adjusting the weak aeration process time is referred to as the longest weak aeration process time.

DO目標値、弱曝気工程時間は、原水負荷に応じて連続的又は段階的に制御する。 The DO target value and the weak aeration process time are controlled continuously or stepwise according to the raw water load.

〔コスト対比〕
本発明では、生物膜保持量低減処理を現時点で行う場合と、現時点では行わず、その後所定期間f経過後に行う場合とについて、電力コスト及び生物膜保持量低減処理コストを対比する。
[Cost comparison]
In the present invention, the power cost and the biofilm retention reduction treatment cost are compared between the case where the biofilm retention reduction treatment is performed at the present time and the case where the biofilm retention amount reduction treatment is performed at the present time and after a predetermined period f has elapsed.

[所定期間]
所定期間fは、任意に設定できるが、通常は1カ月〜36カ月、特に12カ月〜24カ月の間から選定されることが好ましい。
[Predetermined period]
The predetermined period f can be arbitrarily set, but is usually preferably selected from 1 month to 36 months, particularly from 12 months to 24 months.

[生物膜保持量低減処理を行わない場合の電力費用(コスト)Aの算定]
現時点で生物膜保持量低減処理を行わない場合の電力使用量予測を行うには、現時点と、現時点から規定時間遡った過去との間の規定期間における電力消費実績に基づいて単位時間当りの電力消費量H(該規定期間における平均実績値)を求める。
[Calculation of power cost (cost) A when biofilm retention reduction processing is not performed]
In order to predict the amount of power consumption when the biofilm retention reduction process is not performed at the present time, the power consumption per unit time is based on the actual power consumption in the specified period between the current time and the past specified time back from the current time. The consumption amount H (average actual value in the specified period) is calculated.

現時点からその後の所定期間fの間の電力消費量を予測する第1の予測方法は、所定期間fの間中、単位時間当りの電力消費量はそれまでと同じHで推移するとみなすものである。この場合、所定期間fの累計電力消費量はH・fとして算出され、これに電力単価aを乗じたH・f・aが所定期間fにおける電力費用Aとなる。 The first prediction method for predicting the power consumption during the predetermined period f from the present time is to consider that the power consumption per unit time changes at the same H as before during the predetermined period f. .. In this case, the cumulative power consumption in the predetermined period f is calculated as H · f, and H · f · a obtained by multiplying this by the power unit price a becomes the power cost A in the predetermined period f.

第2の予測方法は、所定期間fの間中、単位時間当りの電力消費量は予め設定した逓増パターンに従って逓増するとみなすものである。 The second prediction method considers that the power consumption per unit time gradually increases according to a preset gradual increase pattern during the predetermined period f.

この逓増パターンは、数式モデルであってもよく、生物処理装置の運転実績から求めた平均増加率にて単位時間当りの電力消費量が増加するパターンであってもよい。 This gradual increase pattern may be a mathematical model, or may be a pattern in which the power consumption per unit time increases at the average increase rate obtained from the operation results of the biological processing apparatus.

いずれの逓増パターンの場合であっても、所定期間fにおける累計電力所定期間に電力単価aを乗算することにより、所定期間fにおける電力費用Aが算出される。 Regardless of the gradual increase pattern, the power cost A in the predetermined period f is calculated by multiplying the cumulative power in the predetermined period f by the power unit price a.

[生物膜保持量低減処理を行った場合の電力費用(コスト)Bの算定]
生物膜保持量低減処理を行うと、生物膜の酸素拡散性が向上するので、曝気量を少なくしてもTOCを良好に処理することができる。曝気量を減少させることにより、ブロア電力消費量が減少する。
[Calculation of power cost (cost) B when biofilm retention reduction processing is performed]
When the biofilm retention reduction treatment is performed, the oxygen diffusivity of the biofilm is improved, so that the TOC can be satisfactorily treated even if the aeration amount is reduced. By reducing the amount of aeration, the blower power consumption is reduced.

電力消費量がどの程度減少するかは、生物膜保持量低減処理により上記制御表が何段階上のものにシフトするかに依存する。そこで、生物処理装置の運転実績から、制御表が生物膜保持量低減処理により何段階シフトするかを求めておくのが好ましい。 How much the power consumption is reduced depends on how many steps the control table is shifted to by the biofilm retention reduction treatment. Therefore, it is preferable to find out how many steps the control table shifts due to the biofilm retention reduction treatment from the operation results of the biological treatment apparatus.

例えば、生物膜保持量低減処理により制御表が上位の表にシフトする場合、シフト後の制御表に従って制御したときの単位時間当りの平均電力消費量と、シフト前の制御表に従って制御したときの単位時間当りの平均電力消費量との比αを実績データから求めるか、又は予想値として設定しておく。そして、このαを上記金額Aに乗算することにより(すなわちB=α・Aとして)、Bを算出することができる。 For example, when the control table shifts to a higher table due to the biological membrane retention reduction process, the average power consumption per unit time when controlled according to the control table after the shift and the control table when controlled according to the control table before the shift. The ratio α to the average power consumption per unit time is obtained from the actual data or set as an expected value. Then, B can be calculated by multiplying the amount of money A by this α (that is, B = α · A).

[生物膜保持量低減処理費用C]
生物膜保持量低減処理費用Cには、処理作業で使用する部材の単価データ、処理作業の労務費データ、ポンプの動力費用、強曝気時のブロワの増強分の動力費用などが含まれる。
[Biofilm retention reduction processing cost C]
The biological membrane retention reduction processing cost C includes unit price data of the members used in the processing work, labor cost data of the processing work, power cost of the pump, power cost for enhancing the blower at the time of strong aeration, and the like.

これらのデータは実績データから分かるが、初期には各費用の予測値の合計として設定しておけばよい。 These data can be seen from the actual data, but initially it should be set as the total of the predicted values of each cost.

[費用Aと費用(B+C)との対比]
費用(B+C)が費用Aよりも低い場合に生物膜保持量低減処理が好適と判断し、この処理を行う。なお、費用(B+C)が費用Aよりも予め設定した規定金額以上低い場合に、生物膜保持量低減処理が好適と判断し、この処理を行うようにしてもよい。
[Contrast between cost A and cost (B + C)]
When the cost (B + C) is lower than the cost A, it is determined that the biofilm retention reduction treatment is suitable, and this treatment is performed. When the cost (B + C) is lower than the cost A by a predetermined amount or more set in advance, it may be determined that the biofilm retention amount reduction treatment is suitable, and this treatment may be performed.

制御器21がこの対比を行い、生物膜保持量低減処理開始信号をポンプ11及び撹拌機13や強曝気用ブロア17等の生物膜保持量低減処理装置に作動信号を与えるようにしてもよく、別途設置したコスト比較回路が生物膜保持量低減処理開始信号を出力してもよく、作業員が比較結果に基づいて生物膜保持量低減処理操作を実行させてもよい。 The controller 21 may perform this comparison and give an operation signal to the biofilm retention reduction processing device such as the pump 11, the stirrer 13, and the blower 17 for strong aeration by performing this comparison. A separately installed cost comparison circuit may output a biofilm retention reduction processing start signal, or the worker may execute the biofilm retention reduction processing operation based on the comparison result.

コストAと(B+C)の算出及び対比は、連続的に行ってもよく、間欠的に行ってもよく、算出・対比指令信号が与えられたときに行ってもよい。 The calculation and contrast of the costs A and (B + C) may be performed continuously, intermittently, or when the calculation / contrast command signal is given.

[流動床以外の生物処理]
図1では、流動床担体を用いた生物処理について説明したが、固定床担体やグラニュールを用いる場合も同様の手法で本発明を実施することができる。
[Biological treatment other than fluidized beds]
Although the biological treatment using the fluidized bed carrier has been described in FIG. 1, the present invention can be carried out by the same method when a fixed bed carrier or granule is used.

本実施形態では、有機物を含む排水を、曝気を伴う好気性生物膜処理により処理するときに用いることを説明したが、他にも生物膜を用いた生物学的硝化脱窒処理など、曝気槽にて生物膜を用いた好気処理工程を含む生物処理を行う場合にも同じ手法で本発明を実施することができる。 In the present embodiment, it has been described that wastewater containing organic substances is used when treated by aerobic biological membrane treatment accompanied by aeration, but in addition, an aeration tank such as biological nitrification and denitrification treatment using a biological membrane. The present invention can be carried out by the same method when performing biological treatment including an aerobic treatment step using a biological membrane.

[実施例1]
図1に示す、下記構成条件を有した流動床担体の好気性生物処理装置を用いる場合について上記費用を対比する。なお、所定期間fは1年間とする。
曝気槽の容量:2000m、水深5m、底面積400m
担体の充填率:50%
担体充填容積:反応槽容積2000m×担体充填率50%=1000m
平均TOC負荷:1000kgC/比
TOC担体容積負荷
=TOC負荷1000[kgC/日]÷担体充填容積1000[m
=1.0[kgC/(m・d)]
使用する制御表:下記の表2,3
[Example 1]
The above costs are compared in the case of using the aerobic biological treatment apparatus for the fluidized bed carrier shown in FIG. 1 having the following constitutional conditions. The predetermined period f is one year.
Aeration tank capacity: 2000m 3 , water depth 5m, bottom area 400m 2
Carrier filling rate: 50%
Carrier filling volume: Reaction tank volume 2000 m 3 x carrier filling rate 50% = 1000 m 3
Average TOC load: 1000 kgC / ratio TOC carrier volume load
= TOC load 1000 [kgC / day] ÷ carrier filling volume 1000 [m 3 ]
= 1.0 [kgC / (m 3 · d)]
Control table to be used: Tables 2 and 3 below

表2は、現状の制御システムの設定から直接的に抽出した運転条件に基づいて作成した制御テーブルである。 Table 2 is a control table created based on the operating conditions directly extracted from the settings of the current control system.

表3は、生物膜保持量低減処理により生物膜保持量が低減されて酸素拡散の性能指標が高い状況、すなわち生物処理性能の良い状況を想定した制御表である。 Table 3 is a control table assuming a situation in which the biofilm retention amount is reduced by the biofilm retention reduction treatment and the oxygen diffusion performance index is high, that is, a situation in which the biofilm retention performance is good.

生物膜保持量低減処理を行うことによって、底面積あたりの風量は、担体容積負荷1.0kgC/(m・d)において、風量が20.0m/(m・h)から14.0m/(m・h)に大幅に削減される。 By performing the biological film retention reduction treatment, the air volume per bottom area is 20.0 m 3 / (m 2 · h) to 14.0 m at a carrier volume load of 1.0 kg C / (m 3 · d). It is greatly reduced to 3 / (m 2 · h).

Figure 2021159860
Figure 2021159860

Figure 2021159860
Figure 2021159860

風量1N−mあたりの電力消費を0.017[kWh/風量m]とし、原水負荷が向こう1年間一定であると仮定すると、表4の通り、現時点で生物膜保持量低減処理を行った場合、年間消費電力は、生物膜保持量低減処理を1年間行わない場合に比べて、1.19GWh/年から0.83GWh/年に削減される。 Assuming that the power consumption per 1 N-m 3 of air volume is 0.017 [kWh / air volume m 3 ] and the raw water load is constant for the next year, as shown in Table 4, the biological membrane retention amount is reduced at present. In this case, the annual power consumption is reduced from 1.19 GWh / year to 0.83 GWh / year as compared with the case where the biological membrane retention reduction treatment is not performed for one year.

Figure 2021159860
Figure 2021159860

生物膜保持量低減処理を行わなかった場合と生物膜保持量低減処理を行ったときのトータル費用はそれぞれ次の通りである。 The total costs when the biofilm retention reduction treatment is not performed and when the biofilm retention reduction treatment is performed are as follows.

A=[生物膜保持量低減処理を行わない場合の年間電力費用]
=1.19GWh/年×電力単価
B=[生物膜保持量低減処理した場合の年間電力費用]
=0.83GWh/年×電力単価
C=[生物膜保持量低減処理費用]
B+C= 0.83GWh/年×電力単価+[生物膜保持量低減処理費用]
A = [Annual power cost when biofilm retention reduction treatment is not performed]
= 1.19 GWh / year x power unit price B = [annual power cost when biofilm retention reduction processing is performed]
= 0.83 GWh / year x power unit price C = [Biofilm retention reduction processing cost]
B + C = 0.83 GWh / year x power unit price + [biofilm retention reduction processing cost]

このようにして算出したトータル費用を比較することにより、生物膜保持量低減処理を行った場合のコストメリットを知ることができ、生物膜保持量低減処理を実施することがコストメリット面から好適と判断できた。 By comparing the total costs calculated in this way, it is possible to know the cost merit when the biofilm retention reduction treatment is performed, and it is preferable to carry out the biofilm retention reduction treatment from the viewpoint of cost merit. I was able to judge.

2 曝気槽
3,3a,3b,3c 散気管
4,17 ブロア
12 撹拌水槽
13 撹拌機
15 選別装置
2 Aeration tank 3,3a, 3b, 3c Air diffuser 4,17 Blower 12 Stirring water tank 13 Stirrer 15 Sorting device

Claims (11)

原水を曝気槽に供給し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物膜処理する方法において、
生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出し、
生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出し、
(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行うことを特徴とする好気性生物膜処理方法。
In a method in which raw water is supplied to an aeration tank and the substance to be removed in the raw water is treated with an aerobic biofilm by a biofilm-retaining carrier or granule filled in the aeration tank.
Calculate the aeration power cost A within the subsequent predetermined period when the biofilm retention reduction treatment is not performed.
The total cost (B + C) of the aeration power cost B and the biofilm retention reduction treatment cost C within the subsequent predetermined period when the biofilm retention reduction treatment is performed is calculated.
A method for treating an aerobic biofilm, which comprises comparing (B + C) and A, and determining that the biofilm retention reduction treatment is suitable if (B + C) is smaller than A.
前記A,(B+C)の算出及び比較を定期的に又は実行指令が与えられたときに行う請求項1の好気性生物膜処理方法。 The aerobic biological membrane treatment method according to claim 1, wherein the calculation and comparison of A and (B + C) are performed periodically or when an execution command is given. 前記(B+C)がAよりも所定金額以上小さいときに前記生物膜保持量低減処理を好適とする判定を行う請求項1又は2の好気性生物膜処理方法。 The aerobic biofilm treatment method according to claim 1 or 2, wherein when the (B + C) is smaller than A by a predetermined amount or more, it is determined that the biofilm retention reduction treatment is suitable. 前記生物膜保持量低減処理費用は、前記担体の生物膜保持量低減処理又はグラニュールの部分解体処理の操作を行う費用と、該操作により生じた排出汚泥を処理する費用とを含む請求項1〜3のいずれかの好気性生物膜処理方法。 The biofilm retention reduction treatment cost includes the cost of performing the biofilm retention reduction treatment of the carrier or the partial decomposition product treatment of the granule, and the cost of treating the discharged sludge generated by the operation. The method for treating an aerobic biofilm according to any one of 3 to 3. 前記コストの算定時前の規定期間における曝気電力消費量から単位時間の電力消費量Hを求め、
該算定時以降は、予め設定した逓増パターンに従って単位時間電力消費量が逓増するものとし、
この逓増した単位時間電力消費量H’と、前記所定期間と、電力単価との積とによって前記曝気電力コストAを算出し、
該単位時間電力消費量H’に、予め設定した規定比率α(ただしα<1)を乗じたα・H’を、生物膜保持量低減処理を行った後の単位時間電力消費量とみなして、α・Aを前記曝気電力コストBとする、請求項1〜4のいずれかの好気性生物膜処理方法。
Obtain the unit-time power consumption H from the aerated power consumption in the specified period before the cost is calculated.
After the calculation, the unit time power consumption shall gradually increase according to the preset gradual increase pattern.
The aeration power cost A is calculated from the product of the gradually increased unit time power consumption H', the predetermined period, and the power unit price.
Α · H', which is obtained by multiplying the unit time power consumption H'by a preset specified ratio α (however, α <1), is regarded as the unit time power consumption after the biological membrane retention reduction treatment is performed. , Α · A is the aeration power cost B, and the aerobic biological membrane treatment method according to any one of claims 1 to 4.
前記曝気槽内のDOの目標値及び/又は曝気強度設定値から曝気動力にかかる電力使用量を算出する数式モデルと、
電力使用量に対応する単価データと、
原水負荷または酸素消費速度と、DOの目標値及び/または曝気強度設定値と、の相関関係を、酸素透過性の良否に関係づけて決定した2つ以上の相関関係グループと
を設定しておき、
原水負荷または酸素消費速度の計測値(別の測定項目の実測値から算出したものを含む)の変動に応じて、前記相関関係の1つに基づいて、該計測値に対応するDOの目標値及び/または曝気強度設定値を調整して曝気制御を行う請求項1〜5のいずれかの好気性生物膜処理方法。
A mathematical model for calculating the amount of power used for aeration power from the target value of DO in the aeration tank and / or the set value of aeration intensity, and
Unit price data corresponding to power consumption and
Two or more correlation groups determined by relating the correlation between the raw water load or oxygen consumption rate and the DO target value and / or the aeration intensity setting value to the quality of oxygen permeability are set. ,
The target value of DO corresponding to the measured value based on one of the above correlations according to the fluctuation of the measured value of the raw water load or the oxygen consumption rate (including the one calculated from the measured value of another measurement item). And / or the aerobic biological membrane treatment method according to any one of claims 1 to 5, wherein the aeration intensity setting value is adjusted to control the aeration.
選定した前記相関関係のDOの目標値あるいはその実測値、及び/又は曝気強度設定値あるいはその実測値から、現状の単位期間当たりの曝気動力にかかる電力使用量の算出値を求め、
今後の前記所定期間の曝気動力が該算出値で一定であるとするか、曝気動力の経時的な上昇を予測する数式モデルによって今後の曝気動力の予測値を求め、
該算出値または予測値と、電力使用量の単価データとに基づいて、前記電力費用Aを算出し、
使用していた前記相関関係よりも相対的に酸素透過性の良い相関関係を相関関係グループから選定し、この相関関係における曝気作用に基づいて今後の前記所定期間の前記費用Bを算出する請求項6の好気性生物膜処理方法。
From the selected target value of DO of the correlation or its actual measurement value, and / or the aeration intensity set value or its actual measurement value, the calculated value of the electric power consumption for the aeration power per unit period is obtained.
It is assumed that the aeration power for the predetermined period in the future is constant at the calculated value, or the predicted value of the future aeration power is obtained by a mathematical model that predicts the increase of the aeration power over time.
The electric power cost A is calculated based on the calculated value or the predicted value and the unit price data of the electric power consumption.
A claim that selects a correlation having a relatively better oxygen permeability than the correlation used and calculates the cost B for the predetermined period in the future based on the aeration action in this correlation. 6. Aerobic biological membrane treatment method.
前記生物膜保持量低減処理を、回転撹拌羽根又は逆洗による強撹拌、強曝気、高流速循環、及び槽内水の破砕ポンプへの通水のいずれか1又は2以上により行う請求項1〜7のいずれかの好気性生物膜処理方法。 Claims 1 to 1 in which the biological film retention reduction treatment is performed by any one or more of strong stirring by a rotary stirring blade or backwash, strong aeration, high flow velocity circulation, and water flow to a crushing pump of water in a tank. 7. The aerobic biological membrane treatment method according to any one of 7. 前記生物膜保持量低減処理費用Cを定数として設定しておく請求項1〜8のいずれかの好気性生物膜処理方法。 The aerobic biofilm treatment method according to any one of claims 1 to 8, wherein the biofilm retention reduction treatment cost C is set as a constant. 前記費用Aが前記費用(B+C)よりも小さい場合、費用Aと費用(B+C)とが等しくなるまでの期間を求める請求項1〜9のいずれかの好気性生物膜処理方法。 The aerobic biological membrane treatment method according to any one of claims 1 to 9, wherein when the cost A is smaller than the cost (B + C), the period until the cost A and the cost (B + C) become equal is determined. 原水が供給される曝気槽と、該曝気槽に充填された生物膜保持担体またはグラニュールと、該曝気槽を曝気する曝気装置とを有する好気性生物膜処理装置において、
生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出する手段と、
生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出する手段と、
(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行う手段と
を有することを特徴とする好気性生物膜処理装置。
In an aerobic biofilm treatment apparatus having an aeration tank to which raw water is supplied, a biofilm holding carrier or granule filled in the aeration tank, and an aeration device for aerating the aeration tank.
A means for calculating the aeration power cost A within a predetermined period thereafter when the biofilm retention reduction treatment is not performed, and
A means for calculating the total cost (B + C) of the aeration power cost B and the biofilm retention reduction treatment cost C within a predetermined period after the biofilm retention reduction treatment is performed.
An aerobic biofilm treatment apparatus comprising: (B + C) and A, and if (B + C) is smaller than A, a means for determining that the biofilm retention reduction treatment is suitable.
JP2020064159A 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device Active JP7347304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064159A JP7347304B2 (en) 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064159A JP7347304B2 (en) 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device

Publications (2)

Publication Number Publication Date
JP2021159860A true JP2021159860A (en) 2021-10-11
JP7347304B2 JP7347304B2 (en) 2023-09-20

Family

ID=78004204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064159A Active JP7347304B2 (en) 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device

Country Status (1)

Country Link
JP (1) JP7347304B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202011730WA (en) 2018-06-18 2021-01-28 Mitsubishi Electric Corp Operation support device and operation support method

Also Published As

Publication number Publication date
JP7347304B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
CZ294826B6 (en) Method and for treating waste material and apparatus for making the same
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP4304453B2 (en) Operation control device for nitrogen removal system
WO2021200968A1 (en) Aerobic organism treatment method and device
WO2021199885A1 (en) Aerobic biofilm treatment method and device
JP3823863B2 (en) Operation support system and control system for water treatment process
EP3681843A1 (en) Simultaneous nitrification/denitrification (sndn) in sequencing batch reactor applications
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
WO2021240968A1 (en) Aerobic biological processing method and device
JP2021159860A (en) Aerobic biological film treatment method and device
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP4180773B2 (en) Design support device for sewage treatment plant that treats sewage by activated sludge process.
JP2021169062A (en) Aerobic biological membrane treatment method and apparatus
JP4620391B2 (en) Sewage treatment equipment
JPH0938683A (en) Biological water treating device
Kayser Activated sludge process
CN115335334A (en) Aerobic biofilm treatment method and device
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3444021B2 (en) Control method and control device for oxidation ditch type water treatment apparatus
JP4146491B2 (en) Water treatment using activated sludge
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH09299987A (en) Intermittent aeration method
JP2010269276A (en) Method and apparatus for controlling water treatment
JP4837266B2 (en) Operation method of oxidation ditch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150